Казалось бы, все инновации, в том числе фармацевтических препаратов, входят в нашу жизнь медленно, но верно: ученые делают открытия, бизнесмены вкладывают в них средства, превращают в продукт для потребителей и - "полный вперед" на рынки сбыта. На самом же деле путь нового медикамента на аптечные полки иногда бывает необычайно трудным. На эту тему Александр Рылов беседовал с заместителем директора по науке НИИ молекулярной медицины ММА им. И. М. Сеченова Всеволодом Киселевым.

Всеволод Иванович, значит, лекарства рождаются "в муках"?
- Еще примерно лет пять назад я считал: стоит изобрести препарат, по-настоящему полезный для больных, как дальше все пойдет автоматически. В действительности же те, кто участвует в его создании, 90% сил тратят на то, чтобы не дать проекту умереть. Да и сам такой бизнес невероятно сложен и непредсказуем с точки зрения инновационной удачи. Вот почему на этом "поле" профессиональных инвесторов не так много. Тем более, что выведение на рынок нового лекарства, по оценкам американских специалистов, сейчас стоит около 1 млрд. дол. Словом, чтобы взяться за столь рискованное дело, надо обладать колоссальным капиталом и соответствующим опытом работы.

Кроме того, "цена удачи" в данном виде деятельности с каждым годом значительно возрастает. Если в середине XX в. в мире ежегодно появлялись 20 - 30 новых лекарств, то в начале 2009 г., увы, в 5 - 6 раз меньше. К тому же крайне редким стало появление "революционных" препаратов (каким был, например, антибиотик пенициллин), т.е. в разы повышающих эффективность лечения в отличие от прочих лекарств-"новичков", увеличивающих ее лишь на 15 - 20%. К сожалению, это означает, что КПД фармацевтики падает.

Так с чего начинается рождение лекарства?
- С некой "питательной среды": тысячи лабораторий во всем мире изучают биологические процессы. В одних случаях исследователи прицельно ищут пути создания какого-либо препарата, в других - осуществляют творческий поиск, часто оказывающийся плодотворным для решения практических задач. В результате ежегодно открывают десятки регуляторных молекул (способных влиять на происходящие в нашем организме важные для здоровья преобразования). Большинство таковых патентуется, однако они не представляют собой даже "зародыша" лекарства и весьма далеки до его появления на аптечной полке.

Но вот в дело начинают включаться инвесторы - фонды, специализирующиеся, как правило, на производстве биофармацевтических средств. Решение о финансировании тех или иных проектов они принимают на основании экспертной оценки венчурных менеджеров - представителей редкой, сложной, востребованной, требующей интуиции профессии, знающих, по каким законам живет "элита" фармацевтического мира, чего от этой отрасли ждет рынок, как биологически активные молекулы превращаются в лекарства.

Такие специалисты присматриваются к университетам и научным центрам в поисках перспективных разработок. И когда окончательно останавливаются на какой-либо из них, наступает самый ответственный момент в рождении лекарства: капитан консолидируется с наукой - организовывается стартовая компания (создатели препарата, как правило, ее соучредители), получающая от материнской венчурной фирмы миллионы долларов на доведение регуляторной молекулы до стадии медикамента. Затем фирмы, занимающиеся изготовлением лекарств, начинают его широкомасштабное производство.- Но зачем нужна цепочка посредников?
- Она оправдана и даже необходима. Не секрет, что мировое разделение труда все более усугубляется, каждое дело становится успешным лишь тогда, когда им займется специалист. Транснациональные фармацевтические "гиганты" крайне редко берутся за изготовление препаратов, находящихся на стадии изучения, а предпочитают те, что прошли первые этапы клинического исследования, когда уже доказана их безопасность и эффективность (тогда риски инвестирования минимальны, а цена проекта еще не достигла заоблачных масштабов). Этот новый собственник финансирует завершение испытаний, проводит государственную регистрацию лекарства, затем налаживает соответствующее производство и продвигает свою продукцию на глобальный рынок, поскольку ее окупаемость в пределах одного государства сегодня недостаточна. Как я уже говорил, финансовые риски при венчурном бизнесе очень велики, поэтому та или иная компания в течение 8 - 10 лет финансирует сразу около 10 проектов. А "путевку в жизнь" получит лишь один из них, способный оправдать все вложения.

Но все это касается наиболее развитых стран. Россия же сложные и современные лекарства может производить только по их лицензии?
- Пять лет назад так и было. Ныне же в нашей стране уже разработано несколько инновационных высокотехнологичных препаратов. А столь значимые события не остаются незамеченными для финансистов. Хочу отметить: число моих встреч с отечественными предпринимателями, взвешивающими возможности подобных инвестиций, растет в геометрической прогрессии.

Подобные "истории успеха" - сигнал и для нашей молодежи идти в фармацевтику, причем оставаться после окончания вуза на родине.

Что сейчас надо делать в России, чтобы развить и приумножить эти первые достижения?
- Освоить выпуск инновационных медикаментов ныне могут только государство рука об руку с бизнесом. И каждый член этого альянса должен решать свою задачу. Первый - создать мощную "питательную среду", где зарождались бы идеи и регуляторные молекулы, второй - научиться вести рискованные, долгосрочно окупаемые проекты. К сожалению, у нас еще не сформировался зрелый "климат" для их реализации, и, как следствие, все задачи на начальной стадии такой работы решаются трудно. Обратимся к мировому опыту: для постройки "мостика" между идеей ученого и началом производства препарата внутри фармацевтической отрасли существует несколько самостоятельных индустрии с многомиллионными денежными оборотами. В России тоже следует организовать несколько аналогичных предприятий.

Расскажите об одном из последних отечественных инновационных препаратов.
- Скажем, в нашем НИИ молекулярной медицины ММА им. И. М. Сеченова разработан диаскинтест, предназначенный для диагностики туберкулеза при массовых обследованиях населения, по точности на порядок превосходящий применяемые сегодня в мире. Причем стоимость соответствующей пробы у одного человека составляет всего несколько долларов. Речь идет о генно-инженерном белке, имеющем природные и искусственные фрагменты.

Этот препарат включили в Федеральную целевую программу "Предупреждение и борьба с социально значимыми заболеваниями (2007 - 2011 годы)".

Деньги в данный проект вложило только государство?
- Нет, оно не потратило ни копейки. Мы взаимодействовали с двумя российскими фирмами, финансировавшими работы, чтобы сначала организовать стартовую компанию, затем приступить к массовому изготовлению препарата. А после высокой оценки, данной диаскинтесту в апреле 2009 г. на специальном симпозиуме в рамках научной программы XVI Российского национального конгресса "Человек и лекарство", правительство РФ решило выделить средства на его государственную закупку.

А почему вы занялись именно туберкулезом?
- Поскольку мы создавали рыночный продукт, который должен подтвердить свою конкурентоспособность и в итоге оказаться прибыльным, то остановились на решении задачи, значимой для медицинского сообщества. Конечно, не менее важна и социальная составляющая. Этот недуг - колоссальная беда не только для России, где заболеваемость за последние 10 лет выросла вдвое, но и для всего мира. Ежегодно он поражает 9 млн. человек и почти 4 млн. из них погибают.

Дело в том, что у нас и во многих других странах всем младенцам вводят в организм так называемую вакцину БЦЖ - живые, но ослабленные благодаря специальной обработке туберкулезные микобактерии (подчеркнем: не человеческие, а бычьи). В результате у детей вырабатывается устойчивый иммунитет против возбудителей болезни. При обследовании же школьников на предмет данной инфекции регулярно делают пробу Манту - инъекцию туберкулина (специального препарата микобактерий). При его введении развивается местная воспалительная реакция - папула (немного возвышающийся над кожей красный кружок), значит, организм обладает нормальным иммунитетом. Если она не появилась, надо срочно повторить вакцинацию. В случае, когда этот "бугорок" достигает большого размера, сопровождается некрозом (омертвением тканей из-за нарушения кровообращения) и у ребенка увеличиваются лимфатические узлы, то надо немедленно обратиться к фтизиатру. Только он определит, болен пациент туберкулезом или в результате вакцинации БЦЖ образовался чрезмерный иммунитет.

Именно в неточности пробы Манту состояла главная трудность диагностики данного недуга: бесконечные обследования, профилактика и, конечно, психологические травмы, причем иногда им подвергались совершенно здоровые люди. Однако еще более опасные последствия наступали в результате их массового ненужного лечения, из-за чего в мире возникали новые, устойчивые к антибактериальным лекарствам штаммы микобактерий. Поэтому с болезнью справиться было все труднее, чаще наступали трагические исходы.

Из десяти пациентов, которым делают пробу Манту, примерно половина сталкивается с подобной проблемой. Но ведь прививки БЦЖ сейчас обязательны в 64 странах и рекомендуемы в 118. Выходит, ежегодно в мире из-за неточности такой диагностики десятки миллионов человек напрасно обследуются и лечатся. Уже по этим причинам наш диаскинтест, реагирующий только на заболевание туберкулезом, но всегда "молчащий" в случае избыточного иммунитета, сегодня ждут с нетерпением фтизиатры многих стран.

Не могли бы вы в общих чертах рассказать, как создавали этот чудо-препарат?
- Проведя долгую и сложную работу, мы сравнили структуру белков, образующихся в бычьих микобактериях (используемых для вакцинации БЦЖ), и туберкулинового из "человеческих" микробов (задействованного в пробе Манту). Некоторые их фрагменты оказались одинаковыми, поэтому привычная диагностика не могла точно "распознать", заразился человек туберкулезом или иммунитет превышает норму. С помощью методов генетической инженерии наши специалисты перестроили молекулу туберкулина, в частности, удалили из него "бычьи" фрагменты. Так появилась новая белковая молекула, состоящая из антигенных детерминант, присущих только микобактериям, вызывающим туберкулез у людей. На его основе и получили диаскинтест, который начала выпускать в 2009 г. фирма ЗАО ЛЕККО (Владимирская область).

Думается, успешным завершением работы мы доказали: не оборвались традиции уникальной фармацевтической школы, сложившейся еще в XIX в. на медицинском факультете Московского университета - "дедушки" нашей академии. И важнейшая среди них - мультидисциплинарность: благодаря ей фармаколог - разработчик лекарства, избегнув ненужных административных процедур, устанавливает сотрудничество с опытными специалистами практически в любой области медицины. Так, большую помощь в создании диаскинтеста оказал заведующий кафедрой фтизиопульмонологии этого вуза, крупнейший в мире знаток туберкулеза, академик РАМН, директор НИИ фтизиопульмонологии, главный фтизиатр Министерства здравоохранения и социального развития РФ Михаил Перельман.

В конце 2008 г. в московском районе Тропарево завершилось строительство нового корпуса фармацевтического факультета ММА, где есть экспериментально-производственная база, позволяющая готовить профессионалов для передовых фармацевтических технологий. Уверен: наше учебное заведение внесет важный вклад в возрождение отечественной фармацевтической отрасли.

Александр Рылов, Всеволод Киселев

Привлечение инвестиций в научно-исследовательскую деятельность в сфере биофармацевтики и создание новых лекарств на основе простагландинов от неизлечимых сейчас болезней — основное направление стартапа Gurus BioPharm, резидента ИЦ «Сколково». Об истории компании, возникшей в 2011 году, ее продуктах и инвестициях в биомедицинские инновации «Инвест-Форсайту» рассказал один из основателей проекта Игорь Тетерин.

История стартапа

Игорь Тетерин

Стартап Gurus BioPharm юридически был образован в 2011 году Игорем Тетериным и Игорем Любимовым . Они поставили перед собой две главные цели, которые должен решать стартап. Это налаживание механизма коммерциализации отечественных проектов в области биофармацевтики и оказание помощи людям с хроническими и неизлечимыми заболеваниями посредством разработки высокоэффективных лекарств.

Первый опыт ведения собственного бизнеса у Игоря Тетерина появился в 2005 году после увольнения с позиции директора по маркетингу из организации «Адам» (дистрибьютора глубокой заморозки продуктов питания), когда пришла идея по созданию фирмы «Гурус». Изначально его новоиспеченная организация занималась сопровождением сделок по купле и продаже небольших предприятий и привлечением инвестиций для развивающихся и перспективных производств. Позже в ее сфере интересов появились бизнес-проекты для фармацевтической отрасли по оценке инновационных молекул, исследования в области маркетинга этого сегмента рынка, due diligence (независимая оценка объекта инвестирования).

Игорь Любимов, ныне генеральный директор Gurus BioPharm, до создания компании строил свою научно-исследовательскую карьеру в государственном НИИ, работал на высоких позициях в инвестиционных организациях в сфере развития биомедицинских технологических решений и фармацевтики.

В конце 2010 года они объединились в одну команду. Однако первые инвестиции в их стартап были привлечены лишь в 2014 году — получены $800 000 на конкурсной основе от Минпромторга РФ для доклинических исследований инновационного лекарства GUR-801, корректирующего когнитивные нарушения. После этого развернулась полноценная деятельность и бурное развитие компании. Уже через год, в 2015 году, Gurus BioPharm привлек от Минобрнауки РФ $700 000 на доклинические исследования лекарственного средства от астмы GUR-501, основу которого составляют простагландины. Этот проект поддержан ведущими пульмонологами России.

Сейчас в группу «Гурус» входят венчурный биомедицинский фонд «Гурус БиоВенче», научно-исследовательская лаборатория ООО «Гурус БиоФарм» и технологическое подразделение ООО «Нокси Лаб». Разрабатывается около 10 проектов.

Принципы работы компании

Научно-исследовательские мероприятия проходят на арендованных площадях в ИЦ «Сколково». Все процедуры проводятся на современном оборудовании, которое было приобретено самостоятельно. В штате компании трудится около 10 постоянных сотрудников, в основном химики и биологи. Gurus BioPharm работает по двум направлениям: разработка лекарственных препаратов и создание косметологических средств. Для справки: такая исследовательская деятельность лицензированию не подлежит, но выпуск лекарственных препаратов должен лицензироваться.

Разработка фармакологической продукции производится в несколько этапов. Изначально любой проект инновационного препарата проходит различные экспертизы и комплекс первичных исследований (по токсикологии, механизму воздействия, специфической активности и другим параметрам) в лаборатории Gurus BioPharm. Этот этап длится от 6 до 12 месяцев. Если перспективность проекта доказана, он попадает в портфель инвестиционного фонда «Гурус БиоВенче». Фонд на данном этапе развития обслуживает только проекты аффилированной исследовательской лаборатории. Далее начинается поиск частных инвесторов, участие в государственных конкурсах. Вся разработка патентуется как в России, так и за рубежом. Примерная общая стоимость получения патентов в США, Японии, Австралии, ЕС, Бразилии равна 1,5 млн рублей. Изначально при небольшом количестве проектов патентами и регистрацией товарных знаков занимались сотрудники «Сколково», однако потом потребовался собственный специалист, так как регистрация прав на технологию в некоторых государствах может происходить до нескольких лет.

Следующий этап — доклинические исследования. Он заключается в проверке работы молекул препарата на клеточном уровне (в пробирках), их испытаниях на животных и прочие мероприятия. Это сложная стадия, которая может длиться более 5 лет. Если доклинические исследования подтвердили эффективность лекарства, его безопасность, начинаются клинические исследования на людях (бывает 2 фазы таких мероприятий).

Gurus BioPharm после завершения 1 или 2 фазы клинических испытаний продает проект лекарственного средства международным или отечественным фармакологическим компаниям, которые занимаются уже регистрацией и выпуском лекарственной продукции.

Доклинические исследования первых двух лекарств оценивались в 88 млн рублей. Из этой суммы 22 млн рублей — собственные средства группы «Гурус» и частные инвестиции от партнеров по предшествующими бизнесу основателей, остальная часть — государственное финансирование. По словам Игоря Тетерина, именно привлечение инвестиций на этой фазе разработки биофармацевтических продуктов является самым сложным, так как инвесторы неохотно вкладывают средства в продукт, эффективность которого еще не доказана. Количество в России таких инвесторов можно сосчитать на пальцах.

Второе направления деятельности — создание высокоэффективных косметологических средств. Однако схема работы по этому направлению отличается — регистрацией готового продукта, его выпуском и реализацией на отечественном рынке. Именно это направление будет приносить в ближайшей перспективе доход организации.

Имеющиеся проекты

Сейчас ведется разработка 5 инновационных лекарственных препаратов, которые призваны излечить или скорректировать такие заболевания, как астма, болезнь Паркинсона, критическая ишемия конечностей, хроническая обструктивная болезнь лёгких, эректильная дисфункция. Разработки по последним трем недугам находятся на начальной стадии. Лекарство от астмы GUR-501 уже готово к клиническим исследованиям на людях.

Также сейчас проводится проверка безопасности косметики, направленной на антивозрастное восстановление кожи и ее обновление после хирургической косметологии.

Уже разработаны высокоэффективные косметические средства для стимуляции роста волос ресниц, головы и бровей, которые прошли процедуру регистрации продукта, клинические испытания на людях и запускаются в продажу. Целевая аудитория широкая — средствами могут пользоваться как мужчины, так и женщины разных возрастных категорий.

Продукты будут реализовываться в разрабатываемом интернет-магазине. Сейчас также создается маркетинговый отдел, который будет заниматься продвижением (интернет-маркетинг, публикации в СМИ, участие в семинарах и конференциях) и продажами продуктов. После обкатки бизнес-процессов будет проводиться работа с врачами для популяризации косметики. По словам Игоря Тетерина, в планах Gurus BioPharm — возможный выход на международные рынки, так как пробные продажи уже показали положительную динамику и спрос.

Об инвестициях в биофармацевтические разработки

Проекты создания инновационных лекарственных препаратов и медицинской техники — слишком сложные, капиталоемкие и непонятные для многих частных инвесторов, но в то же время такие инновации являются лидерами по доходности. Индекс доходности биомедицинских стартапов, по данным Thomson Reuters — VC Index, показал доходность 540% в период 2010—2015 гг. По словам Игоря Тетерина, от входа в проект до успешного выхода может понадобиться не один миллион долларов: в среднем до 5 лет ожидания и крепкие нервы, чтобы пережить возможные риски. В западных странах затраты намного выше — десятки миллионов долларов, а сроки и риски — примерно те же. Ежегодно просматривается рост интереса инвестиционных компаний в подобные проекты.

Можно ли доверять дженерикам или оригинальные препараты всегда лучше? Разберемся, как устроено производ­ство лекарств у нас в стране и во всем мире. Наш эксперт - председатель координационного совета Национальной ассоциации производителей фармацевтической продукции и медицинских изделий, заслуженный работник здравоохранения РФ Надежда Дараган .

Новый или следующий?

Чтобы понять, как создаются новые лекарства, для начала стоит разобраться с терминами. Под инновационным препаратом понимается некая субстанция, которой ранее не существовало. Ее разработка начинается с подробного изучения болезни и выявления неизвестных до сих пор путей ее развития. Затем на основании полученных данных ученые определяют, каким образом можно повлиять на эти самые пути, чтобы остановить болезнь или обратить ее вспять. И уже после этого можно приступать к созданию молекул или биологических структур, которые и лягут в основу нового лекарства.

Совсем другое дело - это лекарства следующего поколения. В основе таких препаратов тоже лежат новые молекулы или биологические структуры, но действуют они на хорошо изученные звенья развития болезни и известные клетки-мишени. Разумеется, этапы создания инновационных лекарств и препаратов следующего поколения отличаются и по времени, и по стоимости.

От пробирки до таблетки

Итак, предварительные исследования проведены, мишени, на которые может подействовать инновационный препарат, обнаружены, теперь самое время приступать, собственно, к созданию лекарства. На первом этапе устанавливается формула препарата, на втором полученные вещества испытываются в различных условиях на клетках, тканях и животных. Если препарат показал себя безопасным, эффективным и нетоксичным, начинается самый сложный и долгий этап - клинические испытания, когда действие препарата проверяют на людях. И только после этого инновационный препарат выходит на рынок.

Весь этот процесс занимает не один год, и очень многое зависит от того, к­акое лекарство планируется выпустить на рынок. Если средство предназначено для лечения боли в суставах или , разработка может занимать от года до пяти лет, а если речь идет о препарате против рака, генетических или орфанных заболеваний, на его выпуск уходят десятилетия. Что касается стоимости, то разработка может оцениваться от нескольких десятков до сотен миллионов рублей.

Håkan Dahlström Follow/Flickr.com/CC BY 2.0

И вот тут-то и кроется ответ на вопрос: почему в России так мало новых лекарств? Вложить в разработку нового средства сотни миллионов рублей без гарантии, что этот препарат когда-либо появится на рынке (что-то может пойти не так на любом этапе создания лекарства) или что продажа нового средства принесет прибыль, могут позволить себе только очень крупные и богатые фармацевтические компании. Ведь основные финансовые затраты на разработку новых лекарств несут фармкомпании, не государство.

Возможно, ситуация изменится, если государство начнет активно стимулировать фармкомпании к выпуску и разработке новых лекарств и лекарств следующего поколения. Именно на это направлена федеральная целевая программа «Фарма-2020» и разрабатываемая в настоящее время Стратегия развития фармацевтической промышленности в Российской Федерации на период до 2030 года.

Мировой тренд

Впрочем, нельзя сказать, что в вопросе создания новых лекарств мы уж очень сильно отличаемся от других стран. На Западе количество выпускаемых инновационных препаратов и препаратов следующего поколения тоже медленно снижается с каждым годом. И дело не только в деньгах, хотя затраты на разработку - один из ключевых моментов, который тормозит выпуск новых лекарств. Дело еще и в изменившемся подходе к оценке эффективно­сти и безопасности новых лекарственных средств. За последние 20−30 лет контроль стал гораздо строже, и многие разработки так и остаются на стадии разработки.


mararie/Flickr.com/CCBY-SA 2.0

Поэтому и у нас, и во всем мире перед фармкомпаниями часто ставится совсем другая задача. Нужно не создать новое лекарство, а сделать существующие препараты доступнее. Именно поэтому большинство фармацевтических компаний во всем мире нацелено на выпуск дженериков - более дешевых аналогов оригинальных препаратов. Среди экспертов есть мнение, что американские, европейские и транснациональные фармацевтические компании давно закупают более 80% используемых фармацевтических субстанций в Индии и Китае.

Дешевле - значит хуже?

А у нас в стране дженерики часто называют «лекарствами второго сорта» и считается, что если есть возможность выбора, то всегда лучше предпочесть оригинальный препарат. Но такой подход хоть и выгоден аптечным учреждениям, которые получают больше прибыли от дорогих препаратов, верен далеко не всегда. Ведь дженерики дешевле оригиналов не потому, что на их производстве экономят (выпускают их на плохом оборудовании, не контролируют качество), а лишь потому, что на разработку дженерика тратится меньше денег и времени.

В основе дженерика лежит та же фармацевтическая субстанция, что и в основе оригинального препарата. Поэтому главная задача разработчиков дженериков - показать, что действующее вещество доходит до нужного места в организме и действует аналогично оригинальному препарату. Поэтому сказать, что дженерик всегда хуже оригинала, нельзя.

А раз так, при выборе препарата нельзя ориентироваться лишь на его цену. Если перед вами два средства с одним и тем же действующим вещест­вом, далеко не во всех случаях дешёвое окажется хуже дорогого. Поэтому единственный ориентир при выборе препарата - рекомендации врача.

Генрих КЛЕХ, директор отдела медицинских исследований и развития Регионального медицинского центра компании "Эли Лилли", профессор Венского университета:

1. Настоящее инновационное лекарство - это принципиально новый препарат, который лечит болезнь по совершенно иному механизму, чем лекарства-предшественники. Именно такие революционные препараты имеют коммерческий успех на современном рынке. За последние годы фармацевтическая медицина сделала большой шаг вперед.

Прежние традиционные препараты, такие, как аспирин, лечили только симптомы болезни, и это была химическая эра фармацевтики. В последние годы гораздо больше внимания исследователи стали уделять влиянию биологических соединений на рецепторы, с помощью чего можно по-настоящему бороться с причиной заболевания. Так сегодня лечат повышенное давление, болезни сердца и желудочно-кишечного тракта. Особенно биопрепараты успешны при лечении рака.

К современной фармацевтике подключилась генетика, изучающая в числе прочего и генные отклонения. По ним фармацевты устанавливают, какова реакция человеческого индивидуума на конкретное лекарство, как классическое, так и новое. Так гораздо конкретнее, чем прежде, разрабатывается схема лечения больного.

2. Существуют достаточно жесткие требования к эффективности нового лекарства, его безопасности. Причем эти требования существенно изменились за последние 20 лет. Прежде для получения лицензии контролирующим органам было достаточно предоставить данные о проведении 2 - 3 тысяч тестов или исследований нового лекарства. Теперь необходимо исследовать препарат на 8 - 10 тысячах людей. Что касается доступности современного препарата, то в принципе она должна быть максимальной. Но постоянный контроль за его приемом со стороны врача тоже необходим, а покупка (согласно сложившейся западной практике) должна осуществляться строго по рецепту.

3. Создание нового лекарства занимает до 14 лет. Это зависит от того, к какому классу относится данный препарат, насколько хорошо известны публике его "предшественники" и т.д. Исследования могут потребовать от 500 миллионов до миллиарда долларов США. Достаточно сказать, что среди исследованных 100 тысяч молекулярных соединений только тысяча может стать основой для нового лекарства. Из них только 100 молекул будут оказывать активное воздействие на организм пациента. Но и среди них 90% оказываются токсичными, так что в широкую продажу попадают только 10 исходных соединений, а коммерческим успехом пользуются только три. Поэтому фармацевтические фирмы, занимающиеся разработкой новых препаратов, вкладывают в исследования от 14 до 20 процентов своей прибыли.

4. Достаточно перспективно сегодня разрабатывать и продвигать продукты фармакогенетики. Во-первых, ими не лечили прежде. Во-вторых, лечение ряда заболеваний во главе с болезнью Альцгеймера традиционными препаратами не давало положительного результата. Кроме того, фармацевтам всего мира нужно форсировать разработку лекарств против рака. Определенные подвижки есть, но люди продолжают страдать от злокачественных заболеваний, а значит нужно продолжать искать от них панацею. Третья область перспективных исследований - это диабет, поскольку пока нет препарата, который бы боролся с первопричиной болезни. Ведь инсулин только гасит ее последствия.

Олег СУПРЯГА, медицинский директор компании "Никомед Россия-СНГ", д.м.н., профессор:

1. Под современным лекарством часто понимают "модное" лекарство, лекарство, созданное с помощью новых технологий. На мой взгляд, современное лекарство - это то, которое предназначено для лечения современных (имеющихся на настоящий момент) болезней. Структура заболеваний, а также доступность тех или иных лекарств в различных экономических и географических регионах мира разная, следовательно, частота применения различных лекарств также разная. Отсюда, определение современного лекарства для каждого региона будет своим.

2. Оно должно отвечать тем критериям качества, безопасности, доступности, которые может позволить себе общество по отношению к своим членам. Как правило, создается национальный (общественный или государственный) орган, которому делегирована функция контроля качества лекарственных средств. Общество с хорошо развитой экономикой и высокими затратами на здравоохранение может осуществлять нетарифное регулирование, ограничивая или закрывая импорт лекарств на свою территорию (рынок) из других менее экономически развитых государств. Тем самым, защищается и своя фармацевтическая промышленность.

3. Разброс затрат на создание нового лекарства составляет от 5 млн долларов США до 1 млрд долларов США и более. В разных странах по-разному, все зависит от тех критериев, которые диктуются обществом или государством, и которые, в свою очередь, определяются уровнем экономического и технологического развития общества, в частности ее фармацевтической промышленности, готовностью общества, государства или отдельных индивидуумов тратить те или иные суммы денег на лекарства, медицину и здравоохранение.

4. Стратегия компании "Никомед" такова, что она передала доклиническую разработку лекарств (Research and Development (R&D) подразделения) другой компании. В настоящее время компания "Никомед" участвует в разработке лекарств, начиная с уровня клинических исследований. Новые перспективные молекулы, успешно преодолевшие стадию доклинических исследований и доведенные до уровня клинических испытаний, лицензируются у специализированных компаний (биотехнологических, научно-исследовательских центров и т.д.).

При этом компания "Никомед" наряду с клиническими испытаниями осуществляет вывод лекарства на рынок (в основном, европейский) и его маркетинговую поддержку и продажи. Перспективными направлениями развития компании "Никомед" остаются кардиология, в т.ч. интервенционная, неврология, эндокринология, педиатрия, ревматология и другие области медицины.

Рустам ИКСАНОВ, директор Центра научных исследований и разработок (ЦНИиР) ОАО «Нижфарм».
1. Сегодня лекарство рассматривается как товар, а значит, оно является элементом рынка, существует по его законам.

2. Прежде всего, современное лекарство должно иметь обоснованную и доказанную безопасность и эффективность. Совершенно справедливо все большее внимание приобретают вопросы качества. За рубежом существуют очень высокие стандарты, распространяющиеся на все этапы разработки нового лекарства, проведения исследований, его производства. Только строгое соблюдение всех норм и правил может обеспечить гарантии соответствия ожидаемых и реальных свойств препарата.

В настоящее время в России также активно внедряются международные стандарты качества. Достаточно серьезным шагом в этом направлении станет, как я надеюсь, внедрение в России в 2005 году стандартов GMP (качественная производственная практика). Сегодня всего лишь несколько компаний в той или иной степени соответствует таким стандартам.

Немаловажным является вопрос доступности лекарств, который не может решаться без вмешательства государства в эту сферу. Пациенты должны иметь гарантию эффективного и безопасного лечения.

3. Новые лекарства проходят долгий путь, прежде чем займут место на аптечной полке. Необходимо не просто разработать лекарственное средство, нужно провести исследования на животных, клинические исследования, получить государственную регистрацию лекарственного средства. Разработка принципиально нового лекарственного средства за рубежом занимает около 10 лет и стоит порядка полумиллиона долларов. К сожалению, не обладая такими средствами, сегодня Россия практически не занимается разработкой принципиально новых лекарственных средств.

Вместе с тем стоит отметить, что научный потенциал для такой работы в России имеется. Хочется надеяться, что он получит необходимое развитие. В основном, российские компании занимаются разработкой воспроизведенных лекарственных средств, так называемых дженериков. Это требует меньших затрат.

4. Без анализа лекарственного рынка, без отслеживания современных тенденций развития стандартов лечения невозможно правильно оценивать перспективы развития фармакологии. Например, наша компания активно использует самые разные маркетинговые исследования, консультации ведущих специалистов для определения своих перспективных направлений.

Статья дает базовое представление о том, как в современном мире создаются лекарства. Рассмотрены история драг-дизайна, основные понятия, термины и технологии, применяющиеся в этой сфере. Особое внимание уделено роли вычислительной техники в этом наукоемком процессе. Описаны методы поиска и валидации биологических мишеней для лекарственных препаратов, высокопроизводительный скрининг, процессы клинических и доклинических испытаний лекарств а также применение компьютерных алгоритмов.

Драг-дизайн: история

Индустрия направленного конструирования новых лекарственных препаратов, или, как этот процесс называют, калькируя с английского за неимением такого же короткого и удобного русского термина, драг-дизайн (drug - лекарственный препарат, design - проектирование, конструирование) - сравнительно молодая дисциплина, но все же не настолько молодая, как это принято считать .

Рисунок 1. Пауль Эрлих, впервые выдвинувший гипотезу о существовании хеморецепторов и их возможного использования в медицине.

Национальная библиотека медицины США

К концу девятнадцатого века химия достигла значительной степени зрелости. Была открыта таблица Менделеева, разработана теория химической валентности, теория кислот и оснований, теория ароматических соединений. Этот несомненный прогресс дал толчок и медицине. Новые химические продукты - синтетические краски, производные смол, начали использоваться в медицине для дифференциального окрашивания биологических тканей. В 1872–1874 годах в Страсбурге, в лаборатории известного анатома Вильгельма Валдеера, студент-медик Пауль Эрлих (рис. 1), изучавший селективную окраску тканей, впервые выдвинул гипотезу о существовании хеморецепторов - специальных тканевых структур, специфически взаимодействующих с химическими веществами, и постулировал возможность использования этого феномена в терапии различных заболеваний. Позже, в 1905 году, эта концепция была расширена Дж. Лэнгли, предложившим модель рецептора как генератора внутриклеточных биологических импульсов, который активируется агонистами и инактивируется антагонистами.

Этот момент можно считать рождением хемотерапии и новым витком в фармакологии, и в 20-м веке это привело к беспрецедентному успеху в клинической медицине. Одним из самых громких достижений фармакологической промышленности 20-го века можно по праву назвать пенициллин, антибиотик, открытый в 1929 году Александром Флемингом и исследованный впоследствии Чейном и Флори. Пенициллин, обладающий антибактериальным действием, сослужил человечеству незаменимую службу в годы Второй мировой войны, сохранив жизни миллионам раненых.

Пораженные успехом пенициллина, многие фармацевтические компании открыли собственные микробиологические подразделения, возлагая на них надежды по открытию новых антибиотиков и других лекарств. Последовавшие успехи биохимии привели к тому, что стало возможным теоретически предсказывать удачные мишени для терапевтического воздействия, а также модификации химических структур лекарств, дающих новые соединения с новыми свойствами. Так, антибиотик сульфаниламид в результате ряда исследований дал начало целым семействам гипогликемических, диуретических и антигипертензивных препаратов. Драг-дизайн поднялся на качественно новый уровень, когда разработка новых лекарственных соединений стала не просто плодом работы воображения химиков, а результатом научного диалога между биологами и химиками.

Новый прорыв был связан с развитием молекулярной биологии, позволившей привлечь к разработкам информацию о геноме, клонировать гены, кодирующие терапевтически важные биологические мишени и экспрессировать их белковые продукты.

Завершение ознаменовавшего начало нового тысячелетия проекта «геном человека», в результате которого была прочитана полная информация, содержащаяся в ДНК человека, явилось настоящим триумфом раздела биологической науки, получившей название «геномика». Геномика дает совершенно новый подход к поиску новых терапевтически важных мишеней, позволяя искать их непосредственно в нуклеотидном тексте генома.

Геном человека содержит 12000–14000 генов, кодирующих секретируемые белки. На данный момент в фармацевтической промышленности используется не более 500 мишеней. Существуют исследования, говорящие, что многие заболевания являются «мультифакторными», то есть обуславливаются дисфункцией не одного белка или гена, а 5–10 связанных между собой белков и кодирующих их генов. Исходя из этих соображений можно заключить, что количество исследуемых мишеней должно увеличиться минимум в 5 раз.

Биохимическая классификация исследуемых в настоящее время биологических мишеней и их численное соотношение представлены на рисунке 2. Особо следует отметить, что бóльшую (>60%) долю рецепторов составляют мембранные G-белок сопряженные рецепторы (GPCR , G-protein coupled receptors ), а суммарный объем продаж лекарств, направленных на взаимодействие с ними, равняется 65 млрд. долл. ежегодно, и продолжает расти.

Основные понятия

Рисунок 3. Три типа влияния лигандов на клеточный ответ: увеличение ответа (положительный агонгист ), постоянство ответа, но конкурирование за связывании с другими лигандами (нейтральный агонист ) и уменьшение ответа (антагонист ).

Основные понятия, используемые в драг-дизайне - это мишень и лекарство . Мишень - это макромолекулярная биологическая структура, предположительно связанная с определенной функцией, нарушение которой приводит к заболеванию и на которую необходимо совершить определенное воздействие. Наиболее часто встречающиеся мишени - это рецепторы и ферменты. Лекарство - это химическое соединение (как правило, низкомолекулярное), специфически взаимодействующее с мишенью и тем или иным образом модифицирующее клеточный ответ, создаваемый мишенью.

Если в качестве мишени выступает рецептор, то лекарство будет, скорее всего, его лигандом, то есть соединением, специфическим образом взаимодействующим с активным сайтом рецептора. В отсутствие лиганда рецептор характеризуется собственным уровнем клеточного ответа - так называемой базальной активностью.

По типу модификации клеточного ответа лиганды делят на три группы (рис. 3):

  1. Агонисты увеличивают клеточный ответ.
  2. Нейтральные агонисты связываются с рецептором, но не изменяют клеточный ответ по сравнению с базальным уровнем.
  3. Обратные агонисты, или антагонисты понижают клеточный ответ.

Степень взаимодействия лиганда с мишенью измеряют аффинностью, или сродством. Аффинность равна концентрации лиганда, при которой половина мишеней связана с лигандом. Биологической же характеристикой лиганда является его активность, то есть та концентрация лиганда, при которой клеточный ответ равен половине максимального.

Определение и валидация мишени

Один из самых ранних и самых важных этапов драг-дизайна - выбрать правильную мишень, воздействуя на которую можно специфическим образом регулировать одни биохимические процессы, по возможности не затрагивая при этом другие. Однако, как уже было сказано, такое не всегда возможно: далеко не все заболевания являются следствием дисфункции только одного белка или гена.

С наступлением постгеномной эры, определение мишеней происходит с использованием методов сравнительной и функциональной геномики. На основании филогенетического анализа в геноме человека выявляются гены, родственные генам, функции чьих белковых продуктов уже известны, и эти гены могут быть клонированы для дальнейшего исследования.

Однако мишени, чьи функции определены лишь гипотетически, не могут служить отправной точкой для дальнейших исследований. Необходима многоступенчатая экспериментальная валидация, в результате которой может быть понята конкретная биологическая функция мишени применительно к фенотипическим проявлениям исследуемой болезни.

Существует несколько методов экспериментальной валидации мишеней:

  • геномные методы заключаются в подавлении синтеза мишени в тестовой системе путем получения мутантов с генным нокаутом (в которых ген мишени попросту отсутствует) или использования РНК-антисмысловых последовательностей, «выключающих» тот или иной ген;
  • мишени можно инактивировать с помощью моноклональных антител или облучая мишень, модифицированную хромофором, лазерным излучением;
  • мишени можно инактивировать с помощью низкомолекулярных лигандов-ингибиторов;
  • также можно непосредственно производить валидацию мишени, устанавливая ее взаимодействие с тем или иным соединением методом плазмонного резонанса.

Уровень валидации мишени повышается с числом модельных животных (специальных генетических линий лабораторных животных), в которых модификация мишени приводит к желаемому фенотипическому проявлению. Высшим уровнем валидации является, несомненно, демонстрация того, что модификация мишени (например, блокирование или нокаут рецептора или ингибирование фермента) приводит к клинически идентифицируемым и воспроизводимым симптомам у человека, однако, понятно, такое можно наблюдать достаточно редко.

Кроме того, при выборе мишени не следует забывать о таком явлении, как полиморфизм - то есть о том, что ген может существовать в разных изоформах у разных популяций или рас людей, что приведет к разному эффекту лекарства на разных больных.

Когда мишень уже найдена и проверена на валидность, начинаются непосредственные исследования, результатом которых являются многочисленные структуры химических соединений, лишь немногим из которых суждено стать лекарствами.

Исследование всех возможных с химической точки зрения лигандов («химическое пространство») невозможно: простая прикидка показывает, что возможно не менее 10 40 различных лигандов, в то время как с момента возникновения вселенной прошло лишь ~10 17 секунд. Поэтому на возможную структуру лигандов накладывается ряд ограничений, который существенно сужает химическое пространство (оставляя его, тем не менее, совершенно необъятным). В частности, для сужения химического пространства накладываются условия подобия лекарству (drug-likeness ), которые в простом случае можно выразить правилом пяти Липинского, согласно которому соединение, чтобы «быть похожим» на лекарство, должно:

  • иметь менее пяти атомов-доноров водородной связи;
  • обладать молекулярным весом менее 500;
  • иметь липофильность (log P - коэффициент распределения вещества на границе раздела вода-октанол) менее 5;
  • иметь суммарно не более 10 атомов азота и кислорода (грубая оценка количества акцепторов водородной связи).

В качестве стартового набора лигандов, исследуемых на способность связываться с мишенью, обычно используют так называемые библиотеки соединений, либо поставляемые на коммерческой основе специализирующимися на этом компаниями, либо содержащиеся в арсенале фармацевтической компании, проводящей разработку нового лекарства или заказавшей его у сторонней фирмы. Такие библиотеки содержат тысячи и миллионы соединений. Этого, конечно, совершенно недостаточно для тестирования всех возможных вариантов, но этого, как правило, и не требуется. Задачей на этом этапе исследования является выявление соединений, способных после дальнейшей модификации, оптимизации и тестирования дать «кандидат» - соединение, предназначенное для тестирования на животных (доклинические исследования) и на людях (клинические исследования).

Этот этап осуществляется с помощью высокопроизводительного скрининга (in vitro ) или его компьютерного (in silico ) анализа - высокопроизводительного докинга.

Комбинаторная химия и высокопроизводительный скрининг

Скринингом называется оптимизированная конвейеризованная процедура, в результате которой большое количество химических соединений (>10 000) проверяется на аффинность или активность по отношению к специальной тестовой (имитирующей биологическую) системе. По производительности различают разные виды скрининга:

  • низкопроизводительный (10000–50000 образцов);
  • среднепроизводительный (50000–100000 образцов);
  • высокопроизводительный (100000–5000000+ образцов).

Для скрининга как для «промышленной» процедуры очень критична эффективность, стоимость и время, потраченное на операцию. Как правило, скрининг производится на роботизированных установках, способных работать в круглосуточном и круглогодичном режиме (рис. 4).

Рисунок 4. Аппаратура, используемая для высокопроизводительного скрининга. А - Роботизированная пипетка, в автоматическом высокопроизводительном режиме наносящая образцы тестируемых соединений в плашку с системой для скрининга. Типичное количество углублений на плашке - тысячи. Объем системы в одной лунке - микролитры. Объем вносимого образца - нанолитры. Б - Установка для высокопроизводительного скрининга и считывания флуоресцентного сигнала Mark II Scarina. Работает с плашками, содержащими 2048 углублений (NanoCarrier). Полностью автоматическая (работает в круглосуточном режиме). Производительность - более 100 000 лунок (образцов) в день.

Принцип скрининга достаточно прост: в плашки, содержащие тестовую систему (например, иммобилизованная мишень или специальным образом модифицированные целые клетки), робот раскапывает из пипетки исследуемые вещества (или смесь веществ), следуя заданной программе. Причем на одной плашке могут находиться тысячи «лунок» с тестовой системой, и объем такой лунки может быть очень мал, так же как и объем вносимой пробы (микро- или даже нанолитры).

Потом происходит считывание данных с плашки, говорящее о том, в какой лунке обнаружена биологическая активность, а в какой - нет. В зависимости от используемой технологии детектор может считывать радиоактивный сигнал, флюоресценцию (если система построена с использованием флуоресцентных белков), биолюминесценцию (если используется люциферин-люциферазная система или ее аналоги), поляризацию излучения и многие другие параметры.

Обычно в результате скрининга количество тестируемых соединений сокращается на 3–4 порядка. Соединения, для которых в процессе скрининга выявлена активность выше заданного значения, называются прототипами. Однако следует понимать, что такие «удачи» еще очень и очень далеки от конечного лекарства. Лишь те из них, которые сохраняют свою активность в модельных системах и удовлетворяют целому ряду критериев, дают предшественников лекарств, которые используются для дальнейших исследований.

Как уже было сказано, даже библиотеки, содержащие более миллиона соединений, не в состоянии представить все возможное химическое пространство лигандов. Поэтому при проведении скрининга можно выбрать две различные стратегии: диверсификационный скрининг и сфокусированный скрининг . Различие между ними заключается в составе используемых библиотек соединений: в диверсификационном варианте используют как можно более непохожие друг на друга лиганды с целью охватить как можно большую область химического пространства, при сфокусированном же, наоборот, используют библиотеки родственных соединений, полученных методами комбинаторной химии, что позволяет, зная приблизительную структуру лиганда, выбрать более оптимальный его вариант. Здравый смысл подсказывает, что в масштабном проекте по созданию нового лекарственного препарата следует использовать оба этих подхода последовательно - сначала диверсификационный, с целью определения максимально различных классов удачных соединений, а потом - сфокусированный, с целью оптимизации структуры этих соединений и получения рабочих прототипов.

Если для мишени известно так называемое биологическое пространство, то есть какие-либо характеристики лигандов (размер, гидрофобность и т.д.), которые могут с ней связываться, то при составлении библиотеки тестируемых соединений выбирают лиганды, попадающие в «пересечение» биологического и химического пространств, так как это заведомо повышает эффективность процедуры.

Структуры прототипов, полученные в результате скрининга, далее подвергаются разнообразным оптимизациям, проводимым в современных исследованиях, как правило, в тесном сотрудничестве между различными группами исследователей: молекулярными биологами, фармакологами, моделистами и медицинскими химиками (рис. 5).

Рисунок 5. Фармакологический цикл. Группа молекулярной биологии отвечает за получение мутантных мишеней, группа фармакологии - за измерение данных по активности и аффинности синтезированных лигандов на мишенях дикого типа и мутантных, группа моделирования - за построение моделей мишеней, предсказание их мутаций и предсказание структур лигандов, группа медицинской химии - за синтез лигандов.

С каждым оборотом такого «фармакологического цикла» прототип приближается к предшественнику и затем к кандидату, который уже тестируется непосредственно на животных (доклинические испытания) и на людях - в процессе клинических испытаний.

Таким образом, роль скрининга заключается в существенном сокращении (на несколько порядков) выборки прототипов (рис. 6).

Рисунок 6. Роль высокопроизводительного скрининга в разработке нового лекарственного препарата. Скрининг, будь то его лабораторный (in vitro ) или компьютерный (in silico ) вариант, - главная и наиболее ресурсоемкая процедура по выбору стартовых структур лекарств (прототипов) из библиотек доступных соединений. Выходные данные скрининга часто являются отправной точкой для дальнейшего процесса разработки лекарства.

Клинические исследования

Медицина - это область, в которой ни в коем случае не следует спешить. В особенности, если речь идет о разработке новых лекарственных препаратов. Достаточно вспомнить историю с препаратом Талидамидом, разработанным в конце 50-х в Германии, применение которого беременными женщинами приводило к рождению детей с врожденными пороками конечностей, вплоть до их полного отсутствия. Этот побочный эффект не был вовремя выявлен во время клинических исследований в силу недостаточно тщательного и аккуратного тестирования.

Поэтому в настоящее время процедура тестирования лекарств достаточно сложна, дорога и требует значительного времени (2–7 лет тестирования в клинике и от 100 миллионов долларов на одно соединение-кандидат, см. рис. 7).

Рисунок 7. Процесс разработки нового лекарства занимает от 5 до 16 лет. Затраты на клиническое тестирование одного соединения-кандидата составляют более 100 миллионов долларов США. Суммарная стоимость разработки, с учетом препаратов, не достигших рынка, часто превышает 1 миллиард долларов.

Прежде всего, еще до поступления в клинику, препараты исследуются на токсичность и канцерогенность, причем исследования должны проводиться, кроме систем in vitro , как минимум на двух видах лабораторных животных. Токсичные препараты, само собой, в клинику не попадают, за исключением тех случаев, когда они предназначены для терапии особо тяжелых заболеваний и не имеют пока менее токсичных аналогов.

Кроме того, препараты подвергаются фармакокинетическим исследованиям, то есть тестируются на такие физиологические и биохимические характеристики, как поглощение, распределение, метаболизм и выведение (по-английски обозначается аббревиатурой ADME - Absorption, Distribution, Metabolism and Extraction ). Биодоступность, например, является подхарактеристикой введения препарата в организм, характеризующая степень потери им биологических свойств при введении в организм. Так, инсулин, принимаемый перорально (через рот), имеет низкую биодоступность, так как, будучи белком, расщепляется желудочными ферментами. Поэтому инсулин вводят либо подкожно, либо внутримышечно. По этой же причине часто разрабатывают препараты, действующие аналогично своим природным прототипам, но имеющие небелковую природу.

Юридически процесс клинических исследований новых препаратов имеет очень много нюансов, так как они требуют огромного количества сопроводительной документации (в сумме несколько тысяч страниц), разрешений, сертификаций и т.д. Кроме того, многие формальные процедуры сильно разнятся в разных странах в силу различного законодательства. Поэтому, для решения этих многочисленных вопросов, существуют специальные компании, принимающие от крупных фармацевтических компаний заказ на проведение клинических испытаний и перенаправляющие их в конкретные клиники, сопровождая весь процесс полной документацией и следя, чтобы никакие формальности не были нарушены.

Роль вычислительной техники в драг-дизайне

В настоящее время в драг-дизайне, как и в большинстве других наукоемких областей, продолжает увеличиваться роль вычислительной техники. Следует сразу оговорить, что современный уровень развития компьютерных методик не позволяет разработать новый лекарственный препарат, используя только компьютеры. Основные преимущества, которые дают вычислительные методы в данном случае - это сокращение времени выпуска нового лекарства на рынок и снижение стоимости разработки.

Основные компьютерные методы, используемые в драг-дизайне, это:

  • молекулярное моделирование (ММ);
  • виртуальный скрининг;
  • дизайн новых лекарственных препаратов de novo ;
  • оценка свойств «подобия лекарству»;
  • моделирование связывания лиганд-мишень.

Методы ММ, основывающиеся на структуре лиганда

В случае, если ничего не известно про трехмерную структуру мишени (что случается достаточно часто), прибегают к методикам создания новых соединений исходя из информации о структуре уже известных лигандов и данных по их активности.

Подход основывается на общепринятой в химии и биологии парадигме, гласящей, что структура определяет свойства. Основываясь на анализе корреляций между структурой известных соединений и их свойствами, можно предсказать структуру нового соединения, обладающего желаемыми свойствами (или же, наоборот, для известной структуры предсказать свойства). Причем, этот подход используется как при модификации известных структур с целью улучшения их свойств, так и при поиске новых соединений используя скрининг библиотек соединений.

Методы определения похожести молекул (или методы отпечатков пальцев) состоят в дискретном учете определенных свойств молекулы, называемых дескрипторами (например, число доноров водородной связи, число бензольных колец, наличие определенного заместителя в определенном положении и т.д.) и сравнивании получившегося «отпечатка» с отпечатком молекулы с известными свойствами (используемой в качестве образца). Степень похожести выражается коэффициентом Танимото, изменяющимся в диапазоне 0–1. Высокая похожесть предполагает близость свойств сравниваемых молекул, и наоборот.

Методы, основывающиеся на известных координатах атомов лиганда, называются методами количественной связи между структурой и активностью (QSAR , Quantitative Structure-Activity Relationship ). Один из наиболее используемых методов этой группы - метод сравнительного анализа молекулярных полей (CoMFA , Comparative Molecular Field Analysis ). Этот метод заключается в приближении трехмерной структуры лиганда набором молекулярных полей, отдельно характеризующих его стерические, электростатические, донорно-акцепторные и другие свойства. CoMFA модель строится на основании множественного регрессионного анализа лигандов с известной активностью и описывает лиганд, который должен хорошо связываться с исследуемой мишенью, в терминах молекулярных полей. Полученный набор полей говорит, в каком месте у лиганда должен быть объемный заместитель, а в каком - маленький, в каком полярный, а в каком - нет, в каком донор водородной связи, а в каком - акцептор, и т.д.

Модель может использоваться в задачах виртуального скрининга библиотек соединений, выступая в данном случае аналогом фармакофора. Самым главным недостатком этого метода является то, что он обладает высокой предсказательной силой лишь на близких классах соединений; при попытке же предсказать активность соединения другой химической природы, чем лиганды, использовавшиеся для построения модели, результат может оказаться недостаточно достоверным.

Схема возможного процесса создания нового лекарства, основывающегося на структуре лиганда, приведена на рисунке 8.

Рисунок 8. Пример молекулярного моделирования, основывающегося на структуре лиганда. Для циклического пептида уротензина II (внизу слева ) определена трехмерная структура методом ЯМР спектроскопии водного раствора (вверху слева ). Пространственное взаиморасположение аминокислотных остатков мотива ТРП-ЛИЗ-ТИР, являющегося важным для биологической функции, было использовано для построения модели фармакофора (вверху справа ). В результате виртуального скрининга найдено новое соединение, демонстрирующее биологическую активность (внизу справа ).

Очевидно, что достоверность моделирования, как и эффективность всего процесса конструирования нового лекарства, можно существенно повысить, если учитывать данные не только о структуре лигандов, но и о структуре белка-мишени. Методы, учитывающие эти данные, носят общее название «драг-дизайн, основывающийся на структурной информации» (SBDD , Structure-Based Drug Design ).

Методы ММ, основывающиеся на структуре белка

В связи с растущим потенциалом структурной биологии, все чаще можно установить экспериментальную трехмерную структуру мишени, или построить ее молекулярную модель, основываясь на гомологии с белком, чья трехмерная структура уже определена.

Наиболее часто используемые методы определения трехмерной структуры биомакромолекул с высоким разрешением (Часто, когда экспериментальная структура мишени все же недоступна, прибегают к моделированию на основании гомологии - методу, для которого показано, что построенная им модель обладает достаточно высоким качеством, если гомология между структурным шаблоном и моделируемым белком не ниже 40%.

Особенно часто к моделированию по гомологии прибегают при разработке лекарств, направленных на G-белок сопряженные рецепторы, так как они, будучи мембранными белками, очень плохо поддаются кристаллизации, а методу ЯМР пока недоступны такие большие белки. Для этого семейства рецепторов известна структура только одного белка - бычьего родопсина, полученная в 2000 г. в Стэнфорде, которая и используется в качестве структурного шаблона в подавляющем числе исследований .

Обычно при исследовании, базирующемся на структурных данных, учитывают также данные по мутагенезу мишени, чтобы установить, какие аминокислотные остатки наиболее важны для функционирования белка и связывания лигандов. Эти сведения особенно ценны при оптимизации построенной модели, которая, будучи лишь производной от структуры белка-шаблона, не может учитывать всей биологической специфики моделируемого объекта.

Трехмерная структура мишени, кроме того, что может объяснить молекулярный механизм взаимодействия лиганда с белком, используется в задачах молекулярного докинга, или компьютерном моделировании взаимодействия лиганда с белком. Докинг использует в качестве стартовой информации трехмерную структуру белка (на данном этапе развития технологии, как правило, конформационно неподвижную), и структуру лиганда, конформационная подвижность и взаиморасположение с рецептором которого моделируется в процессе докинга. Результатом докинга является конформация лиганда, наилучшим образом взаимодействующая с белковым сайтом связывания, с точки зрения оценочной функции докинга, приближающей свободную энергию связывания лиганда. Реально, в силу множества приближений, оценочная функция далеко не всегда коррелирует с соответствующей экспериментальной энергией связывания.

Докинг позволяет сократить затраты средств и времени за счет проведения процедуры, аналогичной высокопроизводительному скринингу, на компьютерных комплексах. Эта процедура называется виртуальным скринингом, и основным ее преимуществом является то, что для реальных фармакологических испытаний нужно приобретать не целую библиотеку, состоящую из миллиона соединений, а только «виртуальные прототипы». Обычно же, с целью избежания ошибок, скрининг и докинг используются одновременно, взаимно дополняя друг друга (рис. 9).

Рисунок 9. Два варианта совместного использования высокопроизводительного скрининга и молекулярного моделирования. Сверху: последовательный итеративный скрининг. На каждом шаге процедуры используется сравнительно небольшой набор лигандов; по результатам скрининга строится модель, объясняющая связь между структурой и активностью. Модель используется для выбора следующего набора лигандов для тестирования. Снизу: «разовый» скрининг. На каждом шаге модель строится по обучающей выборке и используется для предсказаний на тестовой выборке.

С увеличением компьютерных мощностей и появлением более корректных и физичных алгоритмов, докинг будет лучше оценивать энергию связывания белка с лигандом, начнет учитывать подвижность белковых цепей и влияние растворителя. Однако, неизвестно, сможет ли виртуальный скрининг когда-нибудь полностью заменить реальный биохимический эксперимент; если да - то для этого необходим, очевидно, качественно новый уровень алгоритмов, неспособных на сегодняшний день абсолютно корректно описать взаимодействие лиганда с белком.

Одно из явлений, иллюстрирующих несовершенство алгоритмов докинга, - парадокс похожести. Этот парадокс заключается в том, что соединения, структурно совсем немного различающиеся, могут иметь драматически различную активность, и в то же время с точки зрения алгоритмов докинга быть практически неразличимыми.

Прототипы лекарства можно получать не только выбирая из уже подготовленной базы данных соединений. Если есть структура мишени (или хотя бы трехмерная модель фармакофора), возможно построение лигандов de novo, используя общие принципы межмолекулярного взаимодействия. При этом подходе в сайт связывания лиганда помещается один или несколько базовых молекулярных фрагментов, и лиганд последовательно «наращивается» в сайте связывания, подвергаясь оптимизации на каждом шаге алгоритма. Полученные структуры, так же, как и при докинге, оцениваются с помощью эмпирических оценочных функций.

Ограничения применения компьютерных методов

Несмотря на всю свою перспективность, компьютерные методы имеют ряд ограничений, которые необходимо иметь ввиду, чтобы правильно представлять себе возможности этих методов.

Прежде всего, хотя идеология in silico подразумевает проведение полноценных компьютерных экспериментов, то есть экспериментов, результаты которых ценны и достоверны сами по себе, необходима обязательная экспериментальная проверка полученных результатов. То есть, подразумевается тесное сотрудничество научных групп, проводящих компьютерный эксперимент, с другими экспериментальными группами (рис. 5).

Кроме того, компьютерные методы пока не в силах учесть всего разнообразия влияния лекарственного препарата на организм человека, поэтому эти методы не в силах ни упразднить, ни даже существенно сократить клиническое тестирование, занимающее основную долю времени в разработке нового препарата.

Таким образом, на сегодняшний день роль компьютерных методов в драг-дизайне сводится к ускорению и удешевлению исследований, предшествующих клиническим испытаниям.

Перспектива драг-дизайна