Учёные из Московского физико-технического института и ряда других российских научных центров создали необычный биочип (микросхему, использующую биологически активные молекулы) для диагностики рака толстой кишки. На данный момент обнаружить это заболевание крайне сложно, из-за чего его лечение обычно начинают слишком поздно. Новинка описана в статье , вышедшей в журнале Cancer Medicine .

Рак кишечника на начальных стадиях протекает внешне бессимптомно и часто обнаруживается только после появления косвенных следов раковой опухоли. Как известно, по мере развития опухоли её способность сопротивляться лекарствам и другим видам терапии резко растёт, из-за чего рак, замеченный на ранних стадиях, как правило, лечится, в то время как на поздних - довольно редко. Поэтому лишь 36% пациентов с этим заболеванием успевают прожить пять лет после постановки диагноза. Усугубляет ситуацию то, что данный вид рака - третий по распространённости среди всех вновь регистрируемых опухолей.

Для решения проблемы его ранней диагностики российские учёные разработали трёхмерный биочип на основе гидрогеля . Он представляет собой ряд связанных микропластинок, на которые нанесены структуры из гидрогеля, подобные микрогнёздам. В "гнёздах" находятся молекулярные зонды - биоактивные молекулы, которые взаимодействуют с веществами сыворотки крови, если в ней содержатся те соединения, на поиск которых нацелены зонды-молекулы.

Новинка реагирует на целый комплекс признаков, говорящих о наличии рака кишечника. Она отслеживает аутоантитела - те антитела иммунной системы, что нацелены на поиск и уничтожение раковых клеток. Сами по себе они часто встречаются в кровотоке, ведь в организме человека систематически появляются раковые клетки, большинство из которых уничтожается иммунитетом ещё до того, как успеют размножиться и образовать опухоль. Когда аутоантитела нацелены на борьбу с той или иной конкретной разновидностью рака, они реагируют на свойственные именно этому виду рака гликаны. Так называют биополимеры, сложенные из моносахаридов и играющие важную роль во взаимодействии клеток между собой. У здоровых и раковых клеток гликаны слегка отличаются по составу. Именно такие "неправильные" гликаны и ищет аутоантитело, чтобы идентифицировать и атаковать раковую клетку.

Авторы новой работы отмечают, что их биочип находит в сыворотке крови не только ассоциированные с раком кишечника аутоантитела, но и ряд других "меток" этого заболевания. В частности, речь идёт о белках-маркёрах, выделяемых раковыми клетками, и иммуноглобулинах (антитела) G, A и M.

Такой комплексный подход при экспериментальной проверке позволил добиться результатов, намного превосходящих все существующие методы диагностики рака кишечника. В соответствующем эксперименте приняло участие 33 пациента с соответствующим заболеванием. В качестве контрольных групп выступили 69 здоровых людей и 27 лиц с воспалительными заболеваниями кишечника. Чувствительность нового биочипа оказалась равна 87% - именно такую долю лиц с раком толстого кишечника ему удалось распознать. Хотя эта цифра может не показаться высокой, существующие на сегодня методы (безгликановые) имеют чувствительность всего в 21%, что в несколько раз ниже, чем у нового биочипа.

Авторы работы полагают, что разработанный ими метод является чрезвычайно перспективным для диагностики рака кишечника. Они надеются, что уже в скором времени созданные на его основе тест-системы появятся в клинических лабораториях нашей страны.

Технология белковых биочипов, заменяющих целые иммунроргические лаборатории, дает возможность в тысячи раз увеличить производительность большинства диагностических методов – за короткое время определять несколько тысяч аллергенов, онкогенов, различных биологически активных веществ, и даже генетических дефектов – и резко снизить себестоимость анализов.

Прообразом современных «живых чипов» послужил саузернблот, изготовленный в 1975 г. Э. Саузерном. Он использовал меченую нуклеиновую кислоту для определения специфичес­кой последовательности среди фрагментов ДНК, зафиксирован­ных на твердой подложке. В России ученые начали активно раз­рабатывать тему биочипов только в конце 1980-х гг. в институте молекулярной биологии под руководством А. Д. Мирзабекова.

Биочип представляет собой матрицу - пластинку со сторо­ной 5-10 мм, на которую можно нанести до нескольких тысяч различных микротестов; ее еще называют платформой. Чаще всего используют стеклянные или пластиковые платформы, на которые наносятся биологические макромолекулы (ДНК, бел­ки, ферменты), способные избирательно связывать вещества в анализируемом растворе.

В зависимости от того, какие макромолекулы используют­ся, выделяют различные виды биочипов, ориентированные на разные цели. Основная доля производимых в настоящее время биочипов приходится на ДНК-чипы (94%), т. е. матрицы, несу­щие молекулы ДНК. Оставшиеся 6% - белковые чипы.

Биологические микрочипы во многом схожи с электронными: и те, и другие собирают и обрабатывают огромное количе­ство информации на малой поверхности. И те, и другие состоят из огромного количества идентичных миниатюрных элементов, размещенных рядом друг с другом, хотя ячейки биочипа по по­лупроводниковым меркам просто огромны. При этом действие электронного чипа основано на ответе «да-нет», а биологичес­кий чип позволяет выбрать из миллионов или миллиардов воз­можностей единственно верную. Компьютерный чип произво­дит миллионы математических операций в секунду, но и на био­чипе за пару секунд проходят тысячи биохимических реакций.

Разработанный в России биочип-это стеклянная пластинка, на которую нанесены десятки едва видимых глазом полу­сферических гидрогелевых ячеек диаметром менее 100 микрон каждая, и содержащих известные вещества-маркеры. При вза­имодействии биочипа с исследуемым образцом, предваритель­но обработанным светящимся (флуоресцентным) красителем, в соответствующих ячейках происходит химическая реакция, и тогда эти ячейки начинают светиться-тем сильнее, чем ин­тенсивнее процесс.

Принцип действия биологических чипов основан на способ­ности комплементарных оснований образовывать химические связи: в ходе реакции происходит взаимодействие комплементарных цепей ДНК, одна из них (ДНК-проба) с известной пос­ледовательностью нуклеотидов зафиксирована на подложке (пластине), а другая одноцепочечная ДНК-мишень (зонд), меченная флуоресцентной меткой, вносится в ДНК-чип.



По сути, именно в выявления и сопоставлении наиболее ярко светящихся ячеек и заключается работа прибора-анализатора биочипов. Так определяются различные характеристики образца, например, присутствие в организме тех или иных возбудителей инфекций или наличие в геноме каких-либо из­мененных генов.

Особенность российских биочипов в том, что их ячейки за­полнены гелем трехмерной структуры. Такие гели удержива­ют большее количество пробы, нежели двумерные, и потому чувствительность отечественных биочипов выше, а, следова­тельно, ниже требования к регистрирующей аппаратуре. Не­маловажно и то, что реакции в объемном геле протекают так же, как и в жидкостях, а значит, как и в живом организме. Это позволяет получить результат, максимально приближенный к реальности.

На Западе исследователи пошли по другому пути и разрабо­тали для создания ДНК-чипов процесс фотолитографии, ана­логичный процессу производства кремниевых процессоров. Например, «Affimetrix» (США) создал GeneChip-технологию, основанную на высокоплотных чипах, содержащих ДНК-последовательности, и предназначенную для анализа генетической информации человека. Такие чипы обладают гораздо большей емкостью, стоят значительно дороже, что пока позволяет ис­пользовать их исключительно в крупных исследовательских центрах или в коммерческих клиниках.

Еще одним методом конструирования биочипов является использование «технологии струйного принтера» для нанесе­ния необходимого нуклеотида в строго определенное место мат­рицы. Он менее дорог, во при этом не позволяет достичь высо­кой скорости синтеза.

Сейчас число размещаемых на российском биочипе ячеек достигает уже нескольких тысяч, однако чаще используются биочипы с гораздо меньшим числом ячеек. Тем не менее про­стой чип может выявить все известные на сегодняшний день формы возбудителя туберкулеза, а также определить, каким именно антибиотиком нужно лечить конкретную форму не за несколько недель, как традиционным способом, а всего в тече­ние нескольких суток.

При помощи белковых чипов с молекулами, «чувствитель­ными» к различным низкомолекулярным соединениям, уже в самое ближайшее время можно будет определить наличие ши­рокого спектра лекарственных веществ, гормонов, наркотиков, ядов, пестицидов практически в любом анализируемом мате­риале.

Контрольные вопросы и задания

1. Что такое реакции иммунитета?

2. В чем заключается сущность реакции агглютинации?

3. Какие варианты реакции преципитации существуют?

4. Охарактеризуйте реакцию связывания комплемента.

5. Что такое метод флюоресцирующих антител?

6. В чем сущность иммуноферментного метода?

7. Опишите особенности радиоиммунологического анализа.

8. Что такое реакции иммунитета?

9. В чем заключается сущность реакции агглютинации?

10. Дайте определение радиоиммунологического анализа?

Врачи Российского онкологического научного центра им. Н.Н. Блохина совместно с нижегородскими коллегами разработали уникальную тест-систему для иммуноцитохимического исследования. Она может заменить собой целую лабораторию, не имеет аналогов в мире и получила высокие оценки ведущих онкологов Японии. С помощью этой инновации можно определять наличие или отсутствие злокачественного новообразования у пациента при первом же обращении в поликлинику. Тест-система продумана таким образом, что ее можно легко и быстро внедрить по всей стране.

Новинка получила название «Биочип». Она стала результатом длительной совместной работы РОНЦ им. Н.Н. Блохина, Нижегородской медицинской академии и Института эпидемиологии и микробиологии им. И.Н. Блохиной.

Биочип - это принципиально новая разработка, - рассказала «Известиям» один из авторов тест-системы, завлабораторией клинической цитологии РОНЦ им. Н.Н. Блохина, врач-онкоцитолог Марина Савостикова. - В 2016 году мы зарегистрировали тест-систему в России для научных целей и получили международный патент. Биочипом заинтересовались коллеги из Японии. В конце 2016 года они заключили с нами договор о трансферте разработки в страны Азиатско-Тихоокеанского региона.

Тест-система разработана для диагностики любых злокачественных процессов: рака, меланомы, лимфомы. Она представляет собой сам биочип, сканер для оцифровывания результатов и транспортно-питательную среду для хранения биоматериала.

Биочип - это подложка, разделенная на 15 ячеек, в которые внесены разные антитела. Биоматериал, взятый у пациента на анализ (патологическая жидкость организма или пунктат из новообразования), нужно обработать на стандартной центрифуге, которая есть в любой лаборатории, а затем внести в ячейки, где при нагревании до 37 градусов происходит реакция. Для визуализации реакции к антителам добавлены флуорохромные метки. Когда антиген клетки злокачественного новообразования реагирует с антителом, клетка начинает светиться. По этому свечению сразу можно определить, есть в образце опухолевые клетки или нет.

Это метод флуоресцентной иммуноцитохимии, - пояснила Марина Савостикова. - Реакция происходит почти мгновенно. Технология позволяет сделать анализ в три раза быстрее, чем стандартным способом, и в три раза дешевле. Провести исследование можно в условиях любой поликлиники, куда обратился пациент с какой-либо жалобой.

Несмотря на то что с помощью биочипа можно отличить злокачественное новообразование от доброкачественного, врачи не предлагают таким образом проверять всех подряд на наличие рака. На анализ берутся жидкость или клетки патологической ткани, полученные с помощью пункции.

Например, пациент обратился к терапевту с жалобой на припухлость на шее, - объясняет Марина Савостикова. - Это может быть обычным лимфаденитом, кистой шеи, аллергической реакцией на укус насекомого, саркомой мягких тканей шеи. А если у пациента обнаружена жидкость в легких, причиной может быть туберкулез, пневмония, метастаз рака, мезотелиома. С помощью новой тест-системы мы можем всё это исключить и дать рекомендации врачам, где искать проблему.

Для широкого внедрения этого метода диагностики не требуется сажать онкоцитологов в лабораторию каждой поликлиники. Нужно всего лишь оснастить каждую лабораторию биочипами и сканерами. Желательно, чтобы в ней был запас пробирок с транспортно-питательной средой (ТПС). Это тоже разработка авторов проекта. ТПС - это плотно закупоренная пробирка, в которую вносится биоматериал. Пробирка содержит консерванты, сдерживающие рост микробов. В этой среде биоматериал может храниться без холодильника до месяца.

Хирург поликлиники или больницы должен взять пункцию и внести патологический материал в ТПС, а затем на биочип. После этого поместить тест-систему в сканер, который перешлет изображение специалисту референсного центра.

У нас уже запущено мелкосерийное производство биочипов, - рассказал еще один автор проекта, директор НПП «Биочип» Святослав Зиновьев. - Оно находится в Нижнем Новгороде. Оборудование для автоматизированной печати биочипов мы делали с нуля, так как аналогов в мире не существует, и поэтому нет соответствующих конструкторских решений. Сканеры по нашему заказу и техническому заданию тоже производит нижегородское предприятие.

По словам Святослава Зиновьева, производство сканеров - это импортозамещение. Итоговая стоимость каждого аппарата получится в 10 раз меньше импортного аналога. Сканеры прошли лабораторное испытание, и сейчас разработчики подают документы на их регистрацию.

Биочип устанавливают в сканер, который оцифровывает изображение и передает его в региональный референсный центр. Там изображение смотрят цитологи с большим опытом работы, проводят анализ дистанционно полученного материала и высылают заключение обратно. Пациент при повторном посещении врача получает точный диагноз и возможность начать лечение. Все сложные случаи, которые региональные цитологи не смогли интерпретировать, будет рассматривать консилиум РОНЦ им. Н.Н. Блохина. Связь с главным референсным центром организуют через информационно-аналитическую систему, создание которой тоже входит в проект.

Очень важно поставить диагноз как можно раньше. Для онкологического пациента эти сроки - жизнь. В век таргетных технологий онкология лечится. Сейчас пятилетний рубеж выживания - это норма. Есть опухоли, от которых уже не умирают. Например, это опухоль щитовидной железы, - отметила Марина Савостикова.

По словам Святослава Зиновьева, диагностика с помощью новой тест-системы может быть бесплатной для пациентов, потому что иммуноцитохимическое исследование входит в стандарты обязательного медицинского страхования (ОМС).

О готовности работать по новой схеме уже заявили Нижний Новгород, Чебоксары, Санкт-Петербург, Ярославль, Ростов-на-Дону, Краснодар и другие регионы. Мы общались с цитологами, директорами и главврачами онкодиспансеров, представителями министерств некоторых регионов и везде встречали большую заинтересованность, - рассказал Святослав Зиновьев.

Сейчас создатели биочипа ждут заключения Росздравнадзора, без которого невозможно начать массовое производство.

Чтобы не терять время, мы уже начали готовить специалистов, которые будут работать с новой системой, - уточняет Марина Савостикова. - Цитологи будут проходить у нас обучение, сдавать экзамены и получать сертификаты. И только после этого они смогут самостоятельно интерпретировать результаты, полученные на биочипе.

При положительном вердикте Росздравнадзора участники проекта обещают очень быстрое его внедрение в практику. Реальный срок - апрель 2017 года.

Эксперты-онкологи подтверждают необходимость массового внедрения такого вида диагностики.

Идея биочипа не нова. У нас в институте создаются похожие системы, но пока мы используем их только для диагностики лейкемии, - сообщил «Известиям» заместитель генерального директора - директор Института гематологии, иммунологии и клеточных технологий ГБУ «ФНКЦ ДГОИ имени Дмитрия Рогачева» Минздрава России Алексей Масчан. - Действительно, существует проблема с доступностью диагностики в отдаленных регионах, и подобные разработки могут ее решить. Достоинство диагностики с помощью биочипа в ее прагматичности - в условиях дефицита финансирования медицинских учреждений такая тест-система может решить часть проблем. Но только в том случае, если она выдержала сравнение с классическими методами диагностики.

По мнению главного онколога Минздрава, такие системы необходимо тиражировать, причем не только у нас в стране.

Это действительно уникальная тест-система для определения любых злокачественных процессов, и пока у нее нет аналогов нигде в мире, - сказал «Известиям» главный онколог Минздрава России, академик РАН Михаил Давыдов. - Это важное решение в сфере диагностики онкологических заболеваний, которое нужно тиражировать и показывать не только отечественным, но и зарубежным коллегам.

СПИД, туберкулез, лейкоз, гепатиты В и С, оспа, сибирская язва, чума, онкологические заболевания, холера, дифтерия, столбняк, стафилококковые инфекции – в борьбе с этими заболеваниями способен помочь универсальный инструмент диагностики – , созданный российскими учеными.

Каков диагноз, таково лечение. Эта истина очевидна даже дилетантам. Если бы медики имели возможность проводить индивидуальный анализ множества генов, внутриклеточных белков клетки и клеточных секреций каждого пациента, результаты оказались бы чрезвычайно информативными и эффективными. Однако такой многопараметрический анализ – задача сложная и очень дорогая. Поэтому для исследовательских групп и клиник так необходима доступная молекулярная диагностика, основанная на принципиально новом подходе, обеспечивающем быстрое и достоверное выяснение причин широкого круга заболеваний.

Этим запросам соответствует технология биологических микрочипов (биочипов), разработанная в Институте молекулярной биологии им. В.А.Энгельгардта РАН (ИМБ) под руководством академика Андрея Мирзабекова (1937-2003).

Биочипы, подобно электронным микрочипам, обрабатывающим массивы цифровой информации, предназначены для молекулярного считывания и обработки больших объемов биологической информации при проведении многопараметрического анализа микрообразца биологического материала.

Основой биочипов является матрица из множества полусферических гидрогелевых ячеек (диаметром около 100 микрон), каждая из которых содержит молекулярные зонды, специфичные к одной из множества биологических молекул или их фрагментов (например, к последовательностям ДНК или РНК, белкам). На одном квадратном сантиметре может быть размещено до тысячи ячеек биочипа, предназначенных для разных целей: для выявления мутаций, связанных с предрасположенностью к различным наследственным и онкологическим заболеваниям; для обнаружения бактерий и вирусов; идентификации мутаций микроорганизмов, ведущих к появлению лекарственно-устойчивых форм инфекционных заболеваний.

Для проведения анализа образец крови пациента или другой исследуемой жидкости проходит предварительную обработку, в ходе которой находящиеся в нем молекулы метятся флуоресцирующим красителем (светящимся при облучении светом определенной длины волны). Затем образец наносится на биочип, помещенный в специальную микрокамеру. Каждый тип молекул образца взаимодействует со специфичными к ним зондами, локализованными в индивидуальных ячейках микрочипа, что может быть зарегистрировано по интенсивности свечения соответствующей ячейки биочипа. По картине свечения множества ячеек биочипа специальный прибор-анализатор определяет количественно наличие характеристических последовательностей ДНК, РНК или набора белков в исследуемом образце. В ИМБ были разработаны анализаторы для научных исследований, способные анализировать биочипы содержащие тысячи ячеек, и портативные клинические анализаторы для рутинных медицинских применений, позволяющие анализировать биочипы с одной-двумя сотнями ячеек.

На сегодняшний день в ИМБ созданы диагностические варианты биочипов, позволяющие выявлять вирусы многих опасных болезней. При диагностике туберкулеза с одновременным выявлением его лекарственно-устойчивых форм, время анализа сокращается с 2-х месяцев до 1 дня. Это позволяет оперативно назначать резервные терапевтические средства тем больным, у которых обнаруживаются формы туберкулеза, устойчивые к обычно применяемым лекарствам (более 10% случаев). Как показали результаты анализа более 3000 пациентов, надежность метода превышает 90%. Впервые в мире метод быстрой идентификации лекарственно-устойчивых форм туберкулеза, основанный на оригинальной отечественной технологии биочипов, был сертифицирован для медицинского применения (МЗиСР РФ). Эта методика уже используется в 8-ми региональных медицинских центрах России, а также в нескольких научно-исследовательских Институтах, занимающихся проблемами идентификации возбудителей инфекционных заболеваний.

Созданы варианты биочипов, обнаруживающих и типирующих продукты хромосомных перестроек, приводящих к лейкозу, идентифицирущих вирусы СПИДа, гепатитов В и С. Разрабатываются биочипы для обнаружения стафилококкового, холерного, дифтерийного, столбнячного и сибиреязвенного токсинов, а также возбудителей сибирской язвы и чумы, которые могут быть использованы при биотерроризме. Созданы биочипы для определения видовой принадлежности вирусов оспы и их дискриминации от возбудителей других заболеваний, сходных по первоначальным клиническим проявлениям (герпес, ветряная оспа). Разработаны биочипы для выявления предрасположенности пациентов к некоторым онкологическим заболеваниям, определения индивидуальной чувствительности к лекарственным препаратам, используемым в противоопухолевой терапии.

Новый универсальный инструмент диагностики уже востребован в медицинских учреждениях страны. Основной потребитель на сегодняшний день - Министерство здравоохранения России. Оно выступает заказчиком биочипов, предназначенных для быстрой диагностики различных форм туберкулеза. Неудивительно, что врачи в первую очередь обратили внимание на технологию, позволяющую более эффективно бороться с этим опасным заболеванием. В настоящее время наличие туберкулеза обнаруживается с помощью рентгеновского обследования, после чего больного начинают лечить лекарствами «первого ряда» - стандартным набором, применяемым, как правило, для всех больных туберкулезом. Параллельно проводят бактериологический анализ устойчивости возбудителя туберкулеза у данного больного к применяемым лекарствам. Этот анализ занимает около 3-х месяцев, после чего выясняется, что примерно у 10-ти процентов больных – лекарственно устойчивая форма туберкулеза, с необходимостью перехода на лечение препаратами «резервного ряда». Последствия – ослабленное ошибочной терапией здоровье больного, бессмысленный расход средств на лекарства и на содержание больного в больнице, распространение лекарственно устойчивых форм туберкулеза вследствие контакта пациентов с разными формами этого заболевания. Очевидно, что самая главная проблема в излечении туберкулеза сегодня – как можно скорее определить, какая именно форма болезни развивается у больного. Технология биологических микрочипов позволяет сделать этот анализ за один день.

Продвижением новой технологии на рынок медицинских услуг занимается принадлежащая Институту молекулярной биологии компания "БИОЧИП-ИМБ", которая заключила контракт с Министерством здравоохранения РФ на поставку биочипов в сеть туберкулезных клиник страны. Согласно пилотному проекту, компания "БИОЧИП-ИМБ" уже внедрила технологию в восьми медицинских центрах страны, расположенных в Москве, Екатеринбурге, Новосибирске, Казани, Петербурге и Саратове.

Как видим, поле использования биологических микрочипов огромно, и создатели уникального диагностического инструмента постоянно расширяют сферы его применения. Коллектив Лаборатории Института создает биочипы для типирования вируса гриппа, идентификации и опознания личности, а также для исследования специфичности ДНК-белковых взаимодействий.

(По материалам беседы с зав. лаб. биологических микрочипов проф. А.Заседателевым и д.б.н. В.Е.Барским).

Елена Укусова, Центр "Открытая экономика"

Доклад нижегородских ученых по экспресс-диагностике онкологии с помощью биочипа признается лучшим в секции «Цитология» на 29-ом Европейском конгрессе по патологии! – после этих слов поздравлять россиян бросились коллеги из Италии , Хорватии , Турции , Германии … Оно и понятно – попасть в число лучших на этом конгрессе - все равно, что получить Оскар в кинематографе. Ежегодно за это право в Амстердаме борются главные медицинские светила со всего света.

Разработкой этого биочипа мы занимаемся с 2012 года, но свой нынешний вид он приобрел только пару лет назад, когда появился инвестор, - рассказывает один из авторов проекта, руководитель лаборатории молекулярной биологии и биотехнологии ННИИ им. Блохиной Олег Уткин . – Аналогов этой тест-системе нет нигде в мире, достоверность диагноза составляет 95%.

То, что в стенах нижегородского института идет разработка уникальной технологии, сразу и не скажешь. Ни тебе секретных паролей на входе, ни автоматчиков на охране. Из всех мер предосторожности - только бахилы и обязательный белый халат на входе в лабораторию.

Вот это и есть наш биочип, - показывает мне Олег крохотную, едва различимую на ладошке стеклянную пластинку. Глядя на эту крошку, с трудом верится, что она способна выявить практически любой вид рака всего за полтора часа. За эту технологию многие президенты отдали бы полцарства и дочку в придачу.

Принцип действия этой системы прост: берем любой биоматериал - серозную жидкость, мочу или послеоперационный материал – и вносим в ячейки биочипа. Всего в чипе 15 секторов, в каждом из которых содержится помеченный флуоресцентным раствором белок. Если будут выявлены какие-то признаки онкологии, то клетки в ячейке покажут свечение под флюоресцентным микроскопом.

Кстати, в отличие ото всех остальных методов диагностики, биочип не только просигнализирует о самом факте онкологического заболевания, но и определит его разновидность и где есть метастазы, - тем самым поможет врачу дать прогноз по течению болезни и по подбору персональной терапии. На сегодняшний день тест-система способна диагностировать едва ли не все виды рака: легких, молочной железы, желудка, толстой кишки, яичников… В зависимости от подозреваемой разновидности онкологии будет меняться и набор белков в биочипе.

Сейчас существует восемь разновидностей таких тест-систем - от обычной скрининговой, которая просто выявляет наличие онкологии, до заточенных под каждую патологию, - объясняют разработчики. – Что самое главное – для проведения исследований не нужно ни дорогущих лабораторий, ни огромного штата высококвалифицированных врачей. Внести биоматериал в нашу тест-систему может любой лаборант, после чего врач-онколог уже может сделать заключение.

За эту разработку ученым уже вручили национальную премию "Призвание". ФОТО: Пресс-служба НижГМА

Эти биочипы просты не только в эксплуатации, но и в производстве. В небольшой лаборатории ежедневно можно делать тысячи таких систем. Отсюда и их дешевизна – один такой чип поликлинике будет стоить чуть больше тысячи рублей. А для самого пациента диагностика и вовсе будет бесплатной – она должна войти в систему ОМС.

Мы уже получили все необходимые патенты – российский и зарубежный, - рассказывает Олег Уткин. – Но чтобы биочипы поступили в поликлиники, нам необходимо регистрационное заключение Росздрава. Надеемся в самое ближайшее время получить и его. После этого буквально за пару месяцев сможем запустить массовое производство.

Со своей стороны российский Минздрав вручил нижегородским разработчикам престижную национальную премию «Призвание», присуждаемую лучшим врачам России , в номинации «За создание нового метода диагностики».

СПРАВКА «КП»

В разработке биочипа принимают участие ведущие ученые трех российских исследовательских центров: ФБУН «ННИИЭМ им. академика И.Н. Блохиной», ФГБУ «РОНЦ им. Н.Н. Блохина», ФГБОУ ВО «НижГМА». Этой технологией уже заинтересовались ученые из России, Японии , Швейцарии , Китая , Беларуси , Казахстана и Армении .