На основании структурно-функциональных свойств автономную нервную систему принято делить на симпатическую, парасимпатическую и метасимпатическую части. Из них первые две имеют центральные структуры и периферический нервный аппарат, метасимпатическая же часть целиком лежит на периферии в стенках внутренних органов.

Дуга автономного рефлекса

Дуга автономного рефлекса, как и соматическая рефлекторная дуга, состоит из трех звеньев: чувствительного (афферентного, сенсорного), ассоциативного (вставочного) и эффекторного. В зависимости от уровня замыкания, т. е. расположения ассоциативного звена, различают местные, или ганглионарные, спинальные, бульварные и т. д. рефлекторные дуги. Рефлексы, возникающие при раздражении чувствительных волокон, идущих в составе симпатических и парасимпатических нервов, вовлекают в деятельность не только автономную, но и соматическую нервную систему. Чувствительные волокна этой единой (автономной и соматической) афферентной системы являются отростками биполярных клеток, лежащих в спинномозговых узлах или их аналогах, таких как яремный, тройничный (гассеров) узлы и др. Такое понимание справедливо для сегментарных и рефлекторных дуг более высокого порядка и не относится к местным периферическим дугам автономного рефлекса.

Наряду с общим для обеих (автономной и соматической) систем звеном существует и собственный афферентный путь автономной нервной системы, называемый особым, или висцеральным. Он создает основу для путей местных рефлексов, осуществляемых независимо, без участия ЦНС. По локализации клеточных тел чувствительных нейронов, по ходу и длине отростков их разделяют на три группы. В первую группу объединены клетки, тела которых локализуются в узлах солнечного и нижнего брыжеечного сплетений. Один из их длинных отростков направляется на периферию, другой в сторону спинного мозга. Клетки второй группы характеризуются тем, что их длинный отросток идет к рабочему органу, короткие распределяются в самом ганглии и синаптически контактируют с вставочным или эффекторным нейронами. Висцеральные чувствительные клетки третьей группы отличаются тем, что их тела и короткие отростки располагаются в интрамуральных узлах, длинные же отростки в составе соответствующих нервов достигают симпатических узлов, где и происходит переключение на ассоциативный и моторный (эфферентный) нейрон.

Каждый из нас хоть раз в жизни произносил фразу «у меня рефлекс», но мало кто понимал, о чем именно говорит. Практически вся наша жизнь основана на рефлексах. В младенчестве они помогают нам выжить, во взрослой жизни - эффективно работать и сохранять здоровье. Подчиняясь рефлексам, мы дышим, ходим, едим и многое другое.

Рефлекс

Рефлекс - это ответная реакция организма на раздражитель, осуществляемая Проявляются они началом или прекращением какой-либо деятельности: движение мышц, секреция желез, изменением сосудистого тонуса. Это позволяет быстро подстраиваться под изменения внешней среды. Значение рефлексов в жизни человека настолько велико, что даже частичное их исключение (удаление во время операции, травма, инсульт, эпилепсия), приводят к стойкой инвалидности.

Изучением занимались И.П. Павлов и И.М. Сеченов. Они оставили после себя много информации для будущих поколений врачей. Раньше не разделяли психиатрию и неврологию, но после их работы невропатологи стали практиковать отдельно, накапливать опыт и анализировать его.

Виды рефлексов

Глобально рефлексы делятся на условные и безусловные. Первые возникают у человека в процессе жизни и связаны, по большей части, с тем, чем он занимается. Некоторые из приобретенных навыков со временем исчезают, и их место занимают новые, более необходимые в данных условиях. К ним относятся езда на велосипеде, танцы, игра на музыкальных инструментах, ремесленное дело, вождение автомобиля и многое другое. Такие рефлексы ее иногда называют «динамический стереотип».

Бессознательные же рефлексы заложены во всех людях одинаково и имеются у нас с момента рождения. Они сохраняются в течение всей жизни, так как именно они поддерживают наше существование. Люди не задумываются о том, что им нужно дышать, сокращать сердечную мышцу, держать свое тело в пространстве в определенной позе, моргать, чихать и т.д. Это происходить автоматически, потому что природа позаботилась о нас.

Классификация рефлексов

Существует несколько классификаций рефлексов, которые отражают их функции или указывают на уровень восприятия. Можно привести некоторые из них.

По биологическому значению выделяют рефлексы:

  • пищевые;
  • защитные;
  • половые;
  • ориентировочные;
  • рефлексы определяющие положение тела (позотонические);
  • рефлексы для движения.

По расположению рецепторов, которые воспринимают раздражитель, можно выделить:

  • экстерорецепторы, находящиеся на коже и слизистых;
  • интерорецепторы, располагающиеся во внутренних органах и сосудах;
  • проприорецепторы, воспринимающие раздражение мышц, суставов и сухожилий.

Зная три представленных классификации можно любой рефлекс охарактеризовать: приобретенный он или врожденный, какую функцию выполняет и как его вызвать.

Уровни рефлекторной дуги

Для невропатологов важно знать уровень, на котором замыкается рефлекс. Это помогает точнее определить область поражения и предсказать ущерб для здоровья. Различают спинальные рефлексы, которых располагаются в Они отвечают за механику тела, сокращение мышц, работу тазовых органов. Поднимаясь на уровень выше - в продолговатый мозг, обнаруживаются бульбарные центры, регулирующие слюнные железы, некоторые мышцы лица, функцию дыхания и сердцебиения. Повреждение этого отдела практически всегда заканчивается смертельным исходом.

В среднем мозге замыкаются мезэнцефальные рефлексы. В основном это рефлекторные дуги черепных нервов. Различают так же диэнцефальные рефлексы, конечный нейрон которых располагается в промежуточном мозге. И кортикальные рефлексы, которые управляются корой головного мозга. Как правило, это приобретенные навыки.

Следует учитывать, что строение рефлекторной дуги с участием высших координирующих центров нервной системы всегда включает в себя и нижние уровни. То есть кортикоспинальный путь будет проходить через промежуточный, средний, продолговатый и спинной мозг.

Физиология нервной системы устроена таким образом, что каждый рефлекс дублируется несколькими дугами. Это позволяет сохранять функции организма даже при травмах и болезнях.

Рефлекторная дуга

Рефлекторная дуга - это путь передачи от воспринимающего органа (рецептора) к исполняющему. Рефлекторная нервная дуга состоит из нейронов и их отростков, которые образуют цепь. Данное понятие было введено в медицину М.Холлом в середине девятнадцатого века, но со временем, оно преобразовалось в «рефлекторное кольцо». Было принято решение, что это термин полнее отражает процессы, которые происходят в нервной системе.

В физиологии различают моносинаптические, а так же двух- и трехнейронные дуги, иногда встречаются полисинаптические рефлексы, то есть включающие более трех нейронов. Самая простая дуга состоит из двух нейронов: воспринимающего и двигательного. Импульс проходит по длинному отростку нейрона к который, в свою очередь, передает его к мышце. Такие рефлексы, как правило, безусловные.

Отделы рефлекторной дуги

Строение рефлекторной дуги включает в себя пять отделов.

Первый - это рецептор, который воспринимает информацию. Он может быть расположен как на поверхности тела (кожа, слизистые), так и в его глубине (сетчатка, сухожилья, мышцы). Морфологически рецептор может выглядеть, как длинный отросток нейрона или скопление клеток.

Второй отдел - чувствительное которое передает возбуждение дальше по дуге. Тела этих нейронов располагаются за пределами в спинномозговых узлах. Их функция подобна стрелке на железнодорожной колее. То есть данные нейроны распределяют информацию, которая к ним поступает, на разные уровни ЦНС.

Третий отдел - место переключения чувствительного волокна на двигательное. Для большинства рефлексов оно находится в спинном мозге, но некоторые сложные дуги проходят сразу через головной мозг, например защитный, ориентировочный, пищевой рефлексы.

Четвертый отдел представлен двигательным волокном, который доставляет нервный импульс от спинного мозга к эффектору или мотонейрону.

Последний, пятый отдел - это орган, который осуществляет рефлекторную деятельность. Как правило, это мышца или железа, например зрачок, сердце, половые или слюнные железы.

Физиологические свойства нервных центров

Физиология нервной системы изменчива на разных ее уровнях. Чем позже сформирован отдел, тем сложнее его работа и гормональная регуляция. Выделяют шесть свойств, которые присущи всем нервным центрам, независимо от их топографии:

    Проведение возбуждения только от рецептора к эффекторному нейрону. Физиологически это обусловлено тем, что синапсы (места соединения нейронов) действуют только в одном направлении и не могут изменить его.

    Задержку проведения нервного возбуждения тоже связывают с наличием большого количества нейронов в дуге и, как следствие, синапсов. Для того чтобы синтезировать медиатор (химический раздражитель), выпустить его в синаптическую щель и провести, таким образом, возбуждение, требуется больше времени, чем если бы импульс распространялся просто по нервному волокну.

    Суммация возбуждений. Такое случается, если раздражитель слабый, но постоянно и ритмично повторяющийся. В этом случае медиатор накапливается в синаптической мембране, пока его не будет значительное количество, и только потом передает импульс. Самый простой пример этого явления - акт чихания.

    Трансформация ритма возбуждений. Строение рефлекторной дуги, а так же особенности нервной системы таковы, что даже на медленный ритм раздражителя она отвечает частыми импульсами - от пятидесяти до двухсот раз в секунду. Поэтому мышцы в человеческом организме сокращаются тетанически, то есть прерывисто.

    Рефлекторное последействие. Нейроны рефлекторной дуги находятся в возбужденном состоянии еще некоторое время после прекращения действия раздражителя. На этот счет существуют две теории. Первая утверждает, что нервные клетки передают возбуждение на доли секунды дольше, чем действует раздражитель, и тем самым пролонгируют рефлекс. Вторая имеет в своей основе рефлекторное кольцо, которое замыкается между двумя промежуточными нейронами. Они передают возбуждение до тех пор, пока один из них не сможет сгенерировать импульс, либо пока извне не поступит тормозящий сигнал.

    Утопление нервных центров возникает при длительном раздражении рецепторов. Проявляется это сначала снижением, а потом и вовсе отсутствием чувствительности.

Вегетативная рефлекторная дуга

По типу нервной системы, которая реализует возбуждение и проводит нервный импульс, выделяют соматические и вегетативные нервные дуги. Особенностью является то, что рефлекс к скелетной мускулатуре не прерывается, а вегетативный обязательно переключается через ганглий. Все нервные узлы могут быть разделены на три группы:

  • Вертебральные (позвоночные) ганглии имеют отношения к симпатической нервной системе. Они располагаются по обеим сторонам от позвоночника, формируя столбы.
  • Предпозвоночные узлы располагаются на некотором расстоянии и от позвоночного столба, и от органов. К ним относят ресничный узел, шейные симпатические узлы, солнечное сплетение и брыжеечные узлы.
  • Внутриорганные узлы, как не сложно догадаться, располагаются во внутренних органах: мышце сердца, бронхов, кишечной трубке, железах внутренней секреции.

Эти различия между соматической и вегетативной системой уходят глубоко в филогенез, и связаны со скоростью распространения рефлексов и их жизненной необходимостью.

Реализация рефлекса

Извне на рецептор рефлекторной дуги поступает раздражение, которое вызывает возбуждение и возникновение нервного импульса. В основе этого процесса лежит изменение концентрации ионов кальция и натрия, которые находятся с обеих сторон мембраны клетки. Изменение количества анионов и катионов вызывает сдвиг электрического потенциала и появление разряда.

От рецептора возбуждение, двигаясь центростремительно, поступает в афферентное звено рефлекторной дуги - спинномозговой узел. Отросток его заходит в спинной мозг к чувствительным ядрам, а затем переключается на моторные нейроны. Это центральное звено рефлекса. Отростки двигательных ядер выходят из спинного мозга вместе с другими корешками и направляются к соответствующему исполнительному органу. В толще мышц волокна заканчиваются двигательной бляшкой.

Скорость передачи импульса зависит от типа нервного волокна и может колебаться от 0,5 до 100 метров в секунду. Возбуждение не переходит на соседние нервы благодаря наличию оболочек, изолирующих отростки друг от друга.

Значение торможения рефлекса

Так как нервное волокно способно долго сохранять возбуждение, то торможение является важным приспособительным механизмом организма. Благодаря ему, нервные клетки не испытывают постоянного перевозбуждения и усталости. Обратная афферентация, благодаря которой и реализуется торможение, участвует в образовании условных рефлексов и снимает с ЦНС необходимость анализировать второстепенные задачи. Это обеспечивает координацию рефлексов, например, движений.

Обратная афферентация так же предотвращает распространение нервных импульсов на другие структуры нервной системы, сохраняя их работоспособность.

Координация работы нервной системы

У здорового человека все органы действуют слажено и согласовано. Они подчиняются единой системе координации. Строение рефлекторной дуги - это частный случай, который подтверждает единое правило. Как и в любой другой системе, в человеке тоже существует ряд принципов или закономерностей, по которым она действует:

  • конвергенция (импульсы от разных участков могут поступать к одному участку ЦНС);
  • иррадиация (длительное и сильное раздражение вызывает возбуждение соседних участков);
  • одних рефлексов другими);
  • общий конечный путь (основан на несоответствии количества афферентных нейронов к эфферентным);
  • обратная связь (саморегуляция системы исходя из количества принятых и сгенерированных импульсов);
  • доминанта (наличие главного очага возбуждения, который перекрывает остальные).

Клеточное тело воспринимающего нейрона как для анимальной, так и для вегетативной нервной системы помещается в спинномозговом узле, ganglion spinale, куда стекаются афферентные пути как от органов животной жизни, так и от органов растительной жизни и который, таким образом, является смешанным анимально-вегетативным узлом. Клеточное тело вставочного нейрона вегетативной нервной системы в отличие от анимальной нервной системы помещается в боковых рогах спинного мозга. При этом аксон вставочного анимального нейрона, исходящий из клеток заднего рога, заканчивается в пределах спинного мозга среди клеток его передних рогов. Что же касается вставочного нейрона вегетативной нервной системы, то он в спинном мозге не заканчивается, а выходит за его пределы, к нервным узлам, расположенным на периферии.

Выйдя из спинного мозга, аксон вставочного нейрона подходит или к узлам симпатического ствола, ganglia trunci sympathici, относящимся к симпатическому отделу вегетативной нервной системы (они образуют симпатический ствол), или волокна не заканчиваются в этих узлах, а направляются к предпозвоночным узлам, расположенным более периферично, между симпатическим стволом и органом (ganglia coeliaca, ganglia mesenterica). Эти узлы также относятся к симпатической системе. Наконец, волокна могут доходить, не прерываясь, до узлов, лежащих или около органа (околоорганные узлы, например ganglia ciliare, oticum и др.), или в толще органа (внутриорганные, интрамуральные узлы); и те и дугие называют конечными узлами (ganliga terminalia). Они относятся к парасимпатическому отделу вегетативной нервной системы. Кроме макроскопически видимых обособленных узлов, по ходу вегетативных нервов встречаются мигрировавшие сюда в ходе эмбрионального развития небольшие группы эффекторных нейронов - микроганглии. Все волокна, идущие до узлов первого, второго или третьего порядка и являющиеся аксонами промежуточного нейрона, называются предузловыми волокнами, rami preganglionares. Они покрыты миелином.

Третий, эффекторный, нейрон анимальной рефлекторной дуги помещается в передних рогах спинного мозга, а эффекторный нейрон вегетативной рефлекторной дуги вынесен в процессе развития из центральной нервной системы в периферическую, ближе к рабочему органу, и располагается в вегетативных нервных узлах. Из такого расположения эффекторных нейронов на периферии вытекает главный признак вегетативной нервной системы - двухнейронность эфферентного периферического пути: первый нейрон - вставочный; тело его лежит в вегетативных ядрах черепных нервов или боковых рогах спинного мозга, а нейрит идет к узлу; второй - эфферентный, тело которого лежит в узле, а нейрит достигает рабочего органа. Эффекторные нейроны симпатических нервов начинаются в ganglia trunci sympathici (узлы первого порядка) или ganglia intermedia (узлы второго порядка), а для парасимпатических нервов - в около- или внутриорганных узлах, ganglia terminalia (третьего порядка); так как в названных узлах осуществляется связь вставочных и эфферентных нейронов, то отмеченная разница между симпатическим и парасимпатическим отделами вегетативной нервной системы связана именно с этими нейронами.

Аксоны эфферентных вегетативных нейронов почти лишены миелина - безмиелиновые (серые). Они составляют послеузловые волокна, rami postganglionics. Послеузловые волокна симпатической нервной системы, отходящие от узлов симпатического ствола, расходятся в двух направлениях. Одни волокна идут к внутренностям и составляют висцеральную часть симпатической системы. Другие волокна образуют rami communicantes grisei, соединяющие симпатический ствол с анимальными нервами. В составе последних волокна достигают соматических органов (аппарата движения и кожи), в которых иннервируют непроизвольную мускулатуру сосудов и кожи, а также железы.

Совокупность описанных эфферентных вегетативных волокон, идущих от узлов симпатического ствола до органов сомы, составляет соматическую часть симпатического отдела. Такая структура обеспечивает функцию вегетативной нервной системы, которая регулирует обмен веществ всех частей организма применительно к непрерывно изменяющимся условиям среды и условиям функционирования (работы) тех или иных органов и тканей.

Соответственно этой наиболее универсальной своей функции, связанной не с какими-либо отдельными органами и системами, а со всеми частями, со всеми органами и тканями организма, вегетативная нервная система и морфологически характеризуется универсальным, повсеместным распространением в организме.

Следовательно, симпатический отдел иннервирует не только внутренности, но и сому, обеспечивая в ней обменные и трофические процессы.

В результате каждый орган, по И. П. Павлову, находится под тройным нервным контролем, в связи с чем он различает три вида нервов: 1) функциональные, осуществляющие функцию данного органа; 2) сосудодвигательные, обеспечивающие доставку крови к органу, и 3) трофические, регулирующие усвоение из доставленной крови питательных веществ.

Висцеральная часть симпатического отдела содержит все эти три вида нервов для внутренностей, а соматическая часть - только сосудодвигательные и трофические. Что же касается функциональных нервов для органов сомы (скелетная мускулатура и др.), то они идут в составе соматической, анимальной, нервной системы.

Таким образом, основное отличие эфферентной части вегетативной нервной системы от эфферентной части анимальной заключается в том, что анимальные, соматические, нервные волокна, выйдя из центральной нервной системы, идут до рабочего органа, нигде не прерываясь, тогда как вегетативные волокна на своем пути от мозга до рабочего органа прерываются в одном из узлов первого, второго или третьего порядка. Вследствие этого эфферентный путь вегетативной нервной системы разбивается на две части, из которых он и состоит: предузловые миелиновые волокна, rami preganglionares, и послеузловые, лишенные миелина (безмиелиновые) волокна, rami postganglionares.

Наличие узлов в эфферентной части рефлекторной дуги составляет характерный признак вегетативной нервной системы, отличающий ее от анимальной.

Конец работы -

Эта тема принадлежит разделу:

Конспект лекций по курсу: Анатомия человека

Государственное образовательное учреждение высшего профессионального образования.. Тульский государственный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция № 1
предмет, цели и методы изучения анатомии. Цель лекции. Рассмотреть предмет, цели и задачи анатомии. Воспитать у студентов определенные этические нормы поведения на ана

Связь Анатомии со смежными дисциплинами
В зависимости от методов исследования анатомия (в широком смысле) включает макроскопическую анатомию или нормальную человека, микроскопическую анатомию, ультрамикроскопическую. Гистология, цитологи

Краткий исторический очерк развития Анатомии
Анатомия возникла в глубокой древности в связи с развитием практической медицины. Первые медицинские труды ученых содер­жали неполные и примитивные анатомические данные. Врачи и естествоис

Приоритет отечественных ученых в Анатомии
Преподавание анатомии в медицинских школах России в XVII веке осуществлялось только по книгам. В 1724 году указом Петра I была основана в Петербурге Академия наук, которая стала центром научной жиз

Лекция № 2
Положение человека в природе. Методологические основы изучения анатомии. Цель лекции. Рассмотреть положение человека в природе и методологические основы изучения анато

Лекция 3
Начальные стадии эмбриогенеза. Учение о тканях. Цель лекции. Рассмотреть стадии эмбриогенеза. Раскрыть основные положения учения о тканях. Выработать у студентов научн

Этап – обособление тела зародыша
- наружный зародышевый листок (эктодерма) развиваются: эпителий кожи и его производные – волосы, ногти, сальные и потовые железы, молочные, эпителий слизистой оболочки и железы ротовой полос

Строение клетки
Большинство живых организмов состоят из клеток, обладающих всеми свойствами живых организмов: обменом веществ и энергии, ростом, размножением и передачей по наследству своих признаков. В многоклето

Эпителиальная ткань
Эпителиальная ткань (эпителий) покрывает поверхность тела, выстилает стенки полых внутренних органов, образуя слизистую оболочку, железистую (рабочую) ткань желез внешней и внутрен­ней секреции. Эп

Соединительная ткань
Соединительная ткань состоит из основного вещества - клеток и межклеточного вещества - коллагеновых, эластических и ретику­лярных волокон. Различают собственно соединительную ткань (рых­лую и плотн

Мышечная ткань
Мышечная ткань осуществляет двигательные процессы в орга­низме. Основными свойствами мышечных тканей являются возбу­димость и сократимость. Возбудившись в ответ на раздражение, мышца сокращается -

Нервная ткань
Нервная ткань состоит из нервных клеток (нейронов) и нейроглии, которая осуществляет опорную, защитную и разграничительную функции. Нервные клетки и нейроглия образуют морфологи­чески и функциональ

Лекция № 4
Общие данные о строении аппарата движения. Общая остеология. Цель лекции. Рассмотреть общие принципы функциональной анатомии опорно-двигательного аппарата человека.

Развитие кости
По развитию кости подразделяются на: а) первичные (не проходят хрящевой стадии) - кости черепа и передний конец ключицы и б) вторичные (проходят все три стадии: 1) соединительнотканную; 2) хрящевую

Рост кости
Длительный рост организма и огромная разница между размерами и формой эмбриональной и окончательной кости таковы, что делают неизбежной ее перестройку в течение периода роста; в процессе перестройк

Анатомо-физиологические особенности видов костей
Кости имеют разную форму и размеры. Различают трубчатые (длинные и короткие), губчатые, плоские, смешанные и воздухоносные кости. Трубчатые кости образуют скелет конечностей. К длин

Химический состав кости и ее физические свойства
Костное вещество состоит из двоякого рода химических веществ: органических (Уз), главным образом оссеина, и неорганических (2/з), главным образом солей кальция, особенно фосфорнокислой извести (бол

Строение кости
Структурной единицей кости, видимой в лупу или при малом увеличении микроскопа, является остеон, т. е. система костных пластинок, концентрически расположенных вокруг

Лекция № 5
Кость в рентгеновском изображении. Влияние труда и спорта на строение костей живого человека. Взаимоотношение социального и биологического факторов в строении костей. Цель лекции

Лекция № 6
Общая артросиндесмология. Цель лекции. Рассмотреть функциональные, анатомические особенности различных видов соединения костей. план лекции: 1. Рассм

Непрерывные соединения - СИНАРТРОЗЫ
Как отмечалось, скелет в своем развитии проходит 3 стадии: соединительнотканную, хрящевую и костную. Так как переход из одной стадии в другую связан также и с изменением ткани, находящейся в промеж

Синдесмоз, articulatio fibrosa, есть непрерывное соединение костей посредством соединительной ткани
1. Если соединительная ткань заполняет большой промежуток между костями, то такое соединение приобретает вид межкостных перепонок, membrana interossea, например между костями предплечья или

Прерывные соединения, СУСТАВЫ, ДИАРТРОЗЫ
Сустав представляет прерывное, полостное, подвижное соединение, или сочленение, articulatio synovialis (греч. arthron - сустав, отсюда arthritis - воспаление сустава). В каждом суставе различают су

Закономерности распределения мышц
1. Соответственно строению тела по принципу двусторонней симметрии мышцы являются парными или состоят из 2 симметричных половин (например, m. trapezius). 2. В тулов

Строение мышцы. Мышца как орган
Мышца состоит из пучков исчерченных (поперечнополосатых) мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью (endomysium) в пучки перво

Вспомогательные аппараты мышц: строение, виды фасций и сухожильные влагалища, сесамовидные кости
Кроме главных частей мышцы - ее тела и сухожилия, существуют еще вспомогательные приспособления, так или иначе облегчающие работу мышц. Группа мышц (или вся мускулатура известной части тела) окружа

Мышцы живота
Живот - часть туловища, расположенная между грудной клеткой и тазом. Верхняя граница живота проходит от мечевидного отростка по реберным дугам до XII грудного позвонка. С латеральной стороны границ

Топография и слабые места брюшной стенки
Подреберный треугольник располагается на передней стенке брюшной полости - вверху, латеральнее прямой мышцы живота. Медиальной его границей является латеральный край прямой мыш

Бедренный канал
На передней поверхности бедра выделяют бедренный треугольник (треугольник Скарпы), ограниченный вверху паховой связкой, с латеральной стороны - портняжной мышцей, медиально

Лекция № 9
Мягкий остов. Цель лекции. Ознакомить студентов с современным состоянием вопроса о соединительнотканных структурах тела человека. план лекции: 1. Общ

Пищевод
Пищевод представляет собой трубчатый орган проведения пищи в желудок. Пищевод начинается на шее, проходит в заднем средостении и через пищеводное отверстие диафрагмы переходит в брюшную полость. Дл

Желудок
Желудок является наиболее расширенным и самым сложным по строению отделом пищеварительного тракта. В момент рождения желудок имеет форму мешка. Затем стенки желудка спадаются, и он становится цилин

Тонкая кишка
Это наиболее длинная часть пищеварительного тракта подразделяется на двенадцатиперстную, тощую и подвздошную кишки. Две последние характеризуются наличием у них брыжейки и поэтому признаку выделяют

Тощая и подвздошная кишки
Составляют около 4/5 всей длины пищеварительного тракта. Четкая анатомическая граница между ними отсутствует. У новорожденных и детей относительная длина тонкой кишки больше, чем у взрослых. Длина

Толстая кишка
Толстая кишки подразделяется на слепую, ободочную и прямую. Ободочная кишка в свою очередь делится на восходящую, поперечную, нисходящую и сигмовидную. Рост толстой кишки во внутриутробном

Анатомия хода брюшины
Париетальная брюшина выстилает непрерывным слоем изнутри переднюю и боковые стенки живота и затем продолжается на диафрагму и заднюю брюшную стенку. Здесь она встречается с внутренностями и, завора

Большой сальник. Малый сальник
Брюшина позади серповидной связки с нижней поверхности диафрагмы заворачивается на диафрагмальную поверхность печени, образуя венечную связку печени, lig. coronarium hepatis

Этажи брюшной полости. Верхний этаж. Сальниковое отверстие. Сальниковая сумка. Большой сальник
1. Верхний этаж полости брюшины распадается на три сумки: bursa hepatica, bursa pregastrica и bursa omentalis. Bursa hepatica охватывает правую

Средний этаж брюшной полости. Брыжейка
2. Средний этаж полостибрюшины становится доступен обзору, если приподнять большой сальник и поперечную ободочную кишку кверху. Пользуясь в качестве границ восходящей и нисходя

Нижний этаж брюшной полости
3. Нижний этаж. Спускаясь в полость малого таза, брюшина покрывает его стенки и лежащие в нем органы, в том числе и мочеполовые, поэтому отношения брюшины здесь зависят от пола

Клиническое значение брюшины и брюшинных образований
Знание топографии брюшной полости ибрюшинных образований имеет важный практический смысл. Имеется значительное количество заболеваний органов брюшной полости, приводящих к воспалительным осложнения

Полость носа. Слизистая полости носа. Зоны полости носа. Околоносовые пазухи
Вдыхаемый воздух для соприкосновения с нежной тканью легких должен быть очищен от пыли, согрет и увлажнен. Это достигается в полости носа, cavitas nasi; кроме того, различают наружный но

Гортань
Гортань, larynx, помещается на уровне IV, V и VI шейных позвонков, тотчас ниже подъязычной кости, на передней стороне шеи, образуя здесь ясно заметное через наружные покровы во

Разветвление бронхов
Соответственно делению легких на доли каждый из двух главных бронхов, bronchus principalis, подходя к воротам легкого, начинает делиться на долевые бронхи, bronchi lobares.

Макро-микроскопическое строение легкого
Сегменты легких состоят из вторичных долек, lobuli pulmonis secundarii, занимающих периферию сегмента слоем толщиной до 4 см. Вторичная долька представляет собой пирамидальной

Плевра
В грудной полости имеются три совершенно обособленных серозных мешка - по одному для каждого легкого и один, средний, для сердца. Серозная оболочка легкого называется плеврой,

Плевральная полость (плевральные мешки)
Правый и левый плевральные мешки (полости) не совсем симметричны. Правый плевральный мешок несколько короче и шире левого. Асимметрия наблюдается также в очертаниях передних

Средостение
Комплекс органов (сердце с перикардом и большими сосудами, а также другие органы), которые заполняют пространство между медиастинальными плеврами, называется средостением, mediastinum. Этот комплек

Строение почки
На продольном разрезе, проведенном через почку, видно, что почка в целом слагается: 1) из полости, sinus renalis, в которой расположены почечные чашки

Кровоснабжение почек
В каждой почке находится до миллиона нефронов, совокупность которых составляет главную массу почечного вещества. Для понимания строения почки и ее нефрона надо иметь в виду ее кровеносную систему.

Топография почек
Отношение к органам передней поверхности правой и левой почек неодинаково. Правая почка соприкасается небольшим участком поверхности с надпочечником; далее книзу большая час

Почечная лоханка. Почечные чашки
Моча, выделяющаяся через foramina papillaria, на своем пути до мочевого пузыря проходит через малые чашки, большие чашки, почечную лоханку и мочеточник. Малые чашки, c

Мочеточник
Мочеточник, ureter, представляет собой трубку около 30 см длиной. Диаметр его равняется 4 - 7 мм. От лоханки мочеточник непосредственно за брюшиной идет вниз и медиально в малы

Мочевой пузырь. Стенки мочевого пузыря
Мочевой пузырь, vesica urinaria, представляет вместилище для скопления мочи, которая периодически выводится через мочеиспускательный канал. Вместимость мочевого пузыря в средне

Мужские половые органы, Organa genitalia masculina
В состав мужских половых органов, входят: яички с их оболочками, семявыносящие протоки с семенными пузырьками, предстательная железа, бульбоуретральные железы, половой член,

Мужской мочеиспускательный канал
Мужской мочеиспускательный канал, urethra masculina, представляет трубку около 18 см длиной, простирающуюся от мочевого пузыря до наружного отверстия мочеиспускательного канала, ostium u

Женские половые органы. Анатомия яичника
Женские половые органы, organa genitalia feminina, состоят из двух отделов: 1) расположенные в тазу внутренние половые органы - яичники, маточные трубы, матка, влагалище и

Придаток яичника и околояичник
Они представляют собой два рудиментарных образования, заключенных между листками широкой связки матки: между трубой и яичником epoophoron (соответствует ductuli efferentes testis) и медиальнее его

Наружные женские половые органы
Под названием «женская половая область», pudendum femininum, понимают совокупность женских наружных половых органов: большие половые губы и образования, расположенные между ними. L

Аномалии органов мочеотделения
Число почек может быть или больше нормального (третья почка, лежащая на позвоночнике между двумя или ниже какой-либо из них), или меньше - одна почка

Общие анатомо-физиологические свойства эндокринных желез
Несмотря на различия в форме, величине и положении отдельных эндокринных желез, последние обладают некоторыми общими анатомо-физиологическими свойствами. Прежде всего они все лишены выводных про

Связь желез с нервной системой
Связь эндокринных желез с нервной системой двоякого рода. Во-первых, железы получают богатую иннервацию со стороны вегетативной нервной системы; ткань таких желез, как щитовидная, надпочечники, яич

Эндокринные железы. Основы эндокринологии. Система обратной связи
В результате обмена веществ, происходящего под влиянием нервной системы, в организме образуются химические соединения, которые, обладая высокой физиологической активностью, регулируют нормальное от

Развитие эндокринных желез
Эмбриологически эндокринные железы оказываются различного происхождения. В этом отношении могут различаться даже отдельные части одной и той же железы. Поэтому по месту их развития перечисленные же

Функция паращитовидных желез
Регулируют обмен кальция и фосфора в организме (паратгормон). Экстирпация желез ведет к смерти при явлениях тетании. Вилочковая железа, thymus, расположена в верхнепер

Органы кроветворения и имунной системы
Кровеносные и лимфатические сосуды всегда заполнены соответственно кровью или лимфой, в состав которых входят так называемые форменные элементы. Функция и строение их многообразны (эритроциты перен

Функция гипофиза
Разные строение и развитие обеих долей определяют и разные их функции. Передняя доля влияет на рост и развитие всего тела (соматотропный гормон). При ее опухолях проис

Функция надпочечников
Соответственно строению из двух разнородных веществ - коркового и мозгового - надпочечник как бы сочетает в себе функции двух желез. Мозговое вещество выделяет в кровь норадреналин и адреналин (пол

Эндокринные части половых желез. Эндокринная функция яичек. Эндокринная функция желтого тела, яичников
1. В яичке, в соединительной ткани, лежащей между семенными канальцами, залегают интерстициальные клетки. Это так называемая интерстициальная железа, которой приписывается в

Общая ангиология. Сосудистая система
Сосудистая система представляет собой систему трубок, по которым через посредство циркулирующих в них жидкостей (кровь и лимфа), с одной стороны, совершается доставка к клеткам и тканям организма н

Развитие сердца
Сердце развивается из двух симметричных зачатков, которые сливаются затем в одну трубку, расположенную в области шеи. Благодаря быстрому росту трубки в длину она образует S-образную петлю). В S-обр

Строение сердца
Сердце, cor, представляет полый мышечный орган, принимающий кровь из вливающихся в него венозных стволов и прогоняющий кровь в артериальную систему. Полость сердца подразделяет

Камеры сердца. Правое предсердие. Левое предсердие
Предсердия являются воспринимающими кровь камерами, желудочки, напротив, выбрасывают кровь из сердца в артерии. Правое и левое предсердия отделены друг от друга перегородкой, так же как правый и ле

Вены сердца
Вены сердца открываются не в полые вены, а непосредственно в полость сердца. Венозный отток идет по трем путям: 1) в венечный синус, 2) в передние вены сердца и 3) в наименьшие вены, впада

Проводящая система сердца. Иннервация сердца
Важную роль в ритмичной работе сердца и в координации деятельности мускулатуры отдельных камер сердца играет проводящая система сердца, представляющая собой сложное нервно-м

Нервы сердца. Иннервация сердца
Нервы, обеспечивающие иннервацию сердечной мускулатуры, обладающей особым строением и функцией, отличаются сложностью и образуют многочисленные сплетения. Вся нервная система слагается из: 1) подхо

Большой (телесный) круг кровообращения. Регионарное кровообращение
Большой (телесный) круг кровообращения служит для доставки питательных веществ и кислорода всем органам и тканям тела и удаления из них продуктов обмена и углекислоты. Он начин

Малый круг кровообращения
Малый (легочный) круг кровообращения служит для обогащения крови кислородом в легких. Он начинается в правом желудочке, куда переходит через правое предсердно-желудочковое (атр

Кровеносная система. Артерии. Стенка артерий. Капилляры
Кровеносная система состоит из центрального органа - сердца - и находящихся в соединении с ним замкнутых трубок различного калибра, называемых кровеносными сосудами (лат. vas,

Закономерности, отражающие строение целостного организма
1. Соответственно группировке «...всего тела вокруг нервной системы» артерии располагаются по ходу нервной трубки и нервов. Так, параллельно спинному мозгу идет главный арте

Закономерности хода артерий от материнского ствола к органу
При развитии артериальной системы вначале возникает первичная сеть сосудов. В крайней части этой сети создаются более трудные условия для циркуляции крови, чем в тех частях, которые соединяют орган

Внутрикостные артерии
Соответственно строению, функции и развитию длинных трубчатых костей последние получают: диафизарные артерии - главная (a. nutritia, вернее a. diaphyseos princeps), входит в

Коллатеральное кровообращение. Анастомоз. Коллатераль
Коллатеральное кровообращение есть важное функциональное приспособление организма, связанное с большой пластичностью кровеносных сосудов и обеспечивающее бесперебойное кровосна

Коллатераль (от лат. collateralis - боковой) - боковой сосуд, осуществляющий окольный ток крови; понятие это анатомо-физиологическое
Коллатерали бывают двух родов. Одни существуют в норме и имеют строение нормального сосуда, как и анастомоз. Другие развиваются вновь из анастомозов и приобретают особое строение. Для пони

Закономерности распределения вен
1.В венах кровь течет в большей части тела (туловище и конечности) против направления силы тяжести и потому медленнее, чем в артериях. Баланс ее в сердце достигается тем, чт

Внутренняя яремная вена (v. jugularis interna)
V. jugularis interna, внутренняя яремная вена, выносит кровь из полости черепа и органов шеи; начинаясь у foramen jugulare, в котором она образует расширение, bulbus superior v

Наружная яремная вена (v. jugularis externa)
V. jugularis externa, наружная яремная вена, начавшись позади ушной раковины на уровне угла челюсти из области позадичелюстной ямки, спускается, покрытая m. platysma, по наружн

Вены верхней конечности
Вены верхней конечности разделяются на глубокие и поверхностные. Поверхностные, или подкожные, вены, анастомозируя между собой, образуют широкопетлистую сеть, из котор

Вены стенок туловища: задние межреберные вены (vv. intercostales posteriores), внутренняя грудная вена (v. thoracica interna)
Vv. intercostales posteriores, задние межреберные вены, сопровождают в межреберных промежутках одноименные артерии по одной вене на каждую артерию. О впадении межреберных вен в

Вены непарная (v. azygos) и полунепарная (v. hemiazygos)
V. azygos, непарная вена, и v. hemiazygos, полунепарная вена, образуются в брюшной полости из восходящих поясничных вен, vv. lumbales ascendentes, соединяющих поясничные вены в

Система нижней полой вены
V. cava inferior, нижняя полая вена, - самый толстый венозный ствол в теле, лежит в брюшной полости рядом с аортой, вправо от нее. Она образуется на уровне IV поясничного позво

Воротная вена
Воротная вена собирает кровь от всех непарных органов брюшной полости, за исключением печени: от всего желудочно-кишечного тракта, где происходит всасывание питательных веществ

Внутренняя подвздошная вена
V. iliaca interna, внутренняя подвздошная вена, в виде короткого, но толстого ствола располагается позади одноименной артерии. Притоки, из которых слагается внутренняя подвздош

Лимфатическая система
Лимфатическая система является составной частью сосудистой и представляет как бы добавочное русло венозной системы, в тесной связи с которой она развивается и с которой имеет сходные черты строения

Лимфатические сосуды
Переход лимфокапиллярных сосудов в лимфатические сосуды определяется изменением строения стенки, а не появлением клапанов, которые встречаются и в капиллярах. Интраорганные лимфати

Лимфатические узлы
Лимфатические узлы расположены по ходу лимфатических сосудов и вместе с ними составляют лимфатическую систему. Они являются органами лимфопоэза и образования антител.

Закономерности распределения лимфатических сосудов и лимфатических узлов
1. В лимфатической системе лимфа течет в большей части тела (в туловище и конечностях) против направления силы тяжести и потому, как и в венах, медленнее, чем в артериях. Ба

Коллатеральный ток лимфы (лимфоток)
При закупорке или перерезке лимфатических сосудов, а также при оперативном удалении лимфатических узлов, закупорке их раковыми клетками или поражении их хроническими воспалительными процессами нару

Грудной проток
Грудной проток, ductus thoracicus, по данным Д. А. Жданова, имеет длину 30 - 41 см и начинается от слияния правого и левого поясничных стволов, truncus lumbales dexter et sinister. Обычно описываем

Лимфатические узлы и сосуды головы
Лимфа из головы и шеи собирается в правый и левый яремные лимфатические стволы, trunci jugulares dexter et sinister, которые идут на каждой стороне параллельно внутренней яр

Лимфатические узлы и сосуды верхней конечности
Из тканей и органов пояса верхней конечности, из прилежащей к нему части грудной стенки и всей свободной верхней конечности лимфа собирается в подключичный ствол, truncus subclavius, данной стороны

Лимфатические узлы и сосуды шеи
Передние шейные лимфатические узлы делятся на поверхностные и глубокие, среди последних выделяют: предгортанные (лежат впереди гортани), щитовидные (впереди щитовидной железы),

Лимфатические узлы и сосуды брюшной полости
Лимфатические сосуды верхней половины стенки живота направляются вверх и латерально к nodi lymphatici axillares; сосуды нижней половины стенки живота, напротив, спускаются к nodi lymphatici inguina

Лимфатические узлы и сосуды нижней конечности
Лимфатические узлы нижней конечности располагаются в следующих местах: 1. В подколенной ямке - nodi lymphitici popliteales. 2. В паховой области

Лекция № 1
Введение в изучение нервной системы Развитие нервной системы.Функциональная анатомия спинного мозга. Цель лекции. Рассмотреть структурно-функц

Неврология. Общие данные. Нейрон. Синапс
Одним из основных свойств живого вещества является раздражимость. Каждый живой организм получает раздражения из окружающего его мира и отвечает на них соответствующими реакц

Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон
Простая рефлекторная дуга состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью (например, кожей), а другой с помощью с

Афферентный сигнал. Афферентный нерв. Исполнительные органы. Обратная афферентация (связь)
Общая характеристика нервной системы с точки зрения кибернетики заключается в следующем. Живой организм - это уникальная кибернетическая машина, способная к самоуправлению. Эту функцию выполняет не

Замкнутая кольцевая цепь рефлексов. Вегетативная (автономная) и анимальная нервная система
Следовательно, вместо прежнего представления о том, что в основе строения и функции нервной системы лежит разомкнутая рефлекторная дуга, теория информации и обратной связи («обратной афферентации»)

Развитие нервной системы. Филогенез нервной системы
Филогенез нервной системы в кратких чертах сводится к следующему. У простейших одноклеточных организмов (амеба) нервной системы еще нет, а связь с окружающей средой осуществляется при помощи жидкос

Трубчатая нервная система. Цефализация
III этап - трубчатая нервная система. На первоначальной ступени развития животных особенно большую роль играл аппарат движения, от совершенства которого зависит основное усл

Эмбриогенез нервной системы
Изложенные закономерности филогенеза обусловливают эмбриогенез нервной системы человека. Нервная система происходит из наружного зародышевого листка, или эктодермы. Эта последняя образует пр

Эмбриогенез головного мозга. Задний мозговой пузырь, rhombencephalon. Средний мозговой пузырь, mesencephalon
Нервная трубка очень рано подразделяется на два отдела, соответствующие головному и спинному мозгу. Передний, расширенный ее отдел, представляющий зачаток головного мозга, как отмечалось, расчле

Развитие отделов мозга: промежуточный, передний, конечный. Кортикализация. Новый мозг
На I этапе развития головной мозг состоит из трех отделов: заднего, среднего и переднего, причем из этих отделов в первую очередь (у низших рыб) особенно развивается задний, или ромбовидный, мозг (

Строение спинного мозга
Спинной мозг, medulla spinalis (греч. myelos), лежит в позвоночном канале и у взрослых представляет собой длинный (45 см у мужчин и 41-42 см у женщин), несколько сплюснутый спе

Корешки спинного мозга. Канатики, стволы, узлы, сегмент спинного мозга
Эти борозды делят каждую половину белого вещества спинного мозга на три продольных канатика: передний - funiculus anterior, боковой- funiculus

Внутреннее строение спинного мозга
Спинной мозг состоит из серого вещества, содержащего нервные клетки, и белого вещества, слагающегося из миелиновых нервных волокон. А. Серое вещество, substantia gr

Белое вещество, substantia alba. Нервный сегмент спинного мозга. Пучки ассоциативных волокон
Белое вещество, substantia alba, спинного мозга состоит из нервных отростков, которые составляют три системы нервных волокон: 1. Короткие пучки

Пучки ассоциативных волокон переднего канатика спинного мозга
Передние канатики содержат нисходящие пути. От коры головного мозга: 1) передний корково-спинномозговой (пирамидный) путь, tractus corticospinalis

Пучки ассоциативных волокон заднего канатика спинного мозга и бокового канатика спинного мозга
Задние канатики содержат волокна задних корешков спинномозговых нервов, слагающиеся в две системы: 1. Медиально расположенный тонкий пучок, fasciculus gracilis.

Ромбовидный мозг. Продолговатый мозг, myelencephalon, medulla oblongata
Продолговатый мозг, myelencephalon, medulla oblongata, представляет непосредственное продолжение спинного мозга в ствол головного мозга и является частью ромбовидног

Внутреннее строение продолговатого мозга. Ядра серого вещества: ядро оливы, nucleus olivaris, ретикулярная формация, formatio reticularis
Внутреннее строение продолговатого мозга. Продолговатый мозг связан с органами гравитации и слуха, а также связан с дыханием и кровообращением. Поэтому в нем заложены ядра серо

Белое вещество продолговатого мозга. Длинные и короткие волокна (пути) продолговатого мозга
Белое вещество продолговатого мозга содержит длинные и короткие волокна. К длинным относятся проходящие транзитно в передние канатики спинного мозга нисходящие пирамидные пути,

Мозжечок, cerebellum
Мозжечок, cerebellum, является производным заднего мозга, развившегося в связи с рецепторами гравитации. Поэтому он имеет прямое отношение к координации движений и являе

Средний мозг
Средний мозг развивается в связи с развитием зрительного анализатора. Его подразделяют на крышу среднего мозга и ножки мозга. Кр

Промежуточный мозг
Промежуточный мозг делится на таламический мозг и гипоталамус. К таламическому мозгу относятся зрительный бугор, шишковидной тело, латеральное и медиальное коленчатые тел

Лимбическая система
До настоящего времени последняя в описаниях различных ученых не имеет четких морфологических гра­ниц. Однако большинство сходится в том, что в понятие лимба - кольца - обязательно входят две извили

Желудочки головного мозга
Большие полушария головного мозга плода, постепенно развива­ясь, покрывают на 3-м месяце внутриутробной жизни промежуточный мозг, на 4-м-средний, на 6-8-м-мозжечок. В процессе смещения и неравномер

Топография серого вещества ромбовидной ямки
Серое вещество спинного мозга непосредственно переходит в серое вещество мозгового ствола и частью расстилается по ромбовидной ямке и стенкам водопровода, а частью разбивается на отдельные ядра чер

Ядра ромбовидной ямки. Ядра черепных нервов. Проекция ядер черепных нервов на ромбовидную ямку
Проекция ядер черепных нервов на ромбовидную ямку: XII пара - подъязычный нерв, n.hypoglossus, имеет единственное двигательное ядро, заложенное в самой нижней части ро

Лекция № 3
Конечный мозг. Цито и миелоархитектоника коры больших полушарий. Локализация функций в коре полушарий. Цель лекции. Раскрыть функциональную анатомию конечного мозга.

Конечный мозг, telencephalon. Полушария, hemispheria cerebri
Конечный мозг, telencephalon, представлен двумя полушариями, hemispheria cerebri. В состав каждого полушария входят: плащ, или м

Плащ. Поверхность полушария
В каждом полушарии можно различить три поверхности: верхнелатеральную, медиальную и нижнюю, и три края: верхний, нижний и медиальный, три конца, или

Борозды и извилины верхнелатеральной поверхности полушария. Латеральная борозда. Центральная борозда
Верхнелатеральная поверхность полушария разграничена на доли посредством трех борозд: латеральной, центральной и верхнего конца теменно-затыл

Борозды и извилины лобной доли. Прецентральная борозда, sulcus precentralis
Лобная доля. В заднем отделе наружной поверхности этой доли проходит sulcus precentralis почти параллельно направлению sulcus centralis. От нее в продольном направлении отходят

Борозды и извилины теменной доли. Постцентральная борозда, sulcus postcentralis
Теменная доля. На ней приблизительно параллельно центральной борозде располагается sulcus postcentralis, сливающаяся обычно с sulcus intraparietalis, идущей в горизонтальном на

Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры)
Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о нервной регуляции всех процессов организма и приспособлении его к окружающей ср

Кора. Корковые концы анализаторов. Ядро двигательного анализатора
В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора - это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топогра

Корковые концы анализаторов внешнего мира
Нервные импульсы из внешней среды организма поступают в корковые концы анализаторов внешнего мира. 1. Ядро слухового анализатора лежит в средней части верхней височ

Стереогнозия. Первая сигнальная система
Частный вид кожной чувствительности - узнавание предметов на ощупь - стереогнозия (стереос - пространственный, гнозис - знание) связана с участком коры верхней теменной доль

Вторая сигнальная система
Таким образом, И. П. Павлов различает две корковые системы: первую и вторую сигнальные системы действительности, из которых сначала возникла первая сигнальная система (она имеется и у животных), а

Корковые концы анализаторов речи
Поэтому для понимания анатомического субстрата второй сигнальной системы необходимо, кроме знания строения коры большого мозга в целом, учитывать также корковые концы анализаторов речи. 1.

Лекция №4
Структурно функциональная анатомия чувствительных проводящих путей головного и спинного мозга. Цель лекции. Рассмотреть функциональную анатомию чувствительных проводящ

Экстероцептивные проводящие пути
Проводящий путь болевой и температурной чувствительности - латеральный спинно-таламический путь состоит из трех нейронов. Чувствительным проводящим путям пр

Нисходящие проекционные пути
Общая характеристика двигательных нисходящих путей: 1.2-нейронная схема строения; 2.волокна 1 нейрона совершают перекрест;

Анимальные или соматические нервы. Спинномозговые нервы, nn. spinales
Спинномозговые нервы, nn. spinales, располагаются в правильном порядке (невромеры), соответствуя миотомам (миомерам) туловища и чередуясь с сегментами позвоночного столба; кажд

Диафрагмальный нерв, n. phrenicus. Топография диафрагмального нерва
Смешанные ветви. N. phrenicus - диафрагмальный нерв (СIII - CIV), спускается по m. scalenus anterior вниз в грудную полость, куда проходит между подключичной артерией

Плечевое сплетение, plexus brachialis. Короткие ветви плечевого сплетения
Плечевое сплетение, plexus brachialis, слагается из передних ветвей четырех нижних шейных нервов (Cv -СVIII) и большей части первого грудного (Thy); часто прис

Короткие ветви
1. N. dorsalis scapulae (из Cv) идет вдоль медиального края лопатки. Иннервирует m. levator scapulae и тт. rhomboidei. 2. N. thoracicus longus

Rami musculares к mm. psoas major et minor, m. quadratus lumborum и mm. intertransversarii laterales lumborum
Подвздошно-подчревный нерв, n. iliohypogastricus (LI) выходит из-под латерального края m. psoas major и ложится на переднюю поверхность m. quadratus lumborum параллельно XII ме

Короткие ветви
1. Rami musculares для m. piriformis (из SI и SII), m. obturatorius interims с mm. gemelli и quadratus femoris (из LIV, Lv, SI и SII), для mm. levator ani et coccygeus.

Корково-ядерный путь, tractus corticonuclearis. Корково-мостовой путь, tractus corticopontini
Корково-ядерный путь, tractus corticonuclearis - проводящие пути к двигательным ядрам черепных нервов. Начавшись от пирамидных клеток коры нижней части предцентральной извилины

Ветви лицевого нерва (n. facialis) в лицевом канале. Большой каменистый нерв, n. petrosus major. Барабанная струна, chorda tympani
На пути в одноименном канале височной кости n. facialis дает следующие ветви: 1. Большой каменистый нерв, n. petrosus major (секреторный нерв) берет начало в област

Остальные ветви лицевого нерва после выхода из шилососцевидного отверстия (foramen stylomastoideum). Промежуточный нерв, n. intermedius
После выхода из foramen stylomastoideum от n. facialis отходят следующие мышечные ветви: 1. N. auricularis posterior иннервирует m. auricularis posterior и venter o

Подъязычный нерв, n. hypoglossus (XII пара). 12 пара черепных нервов
N. hypoglossus, подъязычный нерв, есть результат слияния 3 - 4 спинномозговых (затылочных) сегментарных нервов, существующих у животных самостоятельно и иннервирующих подъязычн

Вегетативная (автономная) нервная система. Функции вегетативной нервной системы
Имеется качественная разница в строении, развитии и функции неисчерченных (гладких) и исчерченных (скелетных) мышц. Скелетная мускулатура участвует в реакции организма на внешние воздействия и отве

Cимпатическая нервная система. Центральный и периферический отдел симпатической нервной системы
Центральный отдел симпатической части располагается в боковых рогах спинного мозга на уровне СVIII, ThI - LIII, в substantia intermedia lateralis. От него отходят волокна, инне

Центры парасимпатической части
Центральная часть парасимпатического отдела состоит из головного, или краниального, отдела и спинномозгового, или сакрального, отдела. Некоторые авторы считают, что па

Периферический отдел парасимпатической нервной системы
Периферическая часть краниального отдела парасимпатической системы представлена: 1) преганглионарными волокнами, идущими в составе III, VII, IX и X пар черепных нервов (возможно, и в соста

Вегетативные нервы. Точки выхода вегетативных нервов
Анимальные нервы выходят из мозгового ствола и спинного мозга на всем их протяжении сегментарно, причем эта сегментарность сохраняется частично и на периферии. Вегетативные нервы выходят только из

Единство вегетативной и центральной нервной системы. Зоны Захарьина - Геда
Необходимо помнить, что вегетативная нервная система есть часть единой нервной системы. Поэтому в целом организме постоянно наблюдается сочетанная деятельность вегетативной и анимальной частей нерв

Иннервация сердца
Афферентные пути от сердца идут в составе n. vagus, а также в среднем и нижнем шейных и грудных сердечных симпатических нервах. При этом по симпатическим нервам проводится чувс

Иннервация легких
Афферентными путями от висцеральной плевры являются легочные ветви грудного отдела симпатического ствола, от париетальной плевры - nn. intercostales и n. phrenicus, от бронхов

Иннервация желудочно-кишечного тракта (кишечника до сигмовидной кишки). Иннервация поджелудочной железы. Иннервация печени
Афферентные пути от указанных органов идут в составе n. vagus, n. splanchnicus major et minor, plexus hepaticus, plexus coeliacus, грудных и поясничных спинномозговых нервов и

Иннервация сигмовидной кишки. Иннервация прямой кишки. Иннервация мочевого пузыря
Афферентные пути идут в составе plexus mesentericus inferior, plexus hypogastricus superior et inferior и в составе nn. splanchnici pelvini. Эфферентная параси

Иннервация желез. Иннервация слезной и слюных желез
Афферентным путем для слезной железы является n. lacrimalis (ветвь n. ophthalmicus от n. trigemini), для поднижнечелюстной и подъязычной - n. lingualis (ветвь n. mandibularis о

Иннервация кровеносных сосудов
Степень иннервации артерий, капилляров и вен неодинакова. Артерии, у которых более развиты мышечные элементы в tunica media, получают более обильную иннервацию, вены - менее обильную; v. cava infer

Иннервация глаза
В ответ на определенные зрительные раздражения, идущие от сетчатки, осуществляются конвергенция и аккомодация зрительного аппарата. Конвергенция глаз - сведение зрител

Органы чувств. Анализатор
Органами чувств, или анализаторами, называются приборы, посредством которых нервная система получает раздражения от внешней среды, а также от органов самого тела и воспринимает

Строение анализаторов (органов чувств)
Каждый анализатор состоит из трех частей: 1) рецептор - трансформатор энергии раздражения в нервный процесс; 2) кондуктор - проводник нервного возбуж

Общая характеристика органа зрения
Проводящий путь зрительного анализатора обеспечивает проведение нервных импульсов от сетчатки в корковые центры полушарий больного мозга и представляет собой сложную цепь нейронов, связанных друг с

Проводящий путь зрительного анализатора
Достигающий глубоких слоев сетчатки свет вызывает фотохимические реакции за счет зрительных пигментов. Энергия светового раздражения преобразуется фоторецепторами сетчатки (палочковидными и колбочк

Ядра проводящего пути зрительного анализатора. Ядра зрения. Признаки поражения зрительного тракта
От серого вещества верхних холмиков крыши среднего мозга нервные волокна устремляются к двигательным ядрам III, IV, VI пар черепных нервов, к добавочному ядру глазодвигательного нерва

Преддверно-улитковый орган, organum vestibulocochleare
Преддверно-улитковый орган, organum vestibulocochlearе состоит из двух анализаторов:1) анализатора гравитации (т. е. чувства земного притяжения) и равновесия и

Строение слухового анализатора. Спиральный орган, organon spirale. Теория Гельмгольца
Строение слухового анализатора. Передняя часть перепончатого лабиринта - улитковый проток, ductus cochlearis, заключенный в костной улитке, является самой существенной частью о

Проводящий путь слухового анализатора
Проводящий путь слухового анализатора обеспечивает проведение нервных импульсов от специальных слуховых волосковых клеток спирального (кортиева) органа в корковые центры полушарий большого мозга.

Проводящий путь анализатора обоняния
Проводящий путь анализатора обоняния отличается значительной сложностью строения и обилием связей с различными структурами головного мозга. Такая особенность строения обусловлена своеобразием эволю

Ядра проводящего пути обоняния. Признаки поражения обоняния
Аксоны III нейронов, тела которых расположены в первичных обонятельных корковых центрах, группируются в виде трех обонятельных пучков - латерального, промежуточного и медиально

Проводящий путь вкуса (вкусовой чувствительности)
Проводящий путь анализатора вкуса начинается от вкусовых клеток и обеспечивает восприятие, проведение, анализ и интеграцию вкусовых раздражений. Вкусовые (реце

Вегетативная нервная система – часть нервной системы, контролирующая висцеральные функции организма (моторика, секреция органов пищеварительной системы, давление, потоотделение и др.). вегетативная нервная система состоит из центральных отделов, представленных ядрами головного и спинного мозга, и периферических: нервных стволов, узлов и сплетений.

Ядра центрального отдела вегетативной нервной системы находятся в среднем и продолговатом мозге, в боковых рогах грудных, поясничных и крестцовых сегментов спинного мозга. К парасимпатической нервной системе относятся вегетативные ядра 3, 7, 9 и 10 пар черепных нервов и вегетативные ядра крестцового отдела спинного мозга.

Как и симпатическая система, парасимпатическая имеет преганглионарные нейроны, аксоны которых идут к органу (постганглионарные волокна). Ганглии парасимпатической нервной системы находятся, как правило, в толще органа (интрамуральные ганглии), поэтому преганглионарные волокна – длинные, а постганглионарные – короткие. С органом контактирует постганглионарное волокно. Оно либо непосредственно взаимодействует с клетками этого органа (ГМК, железы), либо опосредованно через метасимпатическую нервную систему.

В прегапглионарных волокнах парасимпатической нервной системы медиатором является ацетилхолин.

Эффекты парасимпатической системы

На сердце – угнетение частоты, силы, проводимости и возбудимости, ГМК бронхов – активация (это приводит к сужению бронхов), секреторные клетки трахеи и бронхов – активация, ГМК и секреторные клетки ЖКТ – активация, сфинктеры ЖКТ, сфинктеры мочевого пузыря – расслабление, мышца мочевого пузыря – активация, сфинктер зрачка – активация, ресничная мышца глаза – активация (повышается кривизна хрусталика, усиливается преломляющая способность глаза), повышение кровенаполнения сосудов половых органов, активация слюноотделения, повышение секреции слезной жидкости. В целом, возбуждение парасимпатических волокон приводит к восстановлению гомеостаза, т.е. к трофотропному эффекту.

Центры находятся в боковых рогах крестцового отдела спинного мозга, продолговатом мозге и мосте (ядра III, VII, IX, X, черепномозговых нервов). Рефлекторная дуга состоит как минимум из 3 нейронов:

I нейрон - чувствительный, его перикарион лежит в спинномозговом ганглии или в толще нервного ла или в специальных чувствительных ганглиях парасимпатичесокй нервной системы (ganglion geniculi, ganglia superius et inferius, g.nodosum), или непосредственно в стволе мозга (nucleus tractus solitarii - n. vagus; nucleus sensorius principallis nervi trigemini), длинный дендрит отходит на периферию, где заканчивается рецептором, аксон входит в мозг (мост, продолговатый мозг), или в боковые рога спинного мозга (или переключается на ассоциативный нейрон) и образует синапс со II нейроном; I нейрон - пyрино-пептидергический, нейромедиаторы - АТФ, субстанция Р, кальцитонин ген-родственный пептид

II нейрон - называется преганглионарным; эфферентный, его перикарион и дендриты лежат в боковых рогах крестцового отдела спинного мозга или продолговатом мозге, мосте: ядро Edinger- Westphal - III пара черепномозговых нервов; nuclei salivatory - VII и IX черепномозговые нервы; дорсальное ядро n. vagus; nucleus ambiguus - n.vagus) аксон выходит из спинного мозга или в составе черепно-мозговых нервов идет к парасимпатическому ганглию, где образует синапсы с III нейроном; II нейрон - холинергический, нейромедиатор - ацетилхолин

III нейрон - называется постганглионарным; эфферентный, его перикарион и дендриты лежат в парасимпатических ганглиях (вегетативные ганглии черепно-мозговых нервов /g. ciliary, g.oticum, g pterygopalatinum, g. submandibulare/ или внутриорганные ганглии (интрамуральные ганглии)); на перикарионе и дендритах III нейрона имеются Н-холинорецепторы, через которые происходит синаптическая передача между II (преганглионарным) и III (постганглионарным) нейронами (ацетилхолин высвобождается из пресинаптической части, принадлежащей II нейрону и взаимодействует с Н-холинорецепторами, находящимися на постсинаптической мембране, то есть на мембране III нейрона; аксон выходит из ганглия и идет к иннервируемому органу или уже находится в органе, где образуются синаптические соединения; III нейрон - холинергический, нейромедиатор - ацетилхолин; синаптическая передача между III (постганглионарным) нейроном и рабочим органом осуществляется с помощью ацетилхолина, который высвобождается из пресинаптической части (III-нейрон) и взаимодействует с М-холинорецепторами, находящимися на постсинаптической мембране синапса, а постсинаптическая мембрана - это уже мембрана не нейрона, а органа

Рефлекторные дуги соматической (А), симпатического (Б) и парасимпатического (В) отделов вегетативной нервной системы

1 - чувствительный нейрон

А: 2 - двигательный нейрон Б, В: 2 - преганглионарный нейрон

3 - постганглионарный нейрон

D1 - постганглионарный нейрон (или клетка Догеля I типа) D2 - клетка Догеля II типа D3 - клетка Догеля III типа

Рефлекторная дуга

рефлекторную и проводниковую .

Рефлекторная дуга

Рецептор

· Экстрарецепторы

· Интрорецепторы

· Проприорецепторы

спинального ганглия (ganglion spinale ).

псевдоуниполярные. .

radis ventralis

интернейронов

коллатерали

синаптируют рефлекторном кольце

1. Тело воспринимающего нейрона воспринимающий нейрон

2. преганглионарными

3.

Спинномозговые нервы

Nervus spinalis

шейный грудной (12 нервов), поясничный (5 нервов), крестцовый (4-5 нервов), копчиковый (1 нерв).

Конский хвост cauda equina

Нерв

Каждый нерв состоит из нервных волокон чувствительные , двигательные , и (преимущественно) смешанные нервы.

Чувствительные

Двигательные

Вегетативные нервы

Все задние корешки

Каждый спинномозговой нерв образуется от слияния передних и задних корешков сразу сбоку от спинального ганглия в межпозвоночном отверстии, через которое нерв выходит из позвоночника.

Каждый спинномозговой нерв сразу делится на четыре ветви: ramus dorsalis, ramus ventralis, ramus communicans и ramus meningeus.

Ramus dorsalis – задняя ветвь – состоит из чувствительных и двигательных волокон и иннервирует кожу и мышцы спинной части соответствующего сегмента.

Ramus ventralis – передняя ветвь – также состоит из чувствительных и двигательных волокон и иннервирует кожу и мышцы брюшной части тела.

Ramus communicans – соединительная ветвь – состоит из вегетативных волокон, которые отделяются ото всех остальных и идут к вегетативному ганглию.

Ramus meningeus – оболочечная ветвь – состоит из вегетативных и чувствительных волокон, которые возвращаются в позвоночный канал и иннервируют оболочки соответствующего сегмента мозга.

Иннервация конечностей

Конечности закладываются в онтогенезе как производные вентральной части тела, поэтому они иннервируются только вентральными ветвями спинномозговых нервов. В ходе онтогенеза конечности утрачивают следы своего сегментарного происхождения. При развитии конечностей и шеи нарушается сегментация, поэтому вентральные ветви, идущие к ним, образуют сплетения.

Сплетения – это нервные сети, в которых вентральные ветви разных спинномозговых нервов обмениваются своими волокнами. В результате из сплетений выходят нервы, каждый из которых содержит волокна от разных сегментов спинного мозга.

Различают три сплетения:

· Шейное сплетение – образовано вентральными ветвями нервов с первого по четвёртую пару шейных нервов, лежит рядом с шейными позвонками и иннервирует шею.

· Плечевое сплетение – образовано вентральными ветвями с пятого шейного по первый грудной нерв. Лежит в области ключицы и подмышечной впадины, иннервирует руку.

· Пояснично-крестцовое сплетение – образовано вентральными ветвями нервов с двенадцатого грудного по первый копчиковый. Лежит рядом с поясничными и крестцовыми позвонками и иннервирует ногу.

Классификации нейронов

Нейроны различаются:

· Количеством отростков

· Величиной аксона

· Способами функционирования (по гистогеническим и фармакологическим реакциям).

По функциям нейроны делятся на:

· Чувствительные (афферентные) – генерируют нервный импульс под влиянием тех или иных воздействий, осуществляя передачу раздражения от периферии к центру.

· Вставочные (ассоциативные) – осуществляют связь между разными нейронами.

· Двигательные (эфферентные) – передают нервный импульс к рабочим органам. Это двигательные и вегетативные нейроны.

Нейроны делятся на тело и дендриты и аксон. Первые воспринимают сигнал, второй – передаёт его дальше к другим нейронам и рабочим органам.

По количеству отростков, отходящих от тела, нейроны делятся на три типа: униполярные (клетки, имеющие один отросток; не встречаются в нервной системе млекопитающих и человека, однако некоторые авторы относят к этому типу а) специализированные омокринные нейроны сетчатки глаза и б) междукочковые нейроны обонятельной луковицы), биполярные (клетки, имеющие два отростка: аксон и дендрит, отходящие от противоположных концов клетки), в частности, псевдоуниполярные нейроны спинномозговых ганглиев и большинства чувствительных ганглиев черепных нервов, где оба клеточных отростка отходят от единого выроста клеточного тела и Т-образно делятся на два, причём дендрит и аксон похожи друг на друга, и мультиполярные нейроны (один аксон и множество дендритов).

По величине аксона нейроны различаются на короткоаксонные и длинноаксонные нейроны.

По форме тела нейроны бывают веретеновидные , грушевидные ,округлые , многоугольные и так далее. Такой подход лежит в основе цитоархитектоники мозга, то есть клеточного строения мозга.

Существует определённая связь между формой нейрона и выполняемой ей функцией. Так, например, чувствительные нейроны – это в основном биполярные или псевдоуниполярные клетки веретеновидной и округлой формы. Таким образом, форма нейрона разнообразна и определяется количеством отростков, порядком их отхождения от тела и характером крепления. Но для полной характеристики нейронов и определения их положения в иерархической систематизации нервной системы, необходим комплексный подход, учитывающий морфологические, биохимические и электрофизические составляющие.

Нервные отростки

Дендриты

От греческого dendron . Они образуются в процессе дифференцировки нервных клеток, позднее – нейритов. Они содержат тела и все те же органеллы, но, что особенно важно, не имеют нейроглиальной оболочки и как правило короткие и сильно ветвящиеся. По-видимому, они служат для увеличения поверхности, воспринимающей нервный импульс. Их воспринимающая поверхность в среднем в 5-10 раз превышает поверхность нейрона. Характер ветвления дендритов отражает рецептивное поле нейрона, то есть его связи с другими нейронами. Их число, порядок их отхождения от тела и характер ветвления определяют форму нейрона. Как правило, восприятие нервного импульса участвуют не только нейриты, но и тело нейрона, но иногда тело нейрона выполняет только метаболические, то есть синтезирующие функции и не участвует в восприятии нервного импульса.

Поэтому Бодиан в 1962 году предложил выделять дендритную зону для обозначения рецептивной поверхности нейрона и перекарион , то есть околоядерное, для обозначения ядра и окружающей его цитоплазмы. У большинства нейронов поверхность перекариона входит в дендритную зону, но встречаются нейроны (например, псевдоуниполярные), у которых дендритная зона может находиться на большом расстоянии от перекариона (до 1 метра).

Если импульс идёт через третий нейрон, это тормозная функция.

Непосредственно на ветвях дендритов могут образовываться синапсы, но встречаются дендриты, на ветвях которых имеются особые выросты, называемые шипиками, необходимые для образования синапсов. Их длина составляет 2 нм, а количество увеличивается от тела к периферии.

В коре больших полушарий у корковых нейронов шипики имеют особый шипиковый аппарат.

Аксон

Это единичный отросток нейрона, достигающий в длину до полутора метров, постоянного диаметра, покрытый нейроглиальными оболочками. Аксон проводит нервный импульс от тела нервной клетки к другим нейронам и рабочим органам.

Аксон начинается в виде осевого цилиндра, то есть протоплазматического продолжения нервной клетки, ещё не покрытого оболочкой. Несколько отступив от тела клетки, его обступают оболочки, которые позднее возникают у самого аксона.

Аксон покрыт двумя слоями нейроглиальной оболочки.

Непосредственно к аксону прилегает внутренний слой – миелиновая оболочка. Они появляется рядом с осевым цилиндром в виде небольших жировых капель, сливающихся в сплошную оболочку. Получая миелиновую оболочку, аксон становится основой нервного волокна.

Миелиновая оболочка выполняет несколько важнейших функций:

· Изолирующую

· Барьерную

· Опорную

· Транспортную

· Трофическую

По-видимому, она служит изолятором нервного волокна. Жироподобное вещество миелин является электрическим изолятором. Он придаёт клеткам белую окраску, что позволило разделить всё вещество нервной системы на белое и серое. Химический состав этого липидно-белкового комплекса сложный. Миелин состоит, преимущественно, из основного липидного материала – холестерола. После липидов, то есть жировых молекул, содержащих фосфор, церебразида, то есть сложной жировой молекулы, содержащей сахар, идёт белок.

Липиды оказывают существенное влияние на конфирмационные характеристики белков. Миелин участвует в питании нервного волокна и выполняет структурную и питательную функцию. Клетки миелиновой оболочки поддерживают целостность аксона. Кроме того, она увеличивает скорость проведения нервного импульса по нервному волокну. Процесс распространения раздражения в нервной системе называется нервным импульсом. Реагирование на импульс называется нервной возбудимостью. Миелиновые волокна проводят нервный импульс значительно быстрее, чем волокна такого же диаметра, лишённые оболочки.

Немецкий учёный Герман Берингольц (автор фундаментальных трудов по физике, биофизике, физиологии и психологии) в 1852 году впервые измерил скорость распространения нервного импульса по нервному волокну. В тонких волокнах скорость проведения импульсов – не более 2 метров в секунду, тогда как в толстых миелинизированных волокнах она достигает 100 метров в секунду и более. Поэтому миелиновая оболочка поддерживается в цельном виде другой оболочкой – неврелеммой или швановской оболочкой, которая в виде тоненькой линии очерчивает контуры миелиновой оболочки.

Неврилемма представляет собой тонкий соединительно-тканный футляр, под которым располагается небольшие участки цитоплазмы с ядрами нейроглиальных клеток. Местами неврилемма прерывается, непосредственно примыкая к осевому цилиндрику, образуя перехваты Ранвье. Они разбивают миелиновый футляр осевого цилиндра на отдельные межузловые сегменты, повторяющиеся через равные промежутки, при этом каждому сегменту соответствует одна швановская клетка. В области перехватов Ранвье будут образовываться синапсы.

Полагают, что оболочки возникают вокруг аксона к тому времени, когда нерв начинает проводить импульс. А эволюционный смысл в появлении оболочки состоит в экономии метаболической энергии мозга. Нейриты образуют белое вещество головного и спинного мозга, периферические нервы и проводящие пути ЦНС

В месте отхождения аксона от тела имеется аксонный холмик.

В холмике отсутствует тигроидное вещество. Клеточная мембрана аксона называется аксолеммой, а цитоплазма – аксоплазмой.

Аксолемма выполняет важнейшую роль в проведении нервного импульса. В аксоплазме находятся нейрофибриллы, митохондрии и агранулярная эндоплазматическая сеть. Все эти органеллы сильно вытягиваются в длину.

В аксоплазме происходит постоянный ток молекул от тела нейрона к периферии и в обратном направлении.

Аксоны делятся на несколько крупных ветвей, которые отходят от перехватов Ранвье. Эти ветви оканчиваются конечными ответвлениями, которые называется терминалиями, которые, в свою очередь, образуют синапсы от других нейронов и рабочих органов.

Аксон всегда покрыт нейроглиальной оболочкой. В зависимости от характера её структуры различают два типа волокон: немиелинизированные , то есть безмякотные , и миелинизированные или мякотные волокна.

Первый тип волокон, то есть немиелинизированные встречается главным образом в вегетативной нервной системе и имеет малый диаметр. Такой аксон погружён в нейроглиальную клетку так, что оболочка нейроглиальной клетки охватывает его со всех сторон, образуя мезаксон.

Установлено, что в одну нейроглиальную клетку может погружаться до 10-20 аксонов. Такие волокна называются волокнами кабельного типа. При этом оболочка образует цепочка нейроглиальных клеток.

Немиелинизированные аксоны имеют меньший диаметр

Миелиновая оболочка

Протяжённость миелиновой оболочки начинается несколько отступив от начала аксона и заканчивается двух микрон от синапса. Она состоит из отдельных цилиндров равной длины 1,5-2 микрона, которые называются межузловыми сегментами, разделёнными перехватами Ранвье.

В области перехватов аксон либо обнажён, либо покрыт неврилеммой (в периферической нервной системе). Также там могут отходить ветви и образовываться синапсы.

Миелиновая оболочка – упорядоченная протеидная структура, состоящая из чередующихся белковых и липидных слоёв. Её структурной единицей является бимолекулярный липидный слой, заключённый между двумя мономолекулярными белковыми слоями, причём количество слоёв достигает 100 микрон.

Оболочка является изолятором и обладает большим сопротивлением постоянному току, что способствует огромному ускорению в проведении нервного импульса. Нервный импульс здесь перескакивает с одного перехвата Ранвье на другой, так как деполяризация аксона происходит только в области перехватов Ранвье.

Такое проведение нервного импульса называется скачкообразным или сальтоторным.

Процесс миелинизации

В периферической нервной системе миелиновая оболочка образуется в результате спирального накручивания вокруг аксона мезаксона нейроглиальной клетки. При этом число витков нарастает по мере роста аксона.

Следовательно, субъединицей миелиновой оболочки является участок клеточной мембраны швановской клетки. Цитоплазма и ядро её оттесняются на периферию, образуя неврилемму, которая также называется швановской клеткой.

В центральной нервной системе процесс миелинизации менее упорядоченный. Оболочка здесь образуется в результате спирального накручивания вокруг аксона отростка олигодендроцита, причём отростки одного олигодендроцита накручиваются вокруг нескольких аксонов.

В периферической нервной системе в миелиновой оболочке образованы насечки Шмидта-Лантермана, то есть косо расположенные воронкообразные щели. Полагают, что они соединяют цитоплазму нейроглиальной клетки, располагаясь снаружи и внутри миелиновой оболочки.

Синапс

Отдельные обособленные нервные клетки сообщаются друг с другом с помощью синапсов. Термин «синапс» был предложен в 1897 году Шеррингтоном для обозначения места контакта двух нейронов. В более широком смысле слова синапс – это место контакта аксона с рабочим органом.

Нейрон может образовывать от ста до тысячи синапсов и сам получать информацию от 1000 других нейронов.

Преобладают синапсы аксодендритные (аксон – дендриты нейрона) и аксосоматические (аксон – тело нейрона). Встречаются также аксоаксонные или аксоаксональные синапсы. Им приписывают тормозную функцию, так как они находятся там, где один из аксонов синаптирует с дендритом третьего нейрона. Реже встречаются соматосоматические, дендродендритные и соматодендритные синапсы. У животных и человека преобладают синапсы химические, так как передача нервных импульсов осуществляется не ими, а через посредство особых химических веществ – медиаторов.

В нервной системе известно около 30 медиаторов. Наиболее известные – ацетилохолин и катехоламины (норадреналин и другие). Это химические вещества, молекулы которых имеют небольшую длину с положительно-заряженным атомом азота. Среди медиаторов имеются также нейропептиды, то есть короткие цепочки аминокислот. Медиаторы синтезируются в нервных окончаниях.

В области синапса нервные окончания теряют миелиновую оболочку и образуют расширение, которое называется синаптической мембраной диаметром примерно 1 микрон, покрытую пресинаптической мембраной. Между ними находится синаптическая щель. Синаптические пузырьки, круглые или овальные, содержащих по 10-100 тысяч молекул медиатора. Молекулы медиатора соединяются с рецепторными пузырьками постсинаптических мембран, что вызывает образование постсинаптического потенциала. Затем сразу молекулы медиатора инактивируются, то есть разрушаются или возвращаются в синаптические пузырьки.

Структура синапса такова, что нервный импульс может идти только в одном направлении, то есть, иными словами, синапс поляризован, что и определяет односторонность проведения нервного импульса по аксону.

Нейроглия

Термин принадлежит Вирхову, 1848 год, но ещё до этого времени Гольджи и Сантьяго Рамон-и-Кахал описали «массу клеток, как бы склеивающих нейроны, то есть глию».

Нейроглиальные клетки выполняют ряд функций: опорную, трофическую, секреторную, разграничительную и защитную. Существует макроглия и микроглия.

Клетки макроглии развиваются из общей закладки с нейронами, то есть из эктодермы, но, в отличие от нейронов, делятся в течение всей жизни, имеют отростки только одного типа и не образуют синапсов.

Клетки микроглии имеют мезодермальное происхождение и проникают в нервную ткань вскоре после рождения.

Олигодендроциты

Олигодендроциты – это обширная группа клеток серого и белого вещества мозга. Они окружают тела нейронов и образуют оболочки аксонов. Олигодендроциты характеризуются более плотной, чем у астроцитов, цитоплазмой и хорошо развитой сетью органелл.

Их функции:

· Трофическая (питательная)

· Образование оболочек аксона

· Участвуют в регенерации и дегенерации аксонов

Эпендимоциты

Они образуют эпендиму, выстилающую изнутри центральный канал спинного мозга и мозговые желудочки. Эпендимная глия представлена пуповидными или цилиндрическими клетками. На ранних стадиях онтогенеза эти клетки имеют реснички, которые способствуют проталкиванию цереброспинальной жидкости (ликвора). Позднее, реснички утрачиваются и сохраняются только в мозговом водопроводе. Эпендимоциты активно участвуют в выделении спинномозговой жидкости, а также секретируют в неё некоторые вещества.

Полагают, что, в целом, клетки макроглии участвуют в поддержании активности нейрона и частично синтезируют белки и РНК для нейронов.

Микроглия

Это фагоцитарные клетки небольших размеров с короткими ветвящимися отростками и очень плотной цитоплазмой. Они выполняют защитную функцию и способны к амебоидным движениям. При любом воспалительном или дегенеративном процессе они мгновенно направляются в очаг воспаления и поглощают продукты распада.

Нервная ткань содержит не менее триллиона нервных клеток (10^12), около 10^13 глиальных клеток и более 10^13 синапсов. Это множество по числу элементов превышает даже иммунную систему, образуя сложную пространственную структуру, то есть единую сеть с многочисленными связями как на уровне отдельных клеток, так и на клеточных ансамблей, т.е. головного и спинного мозга (ЦНС), нервов и их периферических контактов, органов чувств.

Нервная система регулирует и координирует физиологические процессы на уровне органов, их систем и организма в целом; хранит информацию, перерабатывает и интегрирует её следы и сигналы из внешней и внутренней среды организма; управляет мышечными и железистыми клетками; обеспечивает координацией движения и так далее.

Применительно к этому гигантскому множеству понятие «нервная ткань» и «нервная система» становятся практически равнозначными.

Анализаторы

Павлов просматривал кору больших полушарий, как сплошную воспринимающую поверхность, как совокупность корковых концов анализаторов.

Речевые зоны мозга

Моторный центр речи (поле Брока) – это 44-45 поля. При его поражении нарушается артикуляция речи, но почти не нарушается её восприятие. Речь становится затруднённой, медленной, с нарушенной артикуляцией. Наибольшие сложности вызывают сложные грамматические конструкции. Поле Брока граничит с частью моторной коры, которая управляет мышцами лица, языка, челюстей и глотки. Поле Вернике (поле 22) находится между первичным слуховым полем 41 и угловой извилиной. Поле 39 находится между зрительной и слуховой областями коры. Поле Вернике и поле Брока соединены дугообразным пучком волокон. При поражении в поле Вернике наблюдается слуховая и семантическая офазия. Нарушается понимание речи. При этом речь фонетически и даже грамматически остаётся нормальной, но её семантика, т.е. смысловая сторона, нарушается. Предполагают, что основная структура высказывания возникает в поле Вернике и затем по дугообразному пучку волокон передаётся в поле Брока, где получает детальную и координирующую программы вокализации. Эта программа передаётся в смежные лицевые области моторной коры, которые активируют соответствующие мышцы рта, губ, языка и гортани. Когда слово прослушивается, звук первоначально воспринимается первичной слуховой корой. Но чтобы быть воспринятым как словесное сообщение, сигнал должен пройти через смежную зону Вернике. Когда слово читается , зрительный образ из первичной зрительной коры передаётся в поле 39, которое производит определённые преобразования, ведущие к появлению звуковой формы слова в зоне Вернике. При написании определённого слова в ответ на устную инструкцию нужно, чтобы информация из слуховой коры поступила в зону Вернике, а затем – в поле 39.

Поле 39 называют зрительным центром речи. Его повреждение ведёт к офазии (к номинальной офазии), а именно к разъеданию систем, участвующих в устной и письменной речи. Нарушается сообщение между зрительной корой и зоной Вернике. Письмо нарушается при всех офазиях, а вот нарушение артикуляции речи вызывается моторной офазией.

Черепные нервы

Электрическая НС образована черепными нервами, их ветвями, узлами и сплетениями, лежащими в различных отделах тела человека. Её основу составляют нервные волокна, то есть отростки клеток, расположенные в головном и спинном мозге, и в нервных узлах. Они обеспечивают передачу импульсов от периферии к центру (чувствительные волокна), от центра к скелетной мускулатуре (двигательные волокна) и от центра к двигательным органам, сосудам и железам (вегетативные волокна).

Соматическая часть периферической нервной системы включает двенадцать пар черепных нервов и тридцать одну пару спинномозговых нервов.

Рефлекторная дуга

Спинной мозг выполняет две важнейшие функции: рефлекторную и проводниковую .

Рефлекторная дуга – это цепь нейронов, обеспечивающих передачу возбуждения от рецепторов к рабочим органам. Она начинается с рецептора.

Рецептор – это конечное разветвление нервного волокна, которое служит для восприятия раздражения. Рецепторы всегда образуются отростками нейронов, лежащих вне мозга, в чувствительных ганглиях. Обычно в образовании рецепторов принимают участие вспомогательные структуры: эпителиальные и соединительно-тканные элементы и структуры.

Существует три вида рецепторов:

· Экстрарецепторы – воспринимают раздражение извне. Это органы чувств.

· Интрорецепторы – воспринимают раздражение из внутренней среды. Это рецепторы внутренних органов.

· Проприорецепторы – рецепторы мышц, сухожилий, суставов. Они сигнализируют о положении тела в пространстве.

Имеются простые рецепторы (болевые, например, являются просто нервными окончаниями) и очень сложные (орган зрения, слуха и так далее), имеется также множество вспомогательных структур.

Первый нейрон рефлекторной дуги – это чувствительный нейрон спинального ганглия (ganglion spinale ).

Спинальный ганглий – это скопление нервных клеток в задних корешках спинномозговых нервов в межпозвоночном отверстии.

Нейроны спинального ганглия – псевдоуниполярные. Каждая такая клетка имеет один отросток, который очень быстро делится на два – периферический и центральный отростки .

Периферические отростки идут на периферию тела и образуют там своими конечными разветвлениями рецепторы. Центральные же отростки ведут в спинной мозг.

В простейшем случае центральный отросток клетки спинального ганглия, войдя в спинной мозг, образует синапс непосредственно с двигательными (мотонейронами) и вегетативными (боковые рога) нейронами. Аксоны этих нейронов выходят из спинного мозга в составе вентрального корешка (radis ventralis ) спинномозговых нервов и идут к эффекторам. Двигательный аксон идёт к поперечно-полосатым мышцам, а вегетативный – к вегетативному ганглию. От вегетативного ганглия волокна направляются к железам и гладким мышцам внутренних органов.

Таким образом, железы, гладкие мышцы и поперечно-полосатые мышцы – это эффекторы, которые отвечают за раздражение.

На одно и то же раздражение возможен ответ со стороны как двигательных, так и вегетативных центров. Например, сухожильный коленный рефлекс. Но даже в самых простейших реакциях участвует не один сегмент спинного мозга, а несколько, и, чаще всего, головной мозг, поэтому необходимо, чтобы импульс распространялся по всему спинному мозгу и доходил до головного. Вот это осуществляется с помощью вставочных клеток (интернейронов ) задних рогов серого вещества спинного мозга.

Как правило, между чувствительным нейроном спинального ганглия и мотонейроном переднего рога серого вещества спинного мозга вставлен переключательный нейрон заднего рога. Центральный отросток клетки спинального ганглия объединяет синапс со вставочной клеткой. Аксон этой клетки выходит и Т-образно делится на восходящий и нисходящий отростки. От этих отростков отходят боковые отростки (коллатерали ) к разным сегментам спинного мозга и образуют синапсы с двигательными и вегетативными нервами. Так импульс и распространяется по спинному мозгу.

Аксоны переключательных нейронов идут к другим сегментам спинного мозга, где синаптируют с мотонейронами, а также переключательным ядрам головного мозга. Аксоны переключательных нейронов образуют собственные пучки спинного мозга и большинство восходящих проводящих путей. Поэтому принято говорить о рефлекторном кольце , так как в эффекторах имеются рецепторы, которые постоянно посылают импульсы в ЦНС.

Вставочные клетки есть и в передних рогах. Они распределяют импульс по различным мотонейронам. Таким образом, всё многообразие связей в мозге обеспечивается вставочными клетками, или, иначе говоря, переключательными нейронами серого вещества спинного мозга.

Особенности рефлекторной дуги в вегетативной нервной системе

1. Тело воспринимающего нейрона в обоих случаях находится в спинальном ганглии, но воспринимающий нейрон для систем внутренних органов находится также в вегетативных ганглиях.

2. Переключательный вегетативный нейрон находится не в заднем роге серого вещества спинного мозга, как в случае соматической нервной системы, а вбоковом роге. Аксоны этих переключательных нейронов покрыты миелиновой оболочкой, т.о. это мякотные волокна. Их называют преганглионарными . Они выходят из спинного мозга в составе вентрального корешка спинномозговых нервов и идут к вегетативному ганглию.

3. Тело эффекторного вегетативного нейрона находится вне мозга, в вегетативном ганглии, тогда как двигательный нейрон лежит в мозге.

Таким образом, в вегетативных ганглиях находятся как воспринимающие, так и эффекторные нейроны. Поэтому простейшие вегетативные рефлексы могут заканчиваться на уровне вегетативных ганглиев. Это и обеспечивает некоторую автономность вегетативной нервной системы.

Спинномозговые нервы

Nervus spinalis

Тело позвоночных животных и человека на разных стадиях эмбриогенеза или эмбрионального развития сегментировано. Сегменты спинного мозга объединяются в пять отделов: шейный (8 нервов, 7 позвонков; 1 шейный нерв выходит между мозгом и 1 шейным позвонком), грудной (12 нервов), поясничный (5 нервов), крестцовый (4-5 нервов), копчиковый (1 нерв).

Конский хвост cauda equina – образован корешками нижних спинномозговых нервов, которые вытягиваются в длину, чтобы достигнуть соответствующих им межпозвоночных отверстий.

Нерв – это анатомическое образование, состоящее из большого числа нервных волокон, сгруппированных в пучки, то есть в единую структуру, осуществляющую связь ЦНС со всеми органами в теле и общим кожным покровом.

Каждый нерв состоит из нервных волокон , миелинизированных и немиелинизированных, имеющих различный диаметр. В зависимости от выполняемой функции различают чувствительные , двигательные , и (преимущественно) смешанные нервы.

Чувствительные нервы сформированы отростками нейронов чувствительных черепных или спинномозговых узлов.

Двигательные нервы состоят из отростков нервных клеток, лежащих в двигательных ядрах черепных или ядрах передних стволов спинного мозга.

Вегетативные нервы образованы отростками клеток вегетативных ядер черепных нейронов или боковых стволов спинного мозга.

Все задние корешки спинномозговых нервов афферентные, а передние, соответственно, эфферентные.

Спинномозговые нервы иннервируют тело человека сегментарно.

Каждый спинномозговой