ОПРЕДЕЛЕНИЕ

Анализатор - функциональная единица, отвечающая за восприятие и анализ сенсорной информации одного вида (термин ввел И. П. Павлов).

Анализатор представляет собой совокупность нейронов, участвующих в восприятии раздражений, проведении возбуждения и в анализе раздражения.

Анализатор часто называют сенсорной системой . Анализаторы классифицируют по типу тех ощущений, в формировании которых они участвуют (см. рис. ниже).

Рис. Анализаторы

Это зрительный, слуховой, вестибулярный, вкусовой, обонятельный, кожный, мышечный и другие анализаторы. В анализаторе выделяют три отдела:

  1. Периферический отдел : рецептор, предназначенный для преобразования энергии раздражения в процесс нервного возбуждения.
  2. Проводниковый отдел : цепь из центростремительных (афферентных) и вставочных нейронов, по которой импульсы передаются от рецепторов к вышележащим отделам центральной нервной системы.
  3. Центральный отдел : определенная зона коры больших полушарий.

Кроме восходящих (афферентных) путей существуют нисходящие волокна (эфферентные), по которым осуществляется регуляция деятельности нижних уровней анализатора со стороны его высших, в особенности корковых, отделов.

анализатор

периферический отдел

(орган чувств и рецепторы)

проводниковый отдел центральный отдел
зрительный рецепторы сетчатки глаза зрительный нерв зрительный центр в затылочной доле КБП
слуховой чувствительные волосковые клетки кортиева (спирального) органа улитки слуховой нерв слуховой центр в височной доле КБП
обонятельный обонятельные рецепторы эпителия носа обонятельный нерв обонятельный центр в височной доле КБП
вкусовой вкусовые почки ротовой полости (в основном, корня языка) языкоглоточный нерв вкусовой центр в височной доле КБП
осязательный (тактильный)

осязательные тельца сосочкового слоя дермы (болевые, температурные, тактильные и др. рецепторы)

центростремительные нервы; спинной, продолговатый, промежуточный мозг центр кожной чувствительности в центральной извилине теменной доли КБП
кожно-мышечный проприорецепторы в мышцах и связках центростремительные нервы; спинной мозг;продолговатый и промежуточный мозг двигательная зона и прилегающим к ней участки лобной и теменных долей.
вестибулярный полукружные канальца и преддверие внутреннего уха преддверно-улитковый нерв (VIII пара черепно-мозговых нервов) мозжечок

КБП* - кора больших полушарий.

органы чувств

Человек обладает рядом важных специализированных периферических образований -органов чувств , обеспечивающих восприятие воздействующих на организм внешних раздражителей.

Орган чувств состоит из рецепторов и вспомогательного аппарата, который помогает улавливать, концентрировать, фокусировать, направлять и т. д. сигнал.

К органам чувств относятся органы зрения, слуха, обоняния, вкуса, осязания. Сами по себе они не могут обеспечить ощущение. Для возникновения субъективного ощущения необходимо, чтобы возбуждение, возникшее в рецепторах, поступило в соответствующий отдел коры больших полушарий.

Структурные поля коры больших полушарий

Если рассматривать стуктурную организацию коры больших полушарий, то можно выделить несколько полей, имеющих различное клеточное строение.

Различают три основные группы полей в коре:

  • первичные
  • вторичные
  • третичные.

Первичные поля , или ядерные зоны анализаторов, непосредственно связаны с органами чувств и органами движения.

Например, поле болевой, температурной, кожно-мышечной чувствительности в задней части центральной извилины, зрительное поле в затылочной доле, слуховое поле в височной доле и двигательное поле в передней части центральной извилины.

Первичные поля они раньше других созревают в онтогенезе.

Функция первичных полей: анализ отдельных раздражений, поступающих в кору от соответствующих рецепторов.

При разрушении первичных полей возникает так называемая корковая слепота, корковая глухота и т. п.

Вторичные поля расположены рядом с первичными и связаны через них с органами чувств.

Функция вторичных полей: обобщение и дальнейшая обработка поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия.

При поражении вторичных полей человек видит и слышит, но не способен осознать, понять значение увиденного и услышанного.

Первичные и вторичные поля имеются и у человека, и у животных.

Третичные поля , или зоны перекрытия анализаторов, находятся в задней половине коры - на границе теменной, височных и затылочной долей и в передних частях лобных долей. Они занимают половину всей площади коры больших полушарий и имеют многочисленные связи со всеми ее частями. В третичных полях оканчивается большинство нервных волокон, соединяющих левое и правое полушария.

Функция третичных полей: организация согласованной работы обоих полушарий, анализ всех воспринятых сигналов, их сравнение с ранее полученнойнформацией, координация соответствующего поведения, программирование двигательной активности.

Эти поля есть только у человекаи созревают позже других корковых полей.

Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.

При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью и даже простейшими двигательными навыками.

Рис. Структурные поля коры больших полушарий

С учетом расположения структурных полей коры больших полушарий можно выделить функциональные части: сенсорные, моторные и ассоциативные зоны.

Все сенсорные и моторные зоны занимают менее 20% поверхности коры. Остальная кора составляет ассоциативную область.

Ассоциативные зоны

Ассоциативные зоны - это функциональные зоны коры головного мозга. Они связывают вновь поступающую сенсорную информацию с полученной ранее и хранящейся в блоках памяти, а также сравнивают между собой информацию, получаемую от разных рецепторов (см. рис. ниже).

Каждая ассоциативная область коры связана с несколькими структурными полями. В состав ассоциативных зон входит часть теменной, лобной и височной долей. Границы ассоциативных зон нечеткие, ее нейроны участвуют в интеграции различной информации. Здесь идет высший анализ и синтез раздражений. В результате формируются сложные элементы сознания.

Рис. Борозды и доли коры больших полушарий

Рис. Ассоциативные зоны коры больших полушарий:

1. Ассоциативная двигател ьная зона (лобная доля)

2. Первичная двигательная зона

3. Первичная соматосенсорная зона

4. Теменная доля больших полушарий

5. Ассоциативная соматосенсорная (кожно-мышечная) зона (теменная доля)

6. Ассоциативная зрительная зона (затылочная доля)

7. Затылочная доля больших полушарий

8. Первичная зрительная зона

9. Ассоциативная слуховая зона (височные доли)

10. Первичная слуховая зона

11. Височная доля больших полушарий

12. Обонятельная кора (внутренняя поверхность височной доли)

13. Вкусовая кора

14. Предлобная ассоциативная зона

15. Лобная доля больших полушарий.

Сенсорные сигналы в ассоциативной зоне расшифровываются, осмысливаются и используются для определения наиболее подходящих ответных реакций, которые передаются в связанную с ней двигательную (моторную) зону.

Таким образом, ассоциативные зоны участвуют в процессах запоминания, обучения и мышления, и результаты их деятельности составляют интеллект (способность организма использовать полученные знания).

Отдельные крупные ассоциативные области расположены в коре рядом с соответствующими сенсорными зонами. Например, зрительная ассоциативная зона расположена в затылочной зоне непосредственно впереди сенсорной зрительной зоны и осуществляет полную обработку зрительной информации.

Некоторые ассоциативные зоны выполняют только часть обработки информации и связаны с другим ассоциативными центрами, выполняющими дальнейшую обработку. Например, звуковая ассоциативная зона анализирует звуки, разделяя их на категории, а затем передает сигналы в более специализированные зоны, такие как речевая ассоциативная зона, где воспринимается смысл услышанных слов.

Эти зоны относятся к ассоциативной коре и участвуют в организации сложных форм поведения.

В коре больших полушарий выделяют области с менее определенными функциями. Так, значительная часть лобных долей, особенно с правой стороны, может быть удалена без заметных нарушений. Однако, если произвести двухстороннее удаление лобных областей возникают тяжелые психические нарушения.

вкусовой анализатор

Вкусовой анализатор отвечает за восприятие и анализ вкусовых ощущений.

Периферический отдел : рецепторы - вкусовые луковицы в слизистой оболочке языка, мягкого неба, миндалин и других органов ротовой полости.

Рис. 1. Вкусовой сосочек и вкусовая луковица

Вкусовые сосочки несут на боковой поверхности вкусовые луковицы (рис. 1, 2), в состав которых входят 30 - 80 чувствительных клеток. Вкусовые клетки усеяны на своем конце микроворсинками - вкусовыми волосками. Они выходят на поверхность языка через вкусовые поры. Вкусовые клетки непрерывно делятся и непрерывно гибнут. Осо­бенно быстро происходит замещение клеток, расположенных в пе­редней части языка, где они лежат более поверхностно.

Рис. 2. Вкусовая луковица: 1 - нервные вкусовые волокна; 2 - вкусовая почка (чашечка); 3 - вкусовые клетки; 4 - поддерживающие (опорные) клетки; 5 - вкусовая пора

Рис. 3. Вкусовые зоны языка: сладкое - кончик языка; горькое - основание языка; кислое - боковая поверхность языка; соленое - кончик языка.

Вкусовые ощущения вызывают только растворенные в воде вещества.

Проводниковый отдел : волокна лицевого и языкоглоточного нерва (рис. 4).

Центральный отдел : внутренняя сторона височной доли коры больших полушарий.

обонятельный анализатор

Обонятельный анализатор отвечает за восприятие и анализ запаха.

  • пищевое поведение;
  • апробация пищи на съедобность;
  • на­стройка пищеварительного аппарата на обработку пищи (по ме­ханизму условного рефлекса);
  • оборонительное по­ведение (в т. ч. проявление агрессии).

Периферический отдел: рецепторы слизистой оболочки верхней части носовой полости. Обонятельные рецепторы в слизистой носа оканчиваются обонятельными ресничками. Газообразные вещества растворяются в слизи, окружающей реснички, затем в результате химической реакции возникает нервный импульс (рис. 5).

Проводниковый отдел: обонятельный нерв.

Центральный отдел : обонятельная луковица (структура переднего мозга, в которой осуществляется обработка информации) и обонятельный центр, расположенный на нижней поверхности височной и лобной долей коры больших полушарий (рис. 6).

В коре происходит определение запаха и формируется адекватная на него реакция организма.

Восприятие вкуса и запаха дополняют друг друга, давая целостное представление о виде и качестве пищи. Оба анализатора связаны с центром слюноотделения продолговатого мозга и участвуют в пищевых реакциях организма.

Осязательный и мышечный анализатор объединяют в соматосенсорную систему - систему кожно-мышечной чувствительности.

Строение соматосенсорного анализатора

Периферический отдел : проприорецепторы мышц и сухожилий; рецепторы кожи (механорецепторы, терморецепторы и др.).

Проводниковый отдел : афферентные (чувствительны) нейроны; восходящие пути спинного мозга; продолговатый мозг, ядра промежуточного мозга.

Центральный отдел : сенсорная зона в теменной доле коры больших полушарий.

Рецепторы кожи

Кожа является самым крупным чувствительный органом в теле человека. На ее поверхности (около 2 м2) сосредоточено множество рецепторов.

Большинство ученых склоняются к наличию четырех основных видов кожной чувствительности: тактильной, тепловой, холодовой и болевой.

Рецепторы распределены неравномерно и на разной глубине. Больше всего рецепторов в коже пальцев рук, ладоней, подошв, губ и половых органов.

МЕХАНОРЕЦЕПТОРЫ КОЖИ

  • тонкие окончания нервных волокон , оплетающие кровеносные сосуды, волосяные сумки и т.п.
  • клетки Меркеля - нервные окончания базального слоя эпидермиса (много на подушечках пальцев);
  • осязательные тельца Мейсснера - сложные рецепторы сосочкового слоя дермы (много на пальцах, ладонях, подошвах, губах, языке, половых органах и сосках молочных желез);
  • пластинчатые тельца - рецепторы давления и вибрации; расположены в глубоких слоях кожи, в сухожилиях, связках и брыжейке;
  • луковицы (колбы Краузе) - нервные рецепторы в соединительнотканном слое слизистых оболочек, под эпидермисом и среди мышечных волокон языка.

МЕХАНИЗМ РАБОТЫ МЕХАНОРЕЦЕПТОРОВ

Механический стимул - деформация мембраны рецептора - уменьшение электрического сопротивления мембраны - увеличение проницаемости мембраны для Na+ - деполяризация мембраны рецептора - распространение нервного импульса

АДАПТАЦИЯ КОЖНЫХ МЕХАНОРЕЦЕПТОРОВ

  • быстро адаптирующиеся рецепторы : кожные механорецепторы в волосяных луковицах, пластинчатые тельца (не ощущаем давление одежды, контактных линз и т.п.);
  • медленно адаптирующиеся рецепторы: осязательные тельца Мейсснера.

Ощущение прикосновения и давления на кожу довольно точно локализуется, т. е. относится человеком к определенному участку кожной поверхности. Эта локализация вырабатывается и закрепляется в онтогенезе при участии зрения и проприорецепции.

Способность человека раздельно воспринимать прикосновение к двум соседним точкам кожи, также сильно отличается в разных ее участках. На слизистой оболочке языка порог пространственного различия равен 0,5 мм, а на коже спины - более 60 мм.

Температурная рецепция

Температура тела человека колеблется в сравнительно узких пределах, поэтому информация о температуре окружающей среды, необходимая для деятельности механизмов терморегуляции, имеет особо важное значение.

Терморецепторы располагаются в коже, роговице глаза, в слизистых оболочках, а также в ЦНС (в гипоталамусе).

ВИДЫ ТЕРМОРЕЦЕПТОРОВ

  • холодовые терморецепторы : многочисленные; лежат близко к поверхности.
  • тепловые терморецепторы : их значительно меньше; лежат в более глубоком слое кожи.
  • специфические терморецепторы : воспринимают только температуру;
  • неспецифические терморецепторы : воспринимают температурные и механические раздражители.

Терморецепторы реагируют на изменение температуры повышением частоты генерируемых импульсов, устойчиво длящимся все время действия стимула. Изменение температуры на 0,2 °С вызывает длительные изменения их импульсации.

В некоторых условиях холодовые рецепторы могут быть возбуждены теплом, а тепловые холодом. Этим объясняется возникновение острого ощущения холода при быстром погружении в горячую ванну или обжигающее действие ледяной воды.

Начальные температурные ощущения зависят от разницы температуры кожи и температуры действующего раздражителя, его площади и места приложения. Так, если руку держали в воде температуры 27 °С, то в первый момент при переносе руки в воду, нагретую до 25 °С, она кажется холодной, однако уже через несколько секунд становится возможной истинная оценка абсолютной температуры воды.

Болевая рецепция

Болевая чувствительность имеет первостепенное значение для выживания организма, являясь сигналом об опасности при сильных воздействиях различных факторов.

Импульсы болевых рецепторов часто свидетельствуют о патологических процессах в организме.

На данный момент не найдены специфическе болевые рецепторы.

Сформулированы две гипотезы об организации болевого восприятия:

  1. Существуют специфические болевые рецепторы - свободные нервные окончания с высоким порогом реакции;
  2. Специфических болевых рецепторов не существует; боль возникает при сверхсильном раздражении любых рецепторов.

Механизм возбуждения рецепторов при болевых воздействиях пока не выяснен.

Наиболее общей причиной возникновения боли можно считать изменение концентрации Н+ при токсическом воздействии на дыхательные ферменты или при повреждении клеточных мембран.

Одной из возможных причин длительной жгучей боли может быть выделение при повреждении клеток гистамина, протеолитических ферментов и др. веществ, вызывающих цепочку биохимических реакций, приводящих к возбуждению нервных окончаний.

Болевая чувствительность практически не представлена на корковом уровне, поэтому высшим центром болевой чувствительности является таламус, где 60 % нейронов в соответствующих ядрах.четко реагирует на болевое раздражение.

АДАПТАЦИЯ БОЛЕВЫХ РЕЦЕПТОРОВ

Адаптация болевых рецепторов зависит от многочисленных факторов и ее механизмы мало изучены.

Например, заноза, будучи неподвижной, не вызывает особых болевых ощущений. Пожилые люди в некоторых случаях "привыкают не замечать" головной боли или боли в суставах.

Однако в очень многих случаях болевые рецепторы не обнаруживают существенной адаптации, что делает страдания больного особенно длительными и мучительными и требует применения анальгетиков.

Болевые раздражения вызывают ряд рефлекторных соматических и вегетативных реакций. При умеренной выраженности эти реакции имеют приспособительное значение, но могут привести к тяжелым патологическим эффектам, например к шоку. Среди этих реакций отмечают повышение мышечного тонуса, частоты сердечных сокращений и дыхания, повышение ил понижение давления, сужение зрачков, увеличение содержания глюкозы в крови и ряд других эффектов.

ЛОКАЛИЗАЦИЯ БОЛЕВОЙ ЧУВСТВИТЕЛЬНОСТИ

При болевых воздействиях на кожу человек локализует их достаточно точно, но при заболеваниях внутренних органов могут вознкать отраженные боли . Например, при почечной колике, больные жалуются на "вступающие" резкие боли в ногах и прямой кишке. Могут быть и обратные эффекты.

проприорецепция

Виды проприорецепторов:

  • нервно-мышечные веретена: дают информацию о скорости и силе мышечного растяжения и сокращения;
  • сухожильные рецепторы Гольджи: дают информацию о силе мышечного сокращения.

Функции проприорецепторов:

  • восприятие механических раздражений;
  • восприятие пространственного расположения частей тела.

НЕРВНО-МЫШЕЧНОЕ ВЕРЕТЕНО

Нервно-мышечное веретено - сложный рецептор, который включает видоизмененные мышечные клетки, афферентные и эфферентные нервные отростки и контролирует как скорость, так и степень сокращения и растяжение скелетных мышц.

Нервно-мышечное веретено расположено в толще мышцы. Каждое веретено покрыто капсулой. Внутри капсулы находится пучок специальных мышечных волокон. Веретена расположены параллельно волокнам скелетных мышц, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении - уменьшается.

Рис. Нервно-мышечное веретено

СУХОЖИЛЬНЫЕ РЕЦЕПТОРЫ ГОЛЬДЖИ

Находятся в зоне соединения мышечных волокон с сухожилием.

Сухожильные рецепторы слабо реагируют на растяжение мышцы, но возбуждаются при ее сокращении. Интенсивность их импульсации примерно пропорциональна силе сокращения мышцы.

Рис. Сухожильный рецептор Гольджи

СУСТАВНЫЕ РЕЦЕПТОРЫ

Они изучены меньше, чем мышечные. Известно, что суставные рецепторы реагируют на положение сустава и на изменения суставного угла, участвуя таким образом в системе обратных связей от двигательного аппарата и в управлении им.

Зрительный анализатор включает:

  • периферический отдел: рецепторы сетчатки глаза;
  • проводниковый отдел: зрительный нерв;
  • центральный отдел: затылочная доля коры больших полушарий.

Функция зрительного анализатора : восприятие, проведение и расшифровка зрительных сигналов.

Строения глаза

Глаз состоит из глазного яблока и вспомогательного аппарата .

Вспомогательный аппарат глаза

  • брови - защита от пота;
  • ресницы - защита от пыли;
  • веки - механическая защита и поддержание влажности;
  • слезные железы - расположены у верхней части наружного края глазницы. Она выделяет слезную жидкость, увлажняющую, промывающую и дезинфицирующую глаз. Избыток слёзной жидкости удаляется в носовую полость через слёзный канал , расположенный во внутреннем углу глазницы.

ГЛАЗНОЕ ЯБЛОКО

Глазное яблоко имеет примерно сферическую форму с диаметром около 2,5 см.

Оно расположено на жировой подушке в переднем отделе глазницы.

Глаз имеет три оболочки:

  1. белочная оболочка (склера) с прозрачной роговицей - наружная очень плотная фиброзная оболочка глаза;
  2. сосудистая оболочка с наружной радужной оболочкой и ресничным телом - пронизана кровеносными сосудами (питание глаза) и содержит пигмент, препятствующий рассеиванию света через склеру;
  3. сетчатая оболочка (сетчатка ) - внутренняя оболочка глазного яблока - рецепторная часть зрительного анализатора; функция: непосредственное восприятие света и передача информации в центральную нервную систему.

Коньюктива - слизистая оболочка, соединяющая глазное яблоко с кожным покровами.

Белочная оболочка (склера) - внешняя прочная оболочка глаза; внутренняя часть склеры непроницаема для сетовых лучей. Функция: защита глаза от внешних воздействий и светоизоляция;

Роговица - передняя прозрачная часть склеры; является первой линзой на пути световых лучей. Функция: механическая защита глаза и пропускание световых лучей.

Хрусталик - двояковыпуклая линза, расположенная за роговицей. Функция хрусталика: фокусировка световых лучей. Хрусталик не имеет сосудов и нервов. В нем не развиваются воспалительные процессы. В нем много белков, которые иногда могут терять свою прозрачность, что приводит к заболеванию, называемому катаракта .

Сосудистая оболочка - средняя оболочка глаза, богатая сосудами и пигментом.

Радужная оболочка - передняя пигментированная часть сосудистой оболочки; содержит пигменты меланин и липофусцин, определяющие цвет глаз.

Зрачок - круглое отверстие в радужной оболочке. Функция: регуляция светового потока, поступающего в глаз. Диаметр зрачка непроизвольно меняется с помощью гладких мышц радужной оболочки при изменении освещенности.

Передняя и задняя камеры - пространство спереди и сзади радужной оболочки, заполненное прозрачной жидкостью (водянистой влагой ).

Ресничное (цилиарное) тело - часть средней (сосудистой) оболочки глаза; функция: фиксация хрусталика, обеспечение процесса аккомодации (изменение кривизны) хрусталика; продуцирование водянистой влаги камер глаза, терморегуляция.

Стекловидное тело - полость глаза между хрусталиком и глазным дном , заполненная прозрачным вязким гелем, поддерживающим форму глаза.

Сетчатка (ретина) - рецепторный аппарат глаза.

СТРОЕНИЕ СЕТЧАТКИ

Сетчатка образована разветвлениями окончаний зрительного нерва, который, подойдя к глазному яблоку, проходит через белочную оболочку, причем оболочка нерва сливается с белочной оболочкой глаза. Внутри глаза волокна нерва распределяются в виде тонкой сетчатой оболочки, которая выстилает задние 2/3 внутренней поверхности глазного яблока.

Сетчатка состоит из опорных клеток, образующих сетчатую структуру, откуда и произошло ее название. Световые лучи воспринимает только ее задняя часть. Сетчатая оболочка по своему развитию и по функции представляет собой часть нервной системы. Все же остальные части глазного яблока играют вспомогательную роль для восприятия сетчаткой зрительных раздражений.

Сетчатая оболочка - это часть мозга, выдвинутая наружу, ближе к поверхности тела, и сохраняющая с ним связь с помощью пары зрительных нервов.

Нервные клетки образуют в сетчатке цепи, состоящие из трех нейронов (см. рис. ниже):

  • первые нейроны имеют дендриты в виде палочек и колбочек; эти нейроны являются конечными клетками зрительного нерва, они воспринимают зрительные раздражения и представляют собой световые рецепторы.
  • вторые - биполярные нейроны;
  • третьи - мультиполярные нейроны (ганглиозные клетки ); от них отходят аксоны, которые тянутся по дну глаза и образуют зрительный нерв.

Светочувствительные элементы сетчатки:

  • палочки - воспринимают яркость;
  • колбочки - воспринимают цвет.

Колбочки медленно возбуждаются и только ярким светом. Они способны воспринимать цвет. В сетчатке находится три вида колбочек. Первые воспринимают красный цвет, вторые - зеленый, третьи - синий. В зависимости от степени возбуждения колбочек и сочетания раздражений, глаз воспринимает различные цвета и оттенки.

Палочки и колбочки в сетчатой оболочке глаза перемешаны между собой, но в некоторых местах они расположены очень густо, в других же редко или отсутствуют совсем. На каждое нервное волокно приходится примерно 8 колбочек и около 130 палочек.

В области желтого пятна на сетчатке нет палочек - только колбочки, здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета. По-этому глазное яблоко находится в непрерывном движении, так чтобы рассматриваемая часть объекта приходилась на желтое пятно. По мере удаления от желтого пятна плотность палочек увеличивается, но потом уменьшается.

При низкой освещенности в процессе видения участвуют только палочки (сумеречное видение), и глаз не различает цвета, зрение оказывается ахроматическим (бесцветным).

От палочек и колбочек отходят нервные волокна, которые, соединяясь, образуют зрительный нерв. Место выхода из сетчатки зрительного нерва называется диском зрительного нерва . В области диска зрительного нерва светочувствительных элементов нет. Поэтому это место не дает зрительного ощущения и называется слепым пятном .

МЫШЦЫ ГЛАЗА

  • глазодвигательные мышцы - три пары поперечно-полосатых скелетных мышц, которые прикрепляются к коньюктиве; осуществляют движение глазного яблока;
  • мышцы зрачка - гладкие мышцы радужки (круговая и радиальная), меняющие диаметр зрачка;
    Круговая мышца (сжиматель) зрачка иннервируется парасимпатическими волокнами из глазодвигательного нерва, а радиальная мышца (расширитель) зрачка - волокнами симпатического нерва. Радужная оболочка, таким образом, регулирует количество света, поступающего в глаз; при сильном, ярком свете зрачок суживается и ограничивает поступление лучей, а при слабом - расширяется, давая возможность проникнуть большему количеству лучей. На диаметр зрачка влияет гормон адреналин. Когда человек находится в возбужденном состоянии (при испуге, гневе и т. д.), количество адреналина в крови увеличивается, и это вызывает расширение зрачка.
    Движения мышц обоих зрачков управляются из одного центра и происходят синхронно. Поэтому оба зрачка всегда одинаково расширяются или суживаются. Даже если подействовать ярким светом на один только глаз, зрачок другого глаза тоже суживается.
  • мышцы хрусталика (цилиарные мышцы) - гладкие мышцы, изменяющие кривизну хрусталика (аккомодация --фокусировка изображения на сетчатке).

Проводниковый отдел

Зрительный нерв является проводником световых раздражений от глаза к зрительному центру и содержит чувствительные волокна.

Отойдя от заднего полюса глазного яблока, зрительный нерв выходит из глазницы и, войдя в полость черепа, через зрительный канал, вместе с таким же нервом другой стороны, образует перекрест (хиазму ) под гиполаламусом. После перекреста зрительные нервы продолжаются в зрительных трактах . Зрительный нерв связан с ядрами промежуточного мозга, а через них - с корой больших полушарий.

Каждый зрительный нерв содержит совокупность всех отростков нервных клеток сетчатки одного глаза. В области хиазмы происходит неполный перекрест волокон, и в составе каждого зрительного тракта оказывается около 50% волокон противоположной стороны и столько же волокон своей стороны.

Центральный отдел

Центральный отдел зрительного анализатора расположен в затылочной доле коры больших полушарий.

Импульсы от световых раздражений по зрительному нерву проходят к мозговой коре затылочной доли, где расположен зрительный центр.

В волокна каждого нерва связаны с двумя полушариями мозга, причем изображение, получаемое на левой половине сетчатки каждого глаза, анализируется в зрительной коре левого полушария, а на правой половине сетчатки - в коре правого полушария.

нарушение зрения

С возрастом и под воздействием других причин способность управлять кривизной поверхности хрусталика ослабевает.

Близорукость (миопия) - фокусировка изображение перед сетчаткой; развивается из-за увеличения кривизны хрусталика, которая может возникнуть при неправильном обмене веществ или нарушении гигиены зрения. И справляют очками с вогнутыми линзами.

Дальнозоркость - фокусировка изображения позади сетчатки; возникает вследствие уменьшения выпуклости хрусталика. И справляют очками с выпуклыми линзами.

Существует два пути проведения звуков:

  • воздушная проводимость : через наружный слуховой проход, барабанную перепонку и цепь слуховых косточек;
  • тканевая проводимост ь: через ткани черепа.

Функция слухового анализатора: восприятие и анализ звуковых раздражений.

Периферический отдел: слуховые рецепторы в полости внутреннего уха.

Проводниковый отдел: слуховой нерв.

Центральный отдел: слуховая зона в височной доле коры больших полушарий.

Рис. Височная кость Рис. Расположение органа слуха в полости височной кости

строение уха

Орган слуха у человека расположен в полости черепа в толще височной кости.

Он делится на три отдела: наружное, среднее и внутреннее ухо. Эти отделы тесно связаны анатомически и функционально.

Наружное ухо состоит из наружного слухового прохода и ушной раковины.

Среднее ухо - барабанная полость; она отделена барабанной перепонкой от наружного уха.

Внутреннее ухо, или лабиринт , - отдел уха, где происходит раздражение рецепторов слухового (улиткового) нерва; он помещается внутри пирамиды височной кости. Внутреннее ухо образует орган слуха и равновесия.

Наружное и среднее ухо имеют второстепенное значение: они проводят звуковые колебания к внутреннему уху, и таким образом является звукопроводящим аппаратом.

Рис. Отделы уха

НАРУЖНОЕ УХО

Наружное ухо включает ушную раковину и наружный слуховой проход , которые предназначены для улавливания и проведения звуковых колебаний.

Ушная раковина образована тремя тканями:

  • тонкой пластинкой гиалинового хряща, покрытого с обеих сторон надхрящницей, имеющего сложную выпукло-вогнутую форму, определяющую рельеф ушной раковины;
  • кожей очень тонкой, плотно прилегающей к надхрящнице и почти не имеющей жировой клетчатки;
  • подкожной жировой клетчаткой, расположенной в значительном количестве в нижнем отделе ушной раковины - мочке уха .

Ушная раковина прикрепляется к височной кости связками и имеет рудиментарные мышцы, которые хорошо выражены у животных.

Ушная раковина устроена так, чтобы максимально концентрировать звуковые колебания и направлять их в наружное слуховое отверстие.

Форма, величина, постановка ушной раковины и размеры ушной дольки индивидуальны у каждого человека.

Дарвинов бугорок - рудиментарный треугольный выступ, который наблюдается у 10% людей в верхне-задней области завитка раковины; он соответствует верхушке уха животных.

Рис. Дарвинов бугорок

Наружный слуховой проход представляет собой S-образную трубку длинной примерно 3 см и диаметром 0,7 см, которая снаружи открывается слуховым отверстием и отделяется от полости среднего уха барабанной перепонкой .

Хрящевая часть, являющаяся продолжением хряща ушной раковины, составляет 1/3 его длины, остальные 2/3 образованы костным каналом височной кости. В месте перехода хрящевого отдела в костный канал сужается и изгибается. В этом месте находится связка из эластичной соединительной ткани. Такое строение делает возможным растяжение хрящевого отдела прохода в длину и в ширину.

В хрящевой части слухового прохода кожа покрыта короткими волосками, предохраняющими от попадания в ухо мелких частиц. В волосяные фолликулы открываются сальные железы. Характерным для кожи этого отдела является наличие в более глубоких слоях серных желез.

Серные железы являются производными потовых желез.Серные железы впадают либо в волосяные фолликулы, либо свободно в кожу. Серные железы выделяют светло-желтый секрет, который вместе с отделяемым сальных желез и с отторгшимся эпителием образует ушную серу .

Ушная сера - светло-желтый секрет серных желез наружного слухового прохода.

Сера состоит из белков, жиров, жирных кислот и минеральных солей. Часть белков являются иммуноглобулинами, определяющими защитную функцию. Кроме того, в состав серы входят отмершие клетки, кожное сало, пыль и другие включения.

Функция ушной серы:

  • увлажнение кожи наружного слухового прохода;
  • очистки слухового прохода от инородных частиц (пыли, сора, насекомых);
  • защита от бактерий, грибков и вирусов;
  • жировая смазка в наружной части слухового прохода препятствует попаданию в него воды.

Ушная сера вместе с загрязнениями естественным образом выводится из слухового прохода наружу при жевательных движениях и речи. Кроме этого кожа слухового прохода постоянно обновляется и растет наружу из слухового прохода, вынося с собой серу.

Внутренний костный отдел наружного слухового прохода является каналом височной кости, заканчивающимся барабанной перепонкой. В середине костного отдела расположено сужение слухового прохода - перешеек, за которым расположен более широкий участок.

Кожа костного отдела тонкая, не содержит волосяных луковиц и желез и переходит на барабанную перепонку, образуя ее наружный слой.

Барабанная перепонка представляет собой тонкую овальную (11 x 9 мм) полупрозрачную пластинку, непроницаемую для воды и воздуха. Перепонка состоит из эластических и коллагеновых волокон, которые в верхней ее части замещены волокнами рыхлой соединительной ткани. Со стороны слухового прохода перепонка покрыта плоским эпителием, а со стороны барабанной полости - эпителием слизистой оболочки.

В центральной части барабанная перепонка вогнута, к ней со стороны барабанной полости прикрепляется рукоятка молоточка - первой слуховой косточки среднего уха.

Барабанная перепонка закладывается и развивается вместе с органами наружного уха.

СРЕДНЕЕ УХО

Среднее ухо включает выстланную слизистой оболочкой и заполненную воздухомбарабанную полость (объем около 1 с м 3 см3 ), три слуховые косточки и слуховую (евстахиеву) трубу .

Рис. Среднее ухо

Барабанная полость находится в толщине височной кости, между барабанной перепонкой и костным лабиринтом. В барабанной полости помещаются слуховые косточки, мышцы, связки, сосуды и нервы. Стенки полости и все органы, находящиеся в ней, покрыты слизистой оболочкой.

В перегородке, отделяющей барабанную полость от внутреннего уха, находится два окна:

  • овальное окно : находится в верхней части перегородки, ведет в преддверие внутреннего уха; закрыто основанием стремечка;
  • круглое окно: расположено в нижней части перегородки , ведет в начало улитки; закрыто вторичной барабанной перепонкой.

В барабанной полости находятся три слуховые косточки: молоточек, наковальня и стремя (= стремечко) . Слуховые косточки имеют небольшие размеры. Соединяясь между собой, они образуют цепь, которая тянется от барабанной перепонки до овального отверстия. Все косточки соединяются между собой при помощи суставов и покрыты слизистой оболочкой.

Молоточек рукояткой сращен с барабанной перепонкой, а головкой при помощи сустава соединяется с наковальней , которая в свою очередь подвижно соединена со стременем . Основание стремени закрывает овальное окно преддверия.

Мышцы барабанной полости (натягивающая барабанную перепонку и стременная) удерживают слуховые косточки в состоянии напряжения и защищают внутреннее ухо от чрезмерных звуковых раздражений.

Слуховая (евстахиева) труба соединяет барабанную полость среднего уха с носоглоткой. Это мышечная трубка, которая раскрывается при глотании и зевании.

Слизистая оболочка, выстилающая слуховую трубу, является продолжением слизистой оболочки носоглотки, состоит из мерцательного эпителия с движением ресничек из барабанной полости в носоглотку.

Функции евстахиевой трубы:

  • уравновешивание давления между барабанной полостью и внешней средой для поддержания нормальной работы звукопроводящего аппарата;
  • защита от проникновения инфекций;
  • удаление из барабанной полости случайно проникших частиц.

ВНУТРЕННЕЕ УХО

Внутреннее ухо состоит из костного и вставленного в него перепончатого лабиринта.

Костный лабиринт состоит из трех отделов: преддверия, улитки и трех полукружных каналов .

Преддверие - полость небольших размеров и неправильной формы, на наружной стенке которого расположены два окна (круглое и овальное), ведущие в барабанную полость. Передняя часть преддверия сообщается с улиткой через лестницу преддверия. Задняя часть содержит два вдавления для мешочков вестибулярного аппарата.

Улитка - костный спиральный канал в 2,5 оборота. Ось улитки лежит горизонтально и называется костным стержнем улитки. Вокруг стержня обвивается костная спиральная пластинка, которая частично перегораживает спиральный канал улитки и делит его на лестницу преддверия и барабанную лестницу . Между собой они сообщаются только через отверстие, находящееся у верхушки улитки.

Рис. Строение улитки: 1 - базальная мембрана; 2 - кортиев орган; 3 - рейснерова мембрана; 4 - лестница преддверия; 5 - спиральный ганглий; 6 - барабанная лестница; 7 - преддверно-завитковый нерв; 8 - веретено.

Полукружные каналы - костные образования, расположенные в трех взаимно перпендикулярных плоскостях. Каждый канал имеет расширенную ножку (ампулу).

Рис. Улитка и полукружные каналы

Перепончатый лабиринт заполнен эндолимфой и состоит из трех отделов:

  • перепончатой улитки, или улиткового протока, продолжение спиральной пластинки между лестницей предверия и барабанной лестницей. В улитковом протоке находится слуховые рецепторы - спиральный, или кортиев, орган;
  • трех полукружных каналов и двух мешочков , расположенных в преддверии, которые играют роль вестибулярного аппарата.

Между костным и перепончатым лабиринтом находится перилимфа --видоизмененная спинномозговая жидкость.

кортиев орган

На пластинке улиткового протока, которая является продолжением костной спиральной пластинки, находится кортиев (спиральный) орган .

Спиральный орган отвечает за восприятие звуковых раздражений. Он выполняет роль микрофона, трансформирующего механические колебания в электрические.

Кортиев орган состоит из опорных и чувствительных волосковых клеток.

Рис. Кортиев орган

Волосковые клетки имеют волоски, которые возвышаются над поверхностью и достигают покровной мембраны (мембраны тектория). Последняя отходит от края спиральной костной пластинки и свисает над кортиевым органом.

При звуковом раздражении внутреннего уха возникают колебание основной мембраны, на которой расположены волосковые клетки. Такие колебания вызывают розтяжение и сжатие волосков об покровную мембрану, и пораждают нервный импульс в чувствительных нейронах спирального ганглия.

Рис. Волосковые клетки

ПРОВОДНИКОВЫЙ ОТДЕЛ

Нервный импульс от волосковых клеток распространяется до спирального ганглия.

Затем по слуховому (преддверно-улитковому) нерву импульс поступает в продолговатый мозг.

В варолиевом мосту часть нервных волокон через перекрест (хиазму) переходит на противоположную сторону и идут в четверохолмие среднего мозга.

Нервные импульсы через ядра промежуточного мозга передаются в слуховую зону височной доли коры больших полушарий.

Первичные слуховые центры служат для восприятия слуховых ощущений, вторичные - для их обработки (понимание речи и звуков, восприятие музыки).

Рис. Слуховой анализатор

Лицевой нерв проходит вместе со слуховым нервом во внутреннее ухо и под слизистой оболочкой среднего уха следует к основанию черепа. Он может быть легко поврежден при воспалении среднего уха или травмах черепа, поэтому нарушения органов слуха и равновесия нередко сопровождаются параличом мимических мышц.

Физиология слуха

Слуховая функция уха обеспечивается двумя механизмами:

  • звукопроведение : проведение звуков через наружное и среднее ухо к внутреннему уху;
  • звуковосприятие : восприятие звуков рецепторами кортиева органа.

ЗВУКОПРОВЕДЕНИЕ

Наружное и среднее ухо и перилимфа внутреннего уха принадлежат к звукопроводящему аппарату, а внутреннее ухо, то есть спиральный орган и ведущие нервные пути – к звукоспринимающему аппарату. Ушная раковина благодаря своей форме концентрирует звуковую энергию и направляет ее в направлении к наружному слуховому проходу, который проводит звуковые колебания к барабанной перепонке.

Достигнув барабанной перепонки, звуковые волны вызывают ее колебание. Эти колебания барабанной перепонки передаются на молоточек, через сустав - на наковальню, через сустав - на стремя, которое закрывает окно преддверия (овальное окно). В зависимости от фазы звуковых колебаний, основа стремени то втискивается в лабиринт, то вытягивается из него. Эти движения стремени вызывают колебание перилимфы (см. рис.), которые передаются на основную мембрану улитки и на расположенный на ней кортиев орган.

В результате колебаний основной мембраны волосковые клетки спирального органа задевают нависающую над ними покровную (тенториальную) мембрану. При этом возникает растяжение или сжимание волосков, что и является основным механизмом превращения энергии механических колебаний в физиологичный процесс нервного возбуждения.

Нервный импульс передается окончаниями слухового нерва к ядрам продолгастого мозга. Отсюда импульсы проходят соответствующими ведущими путями к слуховым центрам в височных частях коры головного мозга. Здесь нервное возбуждение превращается в ощущение звука.

Рис. Путь звукового сигнала : ушная раковина - наружный слуховой проход - барабанная перепонка - молоточек - наковальня - стемечко - овальное окно - преддверие внутреннего уха - лестница преддверия - базальная мембрана - волосковые клетки кортиева органа. Путь нервного импульса : волосковые клетки кортиева органа - спиральный ганглий - слуховой нерв - продолговатый мозг - ядра промежуточного мозга - височная доля коры больших полушарий.

ЗВУКОВОСПРИЯТИЕ

Человек воспринимает звуки внешней среды с частотой колебаний от 16 до 20000 Гц (1 Гц = 1 колебание за 1 с).

Высокочастотные звуки воспринимаются нижней частью завитка, а низкочастотные звуки - его верхушкой.

Рис. Схематическое изображение основной мембраны улитки (указаны частоты, различимые разными участками мембраны)

Ототопика - с пособность определять местонахождение источника звука в случаях, когда мы не видим его, называется. Она связанная с симметричной функцией обоих ушей и регулируется деятельностью центральной нервной системы. Такая способность возникает потому, что звук, который идет сбоку, попадает в разные уши не одновременно: в ухо противоположной стороны - с опозданием в 0,0006 с, с другой интенсивностью и в другой фазе. Эти отличия восприятия звука разными ушами дают возможность определять направление источника звука.

В нашей статье мы рассмотрим, что такое анализатор. Человек каждую секунду получает информацию из окружающей среды. Он настолько привык к этому, что даже не задумывается о механизмах ее поступления, анализа, формирования ответной реакции. Оказывается, за осуществление этой функции отвечают сложные системы.

Что такое анализатор?

Системы, которые обеспечивают получение информации об изменениях в окружающей среде и внутреннем состоянии организма, называются сенсорными. Этот термин происходит от латинского слова "сенсус", что в переводе означает "ощущение". Второе название подобных структур - анализаторы. Оно также отражает главную функцию.

Что такое система, обеспечивающая восприятие различных видов энергии, их преобразование в нервные импульсы и поступление в соответствующие центры коры головного мозга.

Виды анализаторов

Несмотря на то, что человек постоянно сталкивается с целой гаммой ощущений, всего сенсорных систем пять. Шестым чувством часто называют интуицию - умение действовать без логического объяснения и предвидеть будущее.

Позволяют воспринимать с ее помощью около 90 % информации об окружающей среде. Это изображение отдельных предметов, их форма, цвет, размер, расстояние к ним, движение и расположение в пространстве.

Важное значение для общения и передачи опыта имеет слух. Мы воспринимаем различные звуки благодаря колебаниям воздуха. Слуховой анализатор преобразует их механическую энергию в который воспринимается головным мозгом.

Способен воспринимать растворы химических веществ. Ощущения, которые он формирует, являются индивидуальными. Тоже самое можно сказать об обонятельной сенсорной. Ощущение запаха базируется на восприятии химических раздражителей внутренней и внешней среды.

Последним анализатором является осязание. С помощью ее человек способен чувствовать не только само прикосновение, но и боль, и перепады температур.

Общий план строения

Теперь давайте разберемся, что такое анализатор с анатомической точки зрения. Любая сенсорная система состоит из трех отделов: периферического, проводникового и центрального. Первый представлен рецепторами. Это начало любого анализатора. Эти чувствительные образования воспринимают различные типы энергии. глаза раздражаются на свету. Обонятельный и вкусовой анализатор содержат хеморецепторы. Волосковые клетки внутреннего уха преобразуют механическую энергию колебательных движений в электрическую. Особенно богата рецепторами осязательная система. Они воспринимают вибрацию, прикосновение, давление, боль, холод и тепло.

Проводниковый отдел состоит из нервных волокон. По многочисленным отросткам нейронов импульсы передаются от рабочих органов в кору головного мозга. Последний является центральным отделом сенсорных систем. Кора отличается высоким уровнем специализации. В ней различают двигательную, обонятельную, вкусовую, зрительную, слуховую зону. В зависимости от вида анализатора нейрон по проводниковому отделу доставляет нервные импульсы в определенный отдел.

Адаптация анализаторов

Нам кажется, что мы воспринимаем абсолютно все сигналы из окружающей среды. Ученые же утверждают обратное. Если бы так было на самом деле, мозг изнашивался бы гораздо быстрее. В результате - преждевременное старение.

Важным свойством анализаторов является их способность к приспособлению уровня действия раздражителя. Это свойство называют адаптацией.

Если солнечный свет очень интенсивный, зрачок глаза сужается. Так проявляется защитная реакция организма. А хрусталик глаза способен изменять свою кривизну. В результате мы можем рассматривать предметы, которые расположены на разном расстоянии. Такую способность зрительного анализатора называют аккомодацией.

Человек способен воспринимать звуковые волны только с определенным значением колебаний: 16-20 тыс. Гц. Оказывается, мы многого не слышим. Частота ниже показателя 16 Гц называется инфразвуком. С его помощью медузы узнают о приближающемся шторме. Ультразвуком называют частоту свыше 20 кГц. Хоть человек и не слышит его, такие колебания могут проникать глубоко в ткани. На специальных приборах при помощи ультразвука можно получить фотографии внутренних органов.

Компенсационная способность

У многих людей наблюдаются нарушения определенных сенсорных систем. Причины этому могут быть как врожденные, так и приобретенные. Причем, если хотя бы один из отделов поврежден, функционировать перестает весь анализатор.

Организм не имеет внутренних резервов для его восстановления. Но одна система может компенсировать другую. К примеру, слепые люди читают при помощи осязания. Ученые установили, что они слышат гораздо лучше, чем зрячие.

Итак, что такое система, которая обеспечивает восприятие различных видов энергии из окружающей среды, их преобразование, анализ и формирование соответствующих ощущений или реакции.

Анализатор - это часть нервной системы, которая воспринимает воздействия внешних раздражителей, трансформирует их в нервный сигнал, передаёт этот сигнал в мозг и там анализирует его. Каждый анализатор связан с каким-либо одним видом воспринимаемой энергии.

Строение анализатора

Учение об анализаторах создано И. П. Павловым. Он впервые рассмотрел анализатор как единую систему, состоящую из трёх частей:

  • рецепторный отдел;
  • проводниковый отдел;
  • центральный отдел.

Рис. 1. Схема анализатора.

Таблица «Анализаторы человека»

Наибольшее количество информации в организм поставляет зрительный анализатор. Вторым по значению является слуховой.

Вестибулярный анализатор обеспечивает ориентацию человека в пространстве и чувство равновесия. Его рецепторы находятся внутри головы, в височной кости.

Рецепторы

Рецепторами называют чувствительные клетки, которые имеют свойства воспринимать раздражения и преобразовывать их в нервный импульс. Они находятся в органах чувств. В зависимости от раздражителя, который они воспринимают, выделяют следующие виды рецепторов:

ТОП-4 статьи которые читают вместе с этой

  • фоторецепторы;
  • хеморецепторы;
  • механорецепторы;
  • терморецепторы.

Рис. 2. Фоторецепторы человека под микроскопом.

Фоторецепторы воспринимают энергию света и являются частью зрительного анализатора.

Хеморецепторы составляют воспринимающую часть вкусового и обонятельного анализаторов. Они превращают в нервный импульс воздействие химических веществ.

Ощущение вкуса возникает только при растворении вещества в слюне. Если язык высушить и положить на него сахар, человек не ощутит его вкуса пока сахар не будет смочен слюной.

Механорецепторы воспринимают воздействие механических стимулов. Они входят в состав слухового, осязательного и вестибулярного анализаторов человека.

Проводниковая часть анализаторов направляет импульс в центральный отдел. Так, зрительный нерв передаёт нервный импульс от фоторецепторов в головной мозг. По слуховому нерву передаётся в мозг информация от слуховых рецепторов уха.

В центральных отделах анализаторов происходит анализ поступившей информации и формирование ощущений.

Рис. 3. Сенсорные зоны коры мозга.

Именно благодаря тому, что нервные импульсы попадают в различные области мозга, не происходит путаницы в их насыщенном потоке.

Функции

В анализаторах поочерёдно осуществляются следующие процессы:

  • обнаружение сигналов;
  • различение сигналов;
  • передача и преобразование сигналов;
  • распознавание сигналов;
  • опознание образов.

Цель процессов передачи и преобразования - донести до мозга информацию в удобной форме. Поэтому отбирается только важная информация, ненужная отсеивается.

Опознание образов - это конечная операция анализатора. Человек опознаёт образ, относит его к какой-либо категории, считает важным или несущественным.

Что мы узнали?

Изучая в 8 классе данную тему, мы выяснили строение и функции анализаторов. Любой анализатор состоит из рецепторов, проводящих нервов и участка мозга, где происходит анализ поступившей информации. Анализаторы чувств человека взаимодействуют с памятью, в которой хранятся уже известные образы.

Тест по теме

Оценка доклада

Средняя оценка: 4.2 . Всего получено оценок: 118.

Анализаторы человека – это функциональные нервные образования, обеспечивающие приём и последующую переработку информации, полученную из внутренней среды и наружного мира. Анализаторы человека, образующие единство со специализированными структурами — органами чувств, способствующими в получении информации, называют сенсорной системой.

Сенсорные анализаторы человека связывают индивида со средой с помощью проводящих нервных путей, рецепторов и расположенного в коре головного мозга мозгового конца. Выделяют внешние и внутренние анализаторы человека. К внешним относят зрительный, тактильный, обонятельный, слуховой, вкусовой анализатор. Внутренние анализаторы человека отвечают за состояние и положение внутренних органов.

Виды анализаторов человека

Сенсорные анализаторы человека подразделяются на виды в зависимости от чувствительности рецепторов, природы раздражителя, характера ощущений, скорости адаптации, назначения и так далее.

Внешние анализаторы человека получают данные от мира и в дальнейшем их анализируют. Они воспринимаются человеком субъективно под видом ощущений.

Выделяют такие виды внешних анализаторов человека: зрительный, обонятельный, слуховой, вкусовой, осязательный и температурный.

Внутренние анализаторы человека воспринимают и подвергают анализу видоизменения во внутренней среде, показателях гомеостазиса. Если показатели организма в норме, то они не воспринимаются человеком. Только отдельные изменения организма способны вызвать у человека ощущения, как например, жажду, голод, которые основываются на биологических потребностях. Для их удовлетворения и возобновления стабильности организма включаются определенные поведенческие реакции. Импульсы участвуют в регуляции функционирования внутренних органов, они обеспечивают приспособление организма к его разнообразной жизнедеятельности.

Анализаторы, отвечающие за положение тела, подвергают анализу данные о нахождении и положении тела. К анализаторам, отвечающим за положение тела, относят вестибулярный аппарат и двигательный (кинестетический).

Болевой анализатор человека представляет особенную важность для организма. Болевые сигналы организма доставляют человеку сигналы о том, что возникают повреждающие действия.

Характеристика анализаторов человека

Основой в характеристике анализатора является его чувствительность, которая характеризует порог ощущения человека. Выделяют два вида порогов ощущения – это абсолютный и дифференциальный.

Абсолютный порог ощущения характеризует минимальную силу раздражения, которая вызывает определенную реакцию.

Дифференциальный порог ощущения описывает между двумя величинами раздражителя минимальное различие, едва дающее заметное различие ощущений.

Величина ощущений меняется гораздо медленнее, чем сила раздражителя.

Существует еще понятие латентного периода, которое описывает время от начала воздействия до возникновения ощущений.

Зрительный анализатор человека помогает человеку принимать до 90% данных об окружающем мире. Воспринимающим органом является глаз, который имеет очень высокую чувствительность. Изменения зрачка в размерах позволяют человеку менять чувствительность многократно. Сетчатка глаза обладает очень высокой восприимчивостью от 380 до 760 нанометров (миллиардных долей метра).

Бывают ситуации, при которых приходится учитывать время, необходимое для адаптации глаз в пространстве. Световая адаптация – это привыкание анализатора к сильной освещенности. В среднем адаптация занимает от двух минут до десяти, в зависимости от яркости света.

Темновая адаптация – это адаптация зрительного анализатора к плохой освещенности, в некоторых случаях она происходит по истечении некоторого времени. Во время такой зрительной адаптации человек становится уязвимым и пребывает в состоянии опасности. Поэтому в таких ситуациях необходимо быть очень внимательными.

Зрительный анализатор человека характеризуется остротой – наименьшим углом, под которым можно воспринять две точки, как раздельные. На остроту влияет контрастность, освещенность и другие факторы.

Ощущение, возбуждающееся световым сигналом, сберегается в течение 0, 3 секунд за счет инерции. Инерция зрительного анализатора формирует стробоскопический эффект, который выражается в ощущениях непрерывности движений, когда частота смены изображений составляет десять раз в секунду. Это создает оптические иллюзии.

Зрительный анализатор человека состоит из светочувствительных образований – палочек и колбочек. С помощью палочек человек способен видеть ночь, темноту, но такое зрение бесцветное. В свою очередь колбочки обеспечивают цветное изображение.

Каждый человек должен понимать всю серьезность в отклонениях в восприятии цвета, поскольку они могут привести к неблагоприятным последствиям. Среди таких отклонений чаще всего встречаются: дальтонизм, цветовая слепота, гемералопия. Дальтоники не различают зеленый и красный цвета, иногда фиолетовый и желтый, которые им кажутся серыми. Человек, у которого цветовая слепота, видит все цвета серыми. У индивида страдающего гемералопией отсутствует способность к видению при сумрачном освещении.

Тактильный анализатор человека обеспечивает ему защитно-оборонительную функцию. Воспринимающим органом является кожа, она обороняет организм от попадания на нее химических веществ, служит защитным барьером в ситуации прикосновения кожи тела с электрическим током, является регулятором температуры тела, оберегает человека от переохлаждения или перегрева.

Если у человека нарушается от 30 до 50 процентов кожного покрова и не предоставляется медицинская помощь, то он в скором времени погибает.

Кожа человека состоит из 500 тысяч точек, воспринимающих ощущения действия на кожную поверхность механических стимулов, боли, тепла, холода.

Особенность тактильного анализатора заключается в его высокой приспособляемости к пространственной локализации. Это выражается в исчезновении чувства прикосновения. кожного покрова зависит от интенсивности раздражителя, она может происходить на протяжении от двух до двадцати секунд.

Анализатор ощущения температурной чувствительности свойствен организмам, имеющим постоянную температуру тела. На человеческой коже размещаются два вида температурных анализаторов: анализаторы, реагирующие на холод и реагирующие – на тепло. Кожа человека состоит из 30 тысяч точек тепла и 250 точек, воспринимающих холод. При восприятии тепла и холода существуют различные пороги чувствительности, тепловые точки реагируют на изменения температуры в 0,2°С; точки, воспринимающие холод на 0,4°С. Температура начинает ощущаться уже за одну секунду ее воздействия на тело. С помощью анализаторов температурной чувствительности сохраняется неизменная температура тела.

Анализатор обоняния человека представлен органом ощущения – носом. Существует приблизительно 60 миллионов клеток, которые размещаются в слизистой оболочке носа. Эти клетки покрыты волосками, длиной 3-4 нанометра, они являются защитным барьером. Нервные волокна, уходящие от обонятельных клеток, отсылают сигналы о воспринятых запахах в центры мозга. Если человек ощущает запах вещества, опасного для его здоровья (нашатырный спирт, эфир, хлороформ и другие), он рефлекторно замедляет или задерживает дыхание.

Анализатор восприятия вкуса представлен специальными клетками, находящимися на слизистой оболочке языка. Ощущения вкуса могут быть: сладким, кислым, солёным и горьким, также их комбинации.

Ощущения вкуса играют защитную роль в предупреждении попадания опасного для здоровья или жизни вещества в организм. Индивидуальные восприятия вкуса могут варьироваться до 20%. Чтобы обезопасить себя от попадания вредных веществ в организм необходимо: попробовать незнакомую пищу, как можно дольше продержать ее во рту, очень медленно прожёвывать, прислушиваться к собственным ощущениям и вкусовым реакциям. После этого решать: глотать еду или нет.

Ощущение человеком мышц происходит за счет специальных рецепторов, они называются проприорецепторами. Они передают сигналы в центры мозга, сообщая о состоянии мышц. В ответ на эти сигналы, мозг направляет импульсы, которые координируют работу мышц. Учитывая влияние гравитации, мышечное чувство «работает» стабильно. Поэтому человек способен принимать удобную для себя позу, которая имеет большое значение в работоспособности.

Болевая чувствительность человека имеет защитную функцию, она предупреждает об опасности. После поступления сигнала о боли начинают действовать оборонительные рефлексы, как например, удаление организма от раздражителя. При ощущении боли перестраивается деятельность всех систем организма.

Боль воспринимается всеми анализаторами. Когда превышается порог допустимой нормы чувствительности, возникает ощущение боли. Имеются также специальные рецепторы – болевые. Боль может нести опасность, болевой шок осложняет деятельность организма и функцию самовосстановления.

Функции слухового анализатора человека заключаются в возможности воспринимать мир, который наполнен звуками во всей его полноте. Некоторые звуки являются сигналами и предупреждают человека об опасности.

Звуковую волну характеризует интенсивность и частота. Человек их воспринимает, как громкость звука. Слуховой анализатор человека представлен внешним органом – ухом. Ухо является сверхчувствительным органом, оно может улавливать изменения давления, которые поступают от поверхности земли. Строение уха разделяется на наружное, среднее и внутреннее. Оно воспринимает звуки и сохраняет равновесие тела. С помощью ушной раковины улавливаются и определяются звуки, их направление. Барабанная перепонка под воздействием звукового давления колышется. Сразу за перепонкой имеется среднее ухо, еще дальше внутреннее ухо, в котором находится специфическая жидкость, и два органа — вестибулярный аппарат и орган слуха.

В органе слуха находится примерно 23 тысячи клеток, являющихся анализаторами, в которых звуковые волны переходят в нервные импульсы, устремляющиеся в мозг человека. Ухо человека способно воспринимать от 16 герц (Гц) до 2 кГц. Звуковая интенсивность измеряется в белах и децибелах.

Человеческое ухо владеет важной и специфической функцией – бинауральным эффектом. Благодаря бинауральному эффекту человек может определить, с какой стороны к нему поступает звук. Звук, направляется в ушную раковину, которая обращена к его источнику. У человека с одним глухим ухом бинауральный эффект бездействует.

Вибрационная чувствительность также является не менее важной, чем различные сенсорные анализаторы человека. Влияние вибраций может быть очень вредным. Они являются локальными раздражителями и наносят повреждающее воздействие на ткани и находящиеся в них рецепторы. Рецепторы имеют связь с ЦНС, их воздействие оказывает влияние на все системы организма.

Если частота механических колебаний низкая (до десяти герц), тогда вибрации распространяются по всему организму независимо от места нахождения источника. Если такое низкочастотное воздействие происходит очень часто, тогда под негативным влиянием находятся мышцы человека, которые быстро поражаются. Когда на организм воздействуют высокочастотные вибрации, то ограничивается зона их распространения в месте контакта. Это вызывает изменения в кровеносных сосудах, и часто может вызвать нарушения функционирования сосудистой системы.

Вибрации оказывают действие на сенсорную систему. Вибрации общего действия, ухудшают зрение и его остроту, ослабевают светочувствительность глаз и ухудшают функционирование вестибулярного аппарата.

Локальные вибрации снижают тактильную, болевую, температурную и проприоцептивную чувствительность человека. Такие разносторонние негативные воздействия на организм человека приводят к серьезным и тяжелым изменениям в деятельности организма и способно вызвать заболевание под названием виброболезнь.

Анализаторы - это функциональные системы, обеспечивающие анализ (различение) раздражителей, действующих на организм, преобразующие полученные раздражения в биологически целесообразную ответную реакцию. В их структуре можно выделить следующие звенья:
- периферический отдел - рецепторы органов чувств;
- проводниковый отдел - нервные пути, по которым возбуждение передается в кору больших полушарий головного мозга;
- центральный отдел - участок коры головного мозга, преобразующий полученное раздражение в определенное ощущение.Современный человек имеет следующие анализаторы:

Зрительный анализатор – наиболее информативный канал (80 - 90 % информации об окружающем мире). Восприятие световых раздражений осуществляется с помощью светочувствительных клеток, палочек и колбочек, расположенных в сетчатке глаза. К недостаткам зрительного канала можно отнести ограниченность его поля зрения (по горизонтали 120-160 0 , по вертикали 55-70 0) При цветовом восприятии размеры поля сужаются. Зрительный анализатор обладает спектральной чувствительностью. У современного человека видимость приходится на желто-зеленую составляющую спектра.

Слуховой анализатор в наибольшей степени дополняет информацию, полученную с помощью зрительного анализатора, так как обладает «круговым обзором». Обеспечивает восприятие звуковых колебаний с помощью чувствительных окончаний слухового нерва. Основные параметры звуковых сигналов - уровень звукового давления и частота (ощущаются как громкость и высота звука).

Тактильная и вибрационная чувствительность (осязание) проявляется при действии на кожную поверхность различных механических стимулов (прикосновение, давление). Обеспечивает восприятие сокращения и расслабления мышц с помощью механорецепторов в тканях тела.

Температурная чувствительность свойственна организмам с постоянной температурой тела. В коже имеются два вида терморецепторов, одни реагируют только на холод, другие только на тепло. Латентный период - 0,25 с

Обонянием называется вид чувствительности, направленные на восприятие пахучих веществ с помощью обонятельных рецепторов, расположенных в желтом эпителии носовой раковины.

Вкусовой анализатор обеспечивает восприятие кислого, соленого, сладкого и горького с помощью хеморецепторов – вкусовых луковиц, расположенных на языке, в слизистой оболочке неба, гортани, глотки, миндалин.

Основной характеристикой анализатора является его чувствительность. Не всякая интенсивность раздражителя, воздействующего на анализатор, вызывает ощущение. Опытами установлено, что величина ощущений изменяется медленнее, чем сила раздражителя. Этот эмпирический психофизический закон Вебера-Фехнера выражается зависимостью: Е = К * lg (I) + С

Где Е – интенсивность ощущений, I – интенсивность раздражителя, К и С – константы.

17. Зрительный анализатор и его возможности

зрительный анализатор обеспечивает более 80% инфор­мации о внешнем мире, имеет важное значение в обеспе­чении безопасности, характеризуется следующими пока­зателями:

Острота зрения - способность раздельного восприя­тия объектов - управляется большим числом биокибер­нетических устройств; существует система, обеспечиваю­щая четкость изображения на сетчатке путем изменения кривизны хрусталика; кроме того, освещенность сетчат­ки регулируется диаметром зрачка;

Поле зрения - состоит из центральной области бино­кулярного зрения, обеспечивающей стереоскопичность вос­приятия; его границы у отдельных лиц зависят от анато­мических факторов (размер и форма носа, век, орбит и т. д.); поле зрения охватывает около 240° по горизонтали и 150° по вертикали при нормальном естественном освеще­нии; любое уменьшение освещенности, некоторые болезни (глаукома), дефекты кровеносных сосудов, недостаток кис­лорода приводят к резкому уменьшению поля зрения;

Яркостный контраст - чувствительность к нему яв­ляется важным показателем зрительного анализатора; его порог (наименьшая воспринимаемая разность яркостей) зависит от уровня яркости в поле зрения и ее равномер­ности; оптимальный порог регистрируется при естествен­ном освещении;

Цветовосприятие - способность различать цвета предметов. Цветовое зрение - это одновременно физи­ческое, физиологическое, психологическое явление, за­ключающееся в способности глаза реагировать на излу­чение различной длины волны, в специфическом воспри­ятии этих излучений. На ощущение цвета влияют длина волны излучения, яркость источника света, коэффици­ент отражения или пропускания света объектом, каче­ство и интенсивность освещения. Цветовая слепота (даль­тонизм) - генетическая аномалия, но цветовое зрение может меняться под влиянием приема некоторых лекар­ственных препаратов и под действием химических веществ. Например, прием барбитуратов (снотворных и седативных средств) вызывает временные дефекты в жел­то-зеленой зоне; кокаинусиливает чувствительность к си­нему цвету и ослабляет к красному; кофеин, кофе, кока-кола ослабляют чувствительность к синему, усиливают красный цвет; табак вызывает дефекты в красно-зеленой зоне, особенно в красной (дефекты могут быть постоян­ными).

18 слуховой анализатор и его характеристики .

Слуховой анализатор воспринимает звуки, которые представляют собой акустические колебания, способные восприниматься органом слуха в диапазоне 16-20000 Гц.

Важной характеристикой слуха является его острота или слуховая чувствительность. Она определяется минималь­ной величиной звукового раздражителя, вызывающего слу­ховое ощущение. Острота слуха зависит от частоты вос­принимаемого звукового сигнала. Абсолютный порог слы­шимости - минимальная интенсивность звукового давления, которая вызывает слуховое ощущение.

При увеличении интенсивности звука возможно появ­ление неприятного ощущения, а затем и боли в ухе. Наи­меньшая величина звукового давления, при которой воз­никают болевые ощущения, называется порогом слухово­го дискомфорта. Он равен в среднем 80-100 дБ отно­сительно абсолютного порога слышимости. Интенсивность звукового воздействия определяет громкость ощущения, частота - его высоту. Существенной характеристикой слуха является способность дифференцировать звуки раз­личной интенсивности по ощущению их громкости. Ми­нимальная величина ощущаемого различия звуков по их интенсивности называется дифференциальным порогом восприятия силы звука. В норме для средней части час­тотного диапазона звуковых волн эта величина составля­ет около 0,7-1,0 дБ. Поскольку слух является средством общения людей, особое значение в его оценке имеет спо­собность восприятия речи или речевой слух. Особенно важ­но в оценке слуха сопоставление показателей речевого и тонального слуха, что дает представление о состоянии различных отделов слухового анализатора (аудиометрия). Важное значение имеет функция пространственного слу­ха, заключающаяся в определении положения и переме­щения источника звука в пространстве.

Анализаторы запаха и вкуса

Обоняние - способность воспринимать запахи - осуществ­ляется благодаря обонятельному анализатору, рецепторами кото­рого являются сенсорные нервные клетки, расположен­ные в слизистой оболочке носа.

Эти клетки преобразуют энергию раздражителя в нервное возбуждение и передают его обонятельному центру мозга. Для этого требуется непосредственный контакт рецептора с молеку­лой пахучего вещества. Эти молекулы, осаждаясь на небольшом участке мембраны обонятельного рецептора, вызывают местное изменение ее проницаемости для отдельных ионов. В результате развивается рецепторный потенциал - начальный этап нервного возбуждения. Человек обладает различной чувствительностью к пахучим веществам, к некоторым веществам она особенно высо­кая. Например, этилмеркаптан ощущается при его содержании в количестве, равном 0,00019 мг на 1 л воздуха. Полный диапазон воспринимаемых концентраций может охватывать 12 порядков.