Технология белковых биочипов, заменяющих целые иммунроргические лаборатории, дает возможность в тысячи раз увеличить производительность большинства диагностических методов – за короткое время определять несколько тысяч аллергенов, онкогенов, различных биологически активных веществ, и даже генетических дефектов – и резко снизить себестоимость анализов.

Прообразом современных «живых чипов» послужил саузернблот, изготовленный в 1975 г. Э. Саузерном. Он использовал меченую нуклеиновую кислоту для определения специфичес­кой последовательности среди фрагментов ДНК, зафиксирован­ных на твердой подложке. В России ученые начали активно раз­рабатывать тему биочипов только в конце 1980-х гг. в институте молекулярной биологии под руководством А. Д. Мирзабекова.

Биочип представляет собой матрицу - пластинку со сторо­ной 5-10 мм, на которую можно нанести до нескольких тысяч различных микротестов; ее еще называют платформой. Чаще всего используют стеклянные или пластиковые платформы, на которые наносятся биологические макромолекулы (ДНК, бел­ки, ферменты), способные избирательно связывать вещества в анализируемом растворе.

В зависимости от того, какие макромолекулы используют­ся, выделяют различные виды биочипов, ориентированные на разные цели. Основная доля производимых в настоящее время биочипов приходится на ДНК-чипы (94%), т. е. матрицы, несу­щие молекулы ДНК. Оставшиеся 6% - белковые чипы.

Биологические микрочипы во многом схожи с электронными: и те, и другие собирают и обрабатывают огромное количе­ство информации на малой поверхности. И те, и другие состоят из огромного количества идентичных миниатюрных элементов, размещенных рядом друг с другом, хотя ячейки биочипа по по­лупроводниковым меркам просто огромны. При этом действие электронного чипа основано на ответе «да-нет», а биологичес­кий чип позволяет выбрать из миллионов или миллиардов воз­можностей единственно верную. Компьютерный чип произво­дит миллионы математических операций в секунду, но и на био­чипе за пару секунд проходят тысячи биохимических реакций.

Разработанный в России биочип-это стеклянная пластинка, на которую нанесены десятки едва видимых глазом полу­сферических гидрогелевых ячеек диаметром менее 100 микрон каждая, и содержащих известные вещества-маркеры. При вза­имодействии биочипа с исследуемым образцом, предваритель­но обработанным светящимся (флуоресцентным) красителем, в соответствующих ячейках происходит химическая реакция, и тогда эти ячейки начинают светиться-тем сильнее, чем ин­тенсивнее процесс.

Принцип действия биологических чипов основан на способ­ности комплементарных оснований образовывать химические связи: в ходе реакции происходит взаимодействие комплементарных цепей ДНК, одна из них (ДНК-проба) с известной пос­ледовательностью нуклеотидов зафиксирована на подложке (пластине), а другая одноцепочечная ДНК-мишень (зонд), меченная флуоресцентной меткой, вносится в ДНК-чип.



По сути, именно в выявления и сопоставлении наиболее ярко светящихся ячеек и заключается работа прибора-анализатора биочипов. Так определяются различные характеристики образца, например, присутствие в организме тех или иных возбудителей инфекций или наличие в геноме каких-либо из­мененных генов.

Особенность российских биочипов в том, что их ячейки за­полнены гелем трехмерной структуры. Такие гели удержива­ют большее количество пробы, нежели двумерные, и потому чувствительность отечественных биочипов выше, а, следова­тельно, ниже требования к регистрирующей аппаратуре. Не­маловажно и то, что реакции в объемном геле протекают так же, как и в жидкостях, а значит, как и в живом организме. Это позволяет получить результат, максимально приближенный к реальности.

На Западе исследователи пошли по другому пути и разрабо­тали для создания ДНК-чипов процесс фотолитографии, ана­логичный процессу производства кремниевых процессоров. Например, «Affimetrix» (США) создал GeneChip-технологию, основанную на высокоплотных чипах, содержащих ДНК-последовательности, и предназначенную для анализа генетической информации человека. Такие чипы обладают гораздо большей емкостью, стоят значительно дороже, что пока позволяет ис­пользовать их исключительно в крупных исследовательских центрах или в коммерческих клиниках.

Еще одним методом конструирования биочипов является использование «технологии струйного принтера» для нанесе­ния необходимого нуклеотида в строго определенное место мат­рицы. Он менее дорог, во при этом не позволяет достичь высо­кой скорости синтеза.

Сейчас число размещаемых на российском биочипе ячеек достигает уже нескольких тысяч, однако чаще используются биочипы с гораздо меньшим числом ячеек. Тем не менее про­стой чип может выявить все известные на сегодняшний день формы возбудителя туберкулеза, а также определить, каким именно антибиотиком нужно лечить конкретную форму не за несколько недель, как традиционным способом, а всего в тече­ние нескольких суток.

При помощи белковых чипов с молекулами, «чувствитель­ными» к различным низкомолекулярным соединениям, уже в самое ближайшее время можно будет определить наличие ши­рокого спектра лекарственных веществ, гормонов, наркотиков, ядов, пестицидов практически в любом анализируемом мате­риале.

Контрольные вопросы и задания

1. Что такое реакции иммунитета?

2. В чем заключается сущность реакции агглютинации?

3. Какие варианты реакции преципитации существуют?

4. Охарактеризуйте реакцию связывания комплемента.

5. Что такое метод флюоресцирующих антител?

6. В чем сущность иммуноферментного метода?

7. Опишите особенности радиоиммунологического анализа.

8. Что такое реакции иммунитета?

9. В чем заключается сущность реакции агглютинации?

10. Дайте определение радиоиммунологического анализа?

Биочип – это организованное размещение молекул ДНК или белка на специальном носителе – «платформе».

Платформа представляет из себя пластинку площадью всего 1 см2 или чуть больше. Она сделана из стекла или пластика, либо из кремния. На ней в строго определенном порядке может быть размещено множество молекул ДНК или белка. Отсюда и присутствие в термине слова – «микро».

На биочипе можно проводить анализ молекул различных веществ. Для этого на нем закрепляют «узнающие» молекулы. Каждую из таких молекул обозначают термином – «молекула-зонд», а каждую из исследуемых молекул –

«молекула-проба».

Молекула-зонд на биочипе определяется самим исследователем, т.е. он планирует, какую молекулу нужно искать среди молекул в исследуемом материале – в жидкости и т.д. Если на микрочипе исследуется ДНК – это ДНК-чип, если молекула белка – белковый чип.

Как фиксируются молекулы-зонды на биочипе?

Во многих странах молекулы-зонды прикрепляют прямо к стеклянной пластинке, т.е. к подложке при помощи лазеров. В нашей стране молекулы-зонды размещаются в ячейки из геля, диаметром менее 100 микрон каждая, ячейки фиксированы к пластинке в процессе изготовления микрочипа. Количество ячеек на чипе достигает уже несколько тысяч.

В ячейках молекулы-зонды химически привязаны и находятся в функционально активном состоянии.

Так как ячейки заполнены гелем трехмерной структуры, то они удерживают большее количество молекул-зондов, нежели чипы, в которых молекулы- зонды просто прикреплены к пластинке. Важно и то, что химическая реакция между молекулой-зондом и вносимой в ячейку из геля молекулы-пробы, протекает как и в жидкостях, а значит, как и в живом организме.

Изучение генома и протеома каждого типа клетки в норме и при любой болезни позволит выяснить – какой ген или гены вызывают ту или иную болезнь.

На ДНК-чипе выясняется причина возникновения болезни: дефекты в структуре гена или генов, или изменения активности гена при нормальной его структуре.

На белковом чипе определяются последствия «поломок» в гене по изменениям его продукта – белков в клетке. Изменения в гене клетки или белке – это их метка или маркер (от англ. mark – знак, метка).

Отсюда: ген с меткой – это ген-маркер, а белок с меткой – это белок- маркер. Эти маркеры позволяют обнаруживать у пациента дефектную или больную клетку, характерную для конкретной болезни, в том числе и раковую стволовую клетку. При диагностике болезни ген-маркер и белок-маркер для контроля сравнивают с нормальным геном клетки и его продуктом – белками.

Ясно, что на ДНК-чипе молекулой-зондом является ген-маркер, а для контроля в отдельной ячейке – нормальный ген, в белковом микрочипе в качестве молекулы-зонда может быть или антитело, или антиген.

Способы изготовления биочипов

1. Молекулы ДНК или белка предварительно синтезируют, а затем размещают на матрице. Недостаток этого метода: невысокая плотность молекулы- зонда на матрице – до 1000 молекул и трудоемкий процесс их синтеза.

Копии гена-маркера можно получить ПЦР-ММК методом, такого метода для копий белка-маркера нет. Его копии можно создавать встраиванием иРНК гена белка-маркера в бактерию: E. coli или в клетки дрожжей.

2. Для ДНК-чипов синтез олигонуклеотидов производят непосредственно на матрице. Такие чипы обладают гораздо большей плотностью молекул-зондов.

3. Нанесение олигонуклеотидов в строго определенное место матрицы струйным принтером.

В нашей стране биочипы – ДНК-чип и белковый чип готовят по первому способу.

Биочип – новейшее устройство для медицины XXI века. По молекулам-маркерам он позволяет:

1) диагностировать любую болезнь: до ее начала или в самом ее начале;

2) находить в организме тот или иной вирус, бактерии и раковые клетки;

3) белковым чипом можно находить лекарства среди низкомолекулярных соединений в целом ряде анализируемых материалов;

4) решение этих задач на биочипах можно сделать за считанные часы, а не дни и т.д.

Принцип действия биочипов и этапы анализа

1. ДНК-чип.

Мы знаем, что молекула ДНК состоит из двух комплементарных цепей. Основа каждой цепи – это последовательность из четырех азотистых оснований: аденин (А), гуанин (Г), тимин (Г) и цитозин (Ц).

При этом последовательность оснований одной цепи определяет последовательность оснований в другой: А-Т и Г-Ц. Когда между этими комплементарными основаниями спонтанно образуются водородные связи, две цепи соединяются, т.е. гибридизуются в двойную спираль и удерживают цепи вместе. Именно на способности комплементарных оснований связываться друг с другом: А с Т, а Г с Ц основан принцип действия ДНК-чипа.

Этапы анализа с помощью ДНК-чипа

1. В ячейках чипа фиксированы копии известного гена-маркера в виде одной цепи этого гена, т.е. его «половинки» – кДНК.

2. Из плазмы крови от пациента выделяется копия гена-маркера, т.е. иРНК.

3. На молекуле иРНК с помощью фермента обратной транскриптазы синтезируют другую цепь гена-маркера, т.е. вторую его «половинку» – кДНК. ПЦР-ММК размножают эту кДНК – это молекулы-пробы, и их метят флуоресцентным красителем.

4. Роботом помещают молекулы-пробы в определенные ячейки на чипе с копией генов-маркеров раковой стволовой клетки.

Если кДНК генов из образца плазмы комплементарна с кДНК в соответствующих ячейках, то между ними произойдет гибридизация, и такие ячейки начнут светиться. Чип сканируют лазером, следя за интенсивностью сигнала флуоресценции в каждой ячейке. То есть гены-маркеры в плазме есть, а значит, в организме пациента есть раковые стволовые клетки.

Если нет гибридизации между этими молекулами, значит, нет гена-маркера раковой стволовой клетки в этом образце плазмы.

Когда имеется ген с мутацией, тогда будет гибридизация его кДНК на чипе с кДНК молекулы-зонда, имеющей эту мутацию. Если это ген-супрессор wt53, то это также может указывать на наличие в организме пациента раковой стволовой клетки или клеток.

Раковая клетка возникает из стволовой клетки ткани из-за включения в ней генов фетальных белков. Поэтому в молекулах-пробах плазмы пациента будут кДНК этих генов и отсутствие их в контроле.

Чем меньше в образце плазмы от пациента титр эпимутантных и мутантных генов-маркеров, тем меньше раковых клеток в его организме.

Выявление раковых клеток в образце плазмы крови или других биологических жидкостей от пациента – моча, слюна, слезная жидкость и др. по генам- маркерам, дает возможность поставить диагноз рака, а по генам-маркерам свойства инвазии раковой клетки – микрометастазы рака. И это задолго до обнаружения их стандартными методами – УЗИ, рентгенография, компьютерная томография и др.

Биочипом по генам-маркерам можно выявлять угрозу болезни. Так, если обнаружены гены-маркеры, но еще нет их продуктов – белков в клетке, то это выявление предболезни. По отношению к раку – это предраковые клетки. Так как в этом случае биочип позволяет выявить только вероятность болезни, то такой чип пока не подвергается сертификации.

Плазма крови пациента – это главный резервуар, куда проникают гены- маркеры из погибающих дефектных или больных клеток при конкретной болезни из различных органов, в том числе из раковых клеток. Такие клетки в организме могут погибать за счет некроза и апоптоза, а их гены через межклеточную жидкость затем проникают в кровь.

Низкий титр генов-маркеров в плазме крови пациента по анализу на ДНК- чипе и отсутствии их продукта – белков, может означать предболезнь, а при наличии их – болезнь. В таком же смысле это касается и рака. Это могло бы означать раннюю диагностику рака – II ее уровень.

2. Белковый чип.

Строение чипа для анализа белков то же, что и у ДНК-чипов. Лишь те чипы, на которых проходит ферментативная реакция, имеют более редкое расположение ячеек, а те, на которых идет ДНК-реакция, – более частое.

Белки-маркеры – это продукт «поломок» гена или генов, они превращают нормальную клетку в дефектную или больную клетку при конкретной болезни. Эти белки появляются на поверхности клеток и являются белками-антигенами и для каждой болезни они свои.

На раковой стволовой клетке появляются фетальные белки и белки- рецепторы, которых нет на нормальной стволовой клетке. Являются ли они белками-антигенами – вопрос не решен.

В белковом чипе в качестве молекулы-зонда, т.е. белка-маркера дефектной или больной клетки может быть белок-антиген, тогда в сыворотке от пациента определяют антитела к нему. Если молекулой-зондом берется антитело, то в сыворотке крови от пациента ищут белок-антиген.

В связи с расшифровкой генома человека требуется анализ функций огромного количества белков в клетках разного типа, в том числе ранее неизвестных. Тысячи белков могут быть фиксированы в разных ячейках микрочипа и одновременно анализированы на способность: связывать известный лиганд, катализировать ту или иную ферментативную реакцию, взаимодействовать с антителами, низкомолекулярными соединениями и др.

В раковой клетке важно изучать кроме белков-маркеров, белков- рецепторов и антител к ним, белки свойства инвазии, фактор роста эндотелия сосудов-1 и белок-рецептор к нему на поверхности гемопоэтической клетки и др.

Принцип действия белкового чипа

Он также основан на комплементарности участвующих молекул, но белковых.

1. Антиген со своим антителом. Антиген – это любое вещество, в состав которого обычно входит какой-то белок, способный вызывать иммунную реакцию.

Антитело – это молекула белка, секретируемая одной из клеток иммунной системы. Форма этой молекулы и распределение электрического заряда по ее поверхности делают ее способной связывать антиген, комплементарный ей по форме и распределению заряда.

Впервые еще в 1942 г. нобелевский лауреат Л. Полинг и его коллеги выдвинули верный постулат, что трехмерная структура антигена и его антитела

Комплементарны и, таким образом, «несут ответственность» за образование комплекса – антиген–антитело.

2. Субстрат со своим ферментом. На основе гипотезы топохимического соответствия специфичность действия фермента связана с узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают точечные контакты и водородные связи.

3. Белок с низкомолекулярным соединением. Для ингибирования белка необходима связь между ними – комплементарной поверхности соединения с активными участками молекулы белка,

4. Фермент с низкомолекулярным соединением. Ферменты и другие белки создают все свойства раковой клетки, поэтому они являются основными мишенями для лекарств. Для блокады фермента низкомолекулярным соединением также необходима между ними комплементарность: поверхность молекулы соединения при этом должна быть копией поверхности участка субстрата, которая не изменяется при катализе.

Этапы анализа с помощью белкового чипа

1. В ячейках чипа фиксирован известный белок-антитело к белку, который создает дефектную или больную клетку конкретной болезни. Искомый белок – это белок-маркер.

2. Из сыворотки крови от пациента берется образец сыворотки для анализа. В образец добавляют флуоресцентный краситель – каждая молекула белка- маркера получает это вещество.

3. С помощью робота капли сыворотки из образца помещают в определенные ячейки чипа. Молекулы-зонды ищут комплементарные им молекулы среди молекул-проб. Если есть такая молекула, то она связывается с молекулой-зондом в ячейке чипа; между ними происходит химическая реакция, и она начинает светиться.

4. Ячейки, в которых появилось яркое свечение, укажут на присутствие искомого белка белка-маркера. Так как этот белок-маркер из дефектной или больной клетки при конкретной болезни, это укажет на начало у пациента этой болезни. Точно также выявляют присутствие в организме пациента раковой клетки(-ок) по их белкам-маркерам.

Если в ячейках чипа фиксирован белок-антиген, тогда в сыворотке крови пациента ищут антитела к белку-маркеру. Если в сыворотке окажутся антитела к белку-маркеру, это будет указывать на наличие в организме пациента раковых клеток, т.е. пациент болен. А по белкам-маркерам свойства инвазии раковой клетки, например, по наличию белка Mts1 и других, можно регистрировать гдето в организме у пациента микрометастазы раковых клеток.

Мы уже знаем, что белки, которые образуются в раковых клетках, но отсутствуют в нормальных, это белки-маркеры или антигены. Наличие таких белков – признак того, что ген, вызывающий перерождение нормальной клетки в раковую, начал свою разрушительную работу. Выявление раковой клетки(-ок) по белкам-маркерам позволяет поставить диагноз рака или его микрометастазов задолго до выявления его симптомов у пациента. Титр белка-маркера в сыворотке крови пациента определяет количество раковых клеток в его организме. Низкий титр белков-маркеров из раковых клеток в сыворотке крови, а также в других жидкостях пациента – признак малого количества раковых клеток в организме пациента. Это могло бы стать ранней диагностикой рака – II ее уровень.

Итак, в XXI веке по мере выявления генов-маркеров и белков-маркеров, вызывающих конкретную болезнь, диагностика ее, в том числе и рака, станет ранней, т.е. на двух уровнях: 1) «до начала» – по генам-маркерам и 2) «в самом начале» – по белкам-маркерам.

Гены-маркеры и белки-маркеры в дефектной или больной клетке – это цели или мишени для новых лекарств. На их основе будут создаваться лекарства и другие средства, в том числе – вакцины. За счет комплементарности к молекулам-мишеням, лекарства будут действовать избирательно, не повреждая нормальные клетки.

Врач, действуя на гены-маркеры болезни, сможет ее предотвратить, а воздействиями на белки-маркеры клеток ее можно будет излечить в самом «зародыше».

Этими двумя путями врач получит, так сказать, полную власть над любой болезнью на клеточном уровне.

Поиск генов-маркеров и белков-маркеров в различных средах организма пациента быстро и точно можно выполнять на биочипах, а гены-маркеры, кроме этого, можно выявлять с помощью точнейших методов: ПЦР-ММК и МС- ПЦР. Это будет означать революцию в медицине.

Ученые выявят гены-маркеры и белки-маркеры, вызывающие конкретную болезнь, в том числе и возникновение раковой клетки. Тогда станет возможным разработать для ранней диагностики любой болезни минимум наборов: генов-маркеров и белков-маркеров. Они будут дополняться и уточняться по мере получения новых знаний. Это будет генный и белковый «профили» болезни, и которые будут перенесены на биочипы.

Тестирование человека на маркеры определенной болезни с помощью ДНК-чипа и белкового чипа имеет несколько преимуществ.

Отрицательный результат – принесет человеку радость и может избавить его от обследования стандартными методами: ультразвуковое исследование, рентгенография и др.

Положительный результат – даст человеку возможность, а также время на то, чтобы принять меры для снижения риска возникновения болезни, или при ее начале – начать соответствующее лечение.

Особое значение имеет ранняя диагностика рака. Это связано с тем, что, во-первых, причина рака – раковая клетка, а она из клетки своего организма- хозяина и, во-вторых, вплоть до недавнего времени не было известно абсолютных отличий раковой клетки от нормальной клетки.

До сих пор считается, что для каждого типа раковой клетки характерны «свои» гены и белки. Но геном в клетке каждого типа – один и тот же. Если принять, что из каждого типа клетки раковая клетка – «своя», тогда почему свойства раковой клетки любого типа – одинаковые?

Тип клетки создается репрессией одних генов – из-за метилирования и экспрессией других генов – за счет деметилирования их промотора.

Теперь также доказано, что клетка любого типа становится раковой за счет дерепрессии в ней генов фетальных белков. То есть формирование типа клетки и возникновение раковой клетки из нормальной клетки – это независимые друг от друга процессы. Из этих двух фактов можно допустить, что общие гены-маркеры и их продукт – белки для любого типа раковой стволовой клетки должны быть.

Общими генами и их продуктами – белками могут стать: ген и его фермент – теломераза, ген и белок под кодовым обозначением «5Т4», ген oct-4 и белок Oct-4, ген Nanog и белок, ген mts 1 и белок Mts 1, ген остеопонтин и белок и др.

Если это подтвердится, то это станет настоящим прорывом в решении многих, если не всех, проблем рака:

Ранняя и точная диагностика раковой стволовой клетки любого типа на основе общего гена-маркера и его продукта – белка-маркера;

Универсальные лекарства и средства, в том числе вакцина, против рако-стволовой клетки и ее метастазов.

Биочип для ранней диагностики рака

Ученые Национальной лаборатории Аргонн Исследовательского центра ядерной энергетики (г. Чикаго, штат Иллинойс) разработали биочип, позволяющий диагностировать определенные типы рака до появления его симптомов.

Компания Eprogen лицензировала эту технологию и использует для поиска новых биомаркеров рака. Опухоли, даже на самых ранних, бессимптомных стадиях, вырабатывают белки, попадающие в кровоток и запускающие иммунные реакции, в частности, синтез антител. Специалисты компании утверждают, что сравнение профилей аутоантител здоровых людей и онкологических пациентов является перспективным методом поиска ранних индикаторов заболеваний.

Используемый ими процесс, получивший название двумерное фракционирование белков, позволяет сортировать тысячи различных белков злокачественных клеток по различиям их электрического заряда и гидрофобности. С помощью этого метода исследователи получают 960 белковых фракций, которые помещают в биочип, содержащий 96-луночные пластинки. После этого биочип обрабатывают заранее известными аутоантителами, синтезируемыми иммунной системой онкологических пациентов.

Использование аутоантител больного для диагностики позволит врачам подбирать лечение согласно его индивидуальному профилю аутоантител. Уникальность нового метода заключается в том, что ученые используют реальные данные о заболевании человека для получения новой, более подробной диагностической информации, которую специалисты могут использовать для изучения и лечения рака.

По словам разработавшего технологию специалиста Национальной лаборатории Аргонн Дэниеля Шабакера (Daniel Schabacker), биочипы уже продемонстрировали большой потенциал в диагностической медицине. Кроме Eprogen, технологию лицензировали еще три компании. Одна из них, Akonni Biosystems, уже разработала на ее основе несколько десятков тестов, выпускаемых под торговой маркой TruArray. Еще одна компания, Safeguard Biosystems, лицензировала биочипы для создания ветеринарных диагностических наборов.

Например, при диагностике заболеваний верхних дыхательных путей содержащиеся в мазке из полости рта пациента антитела или ДНК связываются с нанесенными на биочип молекулами. После обработки лунки биочипа, в которых произошло такое связывание, начинают светиться. Специальная программа расшифровывает сканированное с помощью компьютера изображение, рассчитывает статистическую вероятность присутствия того или иного инфекционного агента и предоставляет информацию врачу.

Разработка диагностических средств, подобных TruArray, способна совершить революцию в диагностике, т.к. она позволяет одновременно проводить диагностику большого количества заболеваний. Одним из уникальных свойств метода является возможность одновременного тестирования на инфекции бактериальной и вирусной природы.

Проведение анализа с помощью биочипа занимает около 30 минут и обеспечивает конфиденциальность и высокую точность диагностики, т.к. врач, не выходя из кабинета, может практически на глазах пациента определить характер заболевания и стадию его развития.

У пациентов с сахарным диабетом мелкие плотные частицы Х-ЛПНП содержат гликозилированный Апо В

Charlton-Menys (University of Manchester, Великобритания) оценили степень гликозилирования различных субфракций липидов у 44 добровольцев с СД. Оказалось, что средний уровень гликозилированного Апо В составил 3,0 мг/дл, причем 84,6% гликозилированного Апо В были в составе Х-ЛПНП, а 67,8% - в составе наиболее атерогенной субфракции, а именно мелких плотных частиц Х-ЛПНП.

Уровень мелких плотных частиц Х-ЛПНП в наибольшей степени коррелирует с толщиной интима-медиа сонных артерий

Tetsuo Shoji (Osaka City University Graduate School of Medicine, Япония) с соавторами определи уровни липидов у 326 пациентов, обследованных по поводу индекса массы тела сонных артерий. Исследователи показали выраженную корреляцию уровня мелкого плотного Х-ЛПНП с толщиной интимы-медиа сонных артерий (коэффициент корреляции 0,441). Корреляция других липидов с толщиной интимы-медии оказалась следующей: аполипопротеин В (0,279), Х-ЛПНП 0,249), и триглицериды (0,175). У пациентов с высоким уровнем С-реактивного белка уровни мелких плотных Х-ЛПНП оказались ниже, чем у пациентов с низкими уровнями С-реактивного белка.

Atherosclerosis 2008; Advance online publication.

Выполнила студентка группы БМИ-107 Бубякина О.В.

Диагностические биочипы

Введение

Биологические микрочипы являются одним из наиболее быстро развивающихся экспериментальных направлений современной биологии. Существует два основных типа биочипов. Первый тип- это микроматрицы различных соединений, главным образом биополимеров, иммобилизованных на поверхности стекла, в микрокаплях геля, в микрокапиллярах. Другим типом биочипов являются миниатюризованные "микролаборатории". Эффективность биочипов обусловлена возможностью параллельного проведения огромного количества специфических реакций и взаимодействий молекул биополимеров, таких как ДНК, белки, полисахариды, друг с другом и низкомолекулярными лигандами. Удается в достаточно простых параллельных экспериментах собрать и обработать на отдельных элементах биочипа огромное количество биологической информации. В этом заключается фундаментальное информационное сходство биочипов с электронными микрочипами. Однако между ними имеется и ряд принципиальных различий.

Что такое биочип?

Биологические микрочипы — это совокупность ячеек, расположенных на поверхности стекла или пластика, своего рода миниатюрный аналог сразу нескольких сотен, а то и тысяч реакционных пробирок.

Технологии изготовления чипов могут быть разными.

ИСТОРИЯ
"РУССКОГО БИОЧИПА"

Не верилось, что миниатюрное устройство, закрепленное на предметном стекле (таком, на которое обычно помещают препарат для рассмотрения под микроскопом), может заменить собой целую диагностическую лабораторию. Но это действительно так!. Подобно электронным чипам, биочипы обрабатывают большой массив информации методом параллельного анализа. Проще говоря, в одно и то же время на одном чипе проходит множество - до нескольких сотен - всевозможных анализов. Еще более удивительна история происхождения биочипа, который продукт сугубо отечественный, не случайно за рубежом его до сих пор называют "русский биочип". Началось же все в конце 80-х годов прошлого века, когда команда ученых из Института молекулярной биологии РАН (ИМБ) под руководством академика Андрея Мирзабекова, в 2003 году, взялась за изготовление универсального миниатюрного анализатора. Идея, конечно, уже витала в воздухе. Но только специалистам удалось воплотить эту идею в жизнь.

Как рассказывал Андрей Мирзабеков, в то время весь мир был увлечен процессом расшифровки генома человека, и они с коллегами предложили использовать для этих целей биочипы. Но очень скоро поняли, что новые устройства могут пригодиться для решения самых разных практических задач, поэтому поспешили сделать следующий шаг - разработать технологию. И преуспели в этом! Биочипы начали свое победное шествие по миру. В середине 90-х, когда финансирование российской науки практически полностью прекратилось, академика Мирзабекова пригласили в Аргонскую национальную лабораторию США. Он заявил, что будет работать в Чикаго, только если там создадут совместную исследовательскую группу, в которую войдут как американские, так и российские специалисты. Именно так российским молекулярным биологам удалось пережить "веселые 90-е", самые тяжелые для отечественной науки. За время работы в США они получили больше 10 патентов. На заработанные деньги закупили оборудование и создали комплексную лабораторию в ИМБ.

"Русский биочип", как его называли за рубежом, получил признание. Право на использование технологии купили компании Motorola и НР, а затем зарегистрировали свой патент на модифицированную технологию. В ответ на это ученые из ИМБ разработали и запатентовали более совершенную технологию.

АТАКА НА ТУБЕРКУЛЕЗ

Первым объектом для апробации нового метода стал туберкулез. Ежегодно в мире им заражаются около 30 млн человек, порядка 2 млн от него умирают. Особенно тяжелая ситуация по туберкулезу сложилась в России, где в 90-е годы из-за многочисленных социальных проблем возбудители туберкулеза - микобактерии, или, как их еще называют, палочки Коха, мутировали, став невосприимчивыми к традиционным препаратам. На сегодняшний день известно около 40 мутантных штаммов. При традиционном подходе после выявления у пациента туберкулеза рентгенологическими методами его лечат препаратами так называемого первого ряда, к которым относятся рифампицин и изониазид. Параллельно проводят микробиологическое исследование возбудителя, чтобы установить его чувствительность к этим лекарствам. Это занимает от двух до трех месяцев. А когда выясняется, что эти лекарства на данную форму микобактерии не действуют, больной уже в течение нескольких месяцев принимал ненужные и, более того, вредные препараты, успев передать лекарственно-устойчивую форму туберкулеза всем, с кем контактировал. Конечно, в запасе у медиков остаются препараты "второго ряда", но и с ними может произойти та же история. Поэтому быстрая и точная диагностика туберкулеза очень и очень важна. Если использовать биочипы, диагноз можно поставить менее чем за сутки. Из пробы больного выделяют ДНК и проводят полимеразно-цепную реакцию (ПЦР), чтобы многократно размножить участок ДНК, на котором могут встречаться мутировавшие гены устойчивости к антибиотикам. Последующий анализ на биочипе поможет определить, каким именно из десятков мутантных штаммов туберкулеза заражен пациент. Но эти волшебные биочипы надо было еще создать. В 2004 году труды ученых из ИМБ увенчались успехом - диагностика с использованием биочипов была сертифицирована. Сегодня выпускается два вида устройств: для выявления чувствительности микобактерий к препаратам первого и второго ряда

НА ВСЕ РУКИ МАСТЕР

Выпускаются биочипы для самых разных целей. Для выявления возбудителей гриппа А, в том числе птичьего гриппа, герпеса, гепатита В и С, разнообразных инфекций у беременных женщин и новорожденных, для определения предрасположенности к сердечно-сосудистым заболеваниям. А есть и такие, которые могут сослужить службу криминалистам, поскольку определяют пол и группу крови. Ученые работают над биочипами для обнаружения стафилококкового, холерного, дифтерийного, столбнячного токсинов, возбудителей сибирской язвы и чумы, разновидностей вируса оспы.

ЛАБОРАТОРИЯ РАЗМЕРОМ С ПОЧТОВУЮ МАРКУ

Биочип устроен следующим образом. На матрице-подложке расположено множество ячеек с гидрогелем (диаметром около 100 микрон, так что на одном квадратном сантиметре могут разместиться до тысячи ячеек). В ячейках содержатся молекулы-зонды: в зависимости от назначения биочипа это могут быть фрагменты ДНК, РНК или белки. Каждая ячейка - это аналог микропробирки, в которой происходит реакция между молекулами-зондами и молекулами исследуемой пробы. Если эти молекулы подходят друг к другу как ключ к замку, происходит так называемая гибридизация - молекулы соединяются химическими связями. Ячейка, в которой произошла реакция, флуоресцирует (потому что пробу предварительно обрабатывают светящейся меткой). В специальном приборе-анализаторе под названием "чип-детектор" конфигурация светящихся точек покажет, какие мутации есть в клетках пациента, обнаружит бактерии и вирусы, выявит генетические формы микроорганизмов - возбудителей болезни.



1.Забор анализируемогообразца.
2 Обработка образца.
3 Взаимодействие образца
с иммобилизованными зондами биологического микрочипа.
4 Анализ биочипа после взаимодействия. Картина распределения свечения ячеек микрочипа является индивидуальной характеристикой анализируемого образца.
Управляющая программа контролирует эксперимент и обрабатывает данные в реальном масштабе времени и отображает их на экране монитора.

СПИД, туберкулез, лейкоз, гепатиты В и С, оспа, сибирская язва, чума, онкологические заболевания, холера, дифтерия, столбняк, стафилококковые инфекции – в борьбе с этими заболеваниями способен помочь универсальный инструмент диагностики – , созданный российскими учеными.

Каков диагноз, таково лечение. Эта истина очевидна даже дилетантам. Если бы медики имели возможность проводить индивидуальный анализ множества генов, внутриклеточных белков клетки и клеточных секреций каждого пациента, результаты оказались бы чрезвычайно информативными и эффективными. Однако такой многопараметрический анализ – задача сложная и очень дорогая. Поэтому для исследовательских групп и клиник так необходима доступная молекулярная диагностика, основанная на принципиально новом подходе, обеспечивающем быстрое и достоверное выяснение причин широкого круга заболеваний.

Этим запросам соответствует технология биологических микрочипов (биочипов), разработанная в Институте молекулярной биологии им. В.А.Энгельгардта РАН (ИМБ) под руководством академика Андрея Мирзабекова (1937-2003).

Биочипы, подобно электронным микрочипам, обрабатывающим массивы цифровой информации, предназначены для молекулярного считывания и обработки больших объемов биологической информации при проведении многопараметрического анализа микрообразца биологического материала.

Основой биочипов является матрица из множества полусферических гидрогелевых ячеек (диаметром около 100 микрон), каждая из которых содержит молекулярные зонды, специфичные к одной из множества биологических молекул или их фрагментов (например, к последовательностям ДНК или РНК, белкам). На одном квадратном сантиметре может быть размещено до тысячи ячеек биочипа, предназначенных для разных целей: для выявления мутаций, связанных с предрасположенностью к различным наследственным и онкологическим заболеваниям; для обнаружения бактерий и вирусов; идентификации мутаций микроорганизмов, ведущих к появлению лекарственно-устойчивых форм инфекционных заболеваний.

Для проведения анализа образец крови пациента или другой исследуемой жидкости проходит предварительную обработку, в ходе которой находящиеся в нем молекулы метятся флуоресцирующим красителем (светящимся при облучении светом определенной длины волны). Затем образец наносится на биочип, помещенный в специальную микрокамеру. Каждый тип молекул образца взаимодействует со специфичными к ним зондами, локализованными в индивидуальных ячейках микрочипа, что может быть зарегистрировано по интенсивности свечения соответствующей ячейки биочипа. По картине свечения множества ячеек биочипа специальный прибор-анализатор определяет количественно наличие характеристических последовательностей ДНК, РНК или набора белков в исследуемом образце. В ИМБ были разработаны анализаторы для научных исследований, способные анализировать биочипы содержащие тысячи ячеек, и портативные клинические анализаторы для рутинных медицинских применений, позволяющие анализировать биочипы с одной-двумя сотнями ячеек.

На сегодняшний день в ИМБ созданы диагностические варианты биочипов, позволяющие выявлять вирусы многих опасных болезней. При диагностике туберкулеза с одновременным выявлением его лекарственно-устойчивых форм, время анализа сокращается с 2-х месяцев до 1 дня. Это позволяет оперативно назначать резервные терапевтические средства тем больным, у которых обнаруживаются формы туберкулеза, устойчивые к обычно применяемым лекарствам (более 10% случаев). Как показали результаты анализа более 3000 пациентов, надежность метода превышает 90%. Впервые в мире метод быстрой идентификации лекарственно-устойчивых форм туберкулеза, основанный на оригинальной отечественной технологии биочипов, был сертифицирован для медицинского применения (МЗиСР РФ). Эта методика уже используется в 8-ми региональных медицинских центрах России, а также в нескольких научно-исследовательских Институтах, занимающихся проблемами идентификации возбудителей инфекционных заболеваний.

Созданы варианты биочипов, обнаруживающих и типирующих продукты хромосомных перестроек, приводящих к лейкозу, идентифицирущих вирусы СПИДа, гепатитов В и С. Разрабатываются биочипы для обнаружения стафилококкового, холерного, дифтерийного, столбнячного и сибиреязвенного токсинов, а также возбудителей сибирской язвы и чумы, которые могут быть использованы при биотерроризме. Созданы биочипы для определения видовой принадлежности вирусов оспы и их дискриминации от возбудителей других заболеваний, сходных по первоначальным клиническим проявлениям (герпес, ветряная оспа). Разработаны биочипы для выявления предрасположенности пациентов к некоторым онкологическим заболеваниям, определения индивидуальной чувствительности к лекарственным препаратам, используемым в противоопухолевой терапии.

Новый универсальный инструмент диагностики уже востребован в медицинских учреждениях страны. Основной потребитель на сегодняшний день - Министерство здравоохранения России. Оно выступает заказчиком биочипов, предназначенных для быстрой диагностики различных форм туберкулеза. Неудивительно, что врачи в первую очередь обратили внимание на технологию, позволяющую более эффективно бороться с этим опасным заболеванием. В настоящее время наличие туберкулеза обнаруживается с помощью рентгеновского обследования, после чего больного начинают лечить лекарствами «первого ряда» - стандартным набором, применяемым, как правило, для всех больных туберкулезом. Параллельно проводят бактериологический анализ устойчивости возбудителя туберкулеза у данного больного к применяемым лекарствам. Этот анализ занимает около 3-х месяцев, после чего выясняется, что примерно у 10-ти процентов больных – лекарственно устойчивая форма туберкулеза, с необходимостью перехода на лечение препаратами «резервного ряда». Последствия – ослабленное ошибочной терапией здоровье больного, бессмысленный расход средств на лекарства и на содержание больного в больнице, распространение лекарственно устойчивых форм туберкулеза вследствие контакта пациентов с разными формами этого заболевания. Очевидно, что самая главная проблема в излечении туберкулеза сегодня – как можно скорее определить, какая именно форма болезни развивается у больного. Технология биологических микрочипов позволяет сделать этот анализ за один день.

Продвижением новой технологии на рынок медицинских услуг занимается принадлежащая Институту молекулярной биологии компания "БИОЧИП-ИМБ", которая заключила контракт с Министерством здравоохранения РФ на поставку биочипов в сеть туберкулезных клиник страны. Согласно пилотному проекту, компания "БИОЧИП-ИМБ" уже внедрила технологию в восьми медицинских центрах страны, расположенных в Москве, Екатеринбурге, Новосибирске, Казани, Петербурге и Саратове.

Как видим, поле использования биологических микрочипов огромно, и создатели уникального диагностического инструмента постоянно расширяют сферы его применения. Коллектив Лаборатории Института создает биочипы для типирования вируса гриппа, идентификации и опознания личности, а также для исследования специфичности ДНК-белковых взаимодействий.

(По материалам беседы с зав. лаб. биологических микрочипов проф. А.Заседателевым и д.б.н. В.Е.Барским).

Елена Укусова, Центр "Открытая экономика"