Они учились на одном курсе. Долгое время Ира не обращала на него никакого внимания. До того самого семинара. Олег вызвался прочитать доклад про теорию происхождения речи у первобытных людей. Сама тема уже навевала скуку. Пробудил ее от грез громкий смех соучеников. Прислушавшись, она внезапно увлеклась - Олег говорил складно, интересно, много шутил и держался перед целой сотней однокурсников очень уверенно. Взгляд Иры невольно оценивающе скользнул по его фигуре - широкие плечи, развитая мускулатура. Он повернулся, чтобы что-то нарисовать на доске, и в этот момент Ира стыдливо поймала себя на том, что смотрит на его ягодицы…

К щекам прилила кровь, а руки внезапно вспотели. Ира вспомнила, что совсем недавно читала свежее исследование, где говорилось, что женщин в мужчинах привлекает прежде всего атлетическое телосложение, очевидные признаки физической силы.

Хм, но это не про меня. Мне главное, чтобы был умным, веселым, добрым, нежным и заботливым.

И тут Олег повернулся - и посмотрел именно на нее, прямо в глаза, долго, взяв солидную паузу. Вокруг его глаз собрались озорные морщинки, а лицо как будто осветилось теплым светом.

Единственный из всех

«Почему Олег не выходит у меня из головы? - именно этот вопрос мучил Иру уже неделю. - Чем бы я ни занималась, мысли постоянно возвращаются к нему снова и снова. Более того, мне кажется, что он самый лучший среди всех парней! Единственный и неповторимый!».

«Да все просто, - пришла на выручку лучшая подруга Иры отличница Люба. - Сейчас я тебе все объясню.

Ученые полагают, что в основе любви лежат три фактора: отбор предпочитаемого партнера, установление с ним близости и сексуальное влечение. Сейчас у тебя доминирует первый фактор. Наш мозг в ходе эволюции обрел способность выделять одного потенциального партнера из многих. Почему так произошло? Существует множество гипотез, которые это объясняют, - например, про «эффект бабушек».

В какой-то момент (в позднем палеолите или раннем неолите) продолжительность жизни женщин увеличилась, пожилые дамы стали помогать заботиться о потомстве своим дочерям, что позволило последним иметь больше детей. Это в свою очередь закрепило «долгожительство» в человеческой популяции и привело также к росту продолжительности жизни мужчин. Но тут возникла опасная ситуация - старики уже были неспособны эффективно охотиться, а потому не покидали поселений, зато еще вполне могли иметь детей. В итоге из-за «эффекта бабушек» количество фертильных женщин по отношению к числу способных к продолжению рода мужчин уменьшилось (моделирование показывает, что пропорция могла достигать 156 мужчин к 100 женщинам в детородном возрасте). Все это привело к резкому обострению конкуренции за женщин, усугубленной долговременным отсутствием молодых мужчин в селениях.

Чем больше пара занимается любовью, тем больше у них вырабатывается гормонов привязанности и сильнее взаимная любовь. Кстати, тут вот два петербургских исследователя и параллельно практика йоги - физиолог Ринад Минвалеев и математик Анатолий Иванов - поставили эксперимент, в котором установили, что у женщин есть два типа профиля тонуса вегетативной нервной системы и кровообращения во время секса. При этом один из них приводит к истощению сил женщины (условно - симпатический профиль), а второй, парасимпатический, наоборот, дает энергию и жизненные силы. При этом если женщина достигает такой реакции в процессе полового акта, то и мужчина вслед за ней также «перестраивает» свой профиль реакции на парасимпатический.

Смотри, американские ученые показали, что , тем сильнее будет привязанность друг к другу в отношениях, а значит, и продлятся они дольше. Однако такая страстная любовь не может длиться больше двух-трех лет по одной простой причине - организм не может поддерживать столь высокий уровень выработки дофамина, норадреналина и фенилэтиламина на протяжении длительного времени. Вы волей-неволей взгляните друг на друга трезвыми глазами, поймете взаимные недостатки. И вот тут на первый план выйдет не страсть, а привязанность.

Здесь также важны будут гормоны окситоцин и вазопрессин, но одновременно и совсем нематериальные вещи. Так, психологи показали, что чем больше мы идеализируем того, кого любим, тем прочнее связи на этапе, когда привязанности важнее страсти. В этом случае мы легче прощаем обнаруженные недостатки, так как образ в нашей голове сильнее.

Более того, та же Хелена Фишер и Артур Арон обнаружили пары, прожившие вместе в среднем около 21 года и утверждавшие, что все еще сохраняют романтичный настрой. Исследование их мозга показало, что, как и у влюбленных юных пар, у них сохраняется высокая активность в «системе вознаграждения» при мыслях о супруге и даже активизируется задняя часть поясной извилины!

Иными словами, они сохранили, как это не удивительно, новизну и концентрацию внимания на партнере сквозь десятилетия.

Даниил Кузнецов

По данным Всемирной организации здравоохранения, около 400 миллионов человек всех возрастов страдают от депрессии. Эти шокирующие цифры делают недуг основной причиной инвалидности.

В борьбе за потребителя все средства хороши

Фармацевтические компании не могли пройти мимо столь лакомого куска прибыли. Огромный целевой рынок антидепрессантов является золотой жилой для производителей. Помимо удовлетворения нужд потребителя, фармакологи идут на различные маркетинговые ухищрения, еще более обогащая собственную казну. Доказать прегрешения компаний, выпускающих антидепрессанты, несложно. Стоит лишь ознакомиться с результатами многочисленных мониторингов. Так, недавнее исследование, результаты которого опубликованы в журнале British Medical Journal, обнаружило сокрытие истинной информации касательно медицинских препаратов.

Когда слепо доверяешь лечащему врачу

Когда у человека диагностирована депрессия, он не станет интересоваться результатами клинических испытаний того или иного препарата. Он слепо доверяет врачу, идет и покупает лекарство. Ученые подняли архивы 70 различных слепых плацебо-контролируемых испытаний селективных ингибиторов обратного захвата серотонина и обнаружили, что ни в одном отчете не сообщалось о серьезном вреде препаратов. А это значит, что разработчикам есть что скрывать, и они не хотят афишировать возможные серьезные побочные эффекты.

При депрессии в первую очередь страдает гиппокамп

Мы знаем, что депрессию нельзя оставлять без лечения. Если человек постоянно чувствует себя подавленным, это отражается не только на эмоциональном состоянии или вызывает те или иные физические недуги. На самом деле оставленная без внимания депрессия может вызвать реальные изменения в структуре головного мозга пациента. В первую очередь страдает гиппокамп, отдел, отвечающий за формирование и регулирование эмоций и памяти. Эта тенденция особенно катастрофична для подростков, ведь их мозг все еще находится на стадии развития. Учителя и родители сразу же поспешат списать проблемы ребенка с вниманием, памятью и всплески агрессии на переходный возраст. Только вот реальная причина кроется в другом.

На какой стадии происходит повреждение головного мозга?

Сразу несколько научных исследований выявили, что при периодических или постоянных депрессивных расстройствах уменьшается важный отдел головного мозга. А это значит, что перед нами достоверная информация. Профессор Ян Хикки из университета Сиднея заявил, что уменьшение размера гиппокампа напрямую связано с количеством депрессивных вспышек. Чем больше таких состояний за свою жизнь испытает человек, тем хуже. Именно поэтому так важно не оставлять свое состояние без внимания и заботы близких. Что же наступает раньше: уменьшение гиппокампа или психическое расстройство? Эксперты утверждают, что повреждение головного мозга происходит от рецидива болезни.

Способность к восстановлению

Некоторые другие исследования выявили уникальность этого отдела. Вы будете удивлены, но гиппокамп способен полностью восстанавливаться в размерах. Обратимость связана со способностью быстро образовывать новые связи между клетками. Ученые выяснили, что при уменьшении размеров гиппокампа теряются не сами клетки, а только лишь нарушаются клеточные соединения. Но не только депрессия может уменьшить размер гиппокампа. Например, человек, привыкший сидеть дома, не участвуя в социальных мероприятиях, также подвергает себя определенному риску. Эксперты полагают, что взаимодействие в социуме является неотъемлемой частью построения крепких связей между клетками головного мозга. Также существуют альтернативные способы повышения нейрозащиты, например употребление рыбьего жира.

Как депрессия кодирует информацию

Психические расстройства воздействуют не только на мозг, в первую очередь страдает сердце. Однако эти два органа напрямую взаимосвязаны между собой. Если человек опечален и постоянно находится в угнетенном состоянии, сердечные электромагнитные волны кодируют полученную информацию и отправляют сигналы в мозг. Таким образом, нервная система находится в условиях постоянного хаоса.

Идея химического дисбаланса в прошлом

Джозеф Койл, нейробиолог из Гарвардской медицинской школы, подводит итоги всего вышесказанного. На самом деле пресловутая идея химического дисбаланса в мозге является пережитком прошлого. Влияние психических расстройств на главные органы человека - намного более тонкое и сложное. По словам эксперта, механизм депрессии не может быть сведен к общепринятому представлению о недостатке серотонина, норадреналина и допамина. Представленная на суд общественности еще в 50-х годах прошлого столетия теория о недостатке нейромедиаторов пользовалась огромной популярностью в течение полувека. Большая часть населения земного шара восприняла эту теорию как единственно верную. Однако с большей долей вероятности депрессия связана с другими аномальными воздействиями.

Полвека наука была на ложном пути

Итак, люди часто говорят, что к психическим расстройствам ведет химический дисбаланс, но в реальности эта болезнь намного сложнее, и далеко не каждый препарат, восстанавливающий недостаток нейромедиаторов, поможет избавиться от недуга. А вот что говорит известный британский психиатр и писатель доктор Джоанна Монкриефф: «В то время как человек чувствует себя подавленным, в мозге происходят какие-то процессы. Однако до сих пор ни одно исследование не установило корреляцию между нехваткой определенных нейромедиаторов и депрессивным расстройством. Во всех случаях опыты дают довольно противоречивые результаты. Ни одна работа не смогла выявить реальную причину возникновения недуга. Тот факт, что более 50 лет столь интенсивные научные поиски не дали никаких результатов, может свидетельствовать только о двух вещах: либо учеными не разработана правильная технология, либо они идут по ложному следу».

Антидепрессанты не в состоянии полностью справиться с проблемой

В поддержку теории химического дисбаланса часто выдвигается версия о том, что антидепрессанты значительно увеличивают уровни серотонина и других нейромедиаторов в синапсах. Но, как мы говорили ранее, лекарства в состоянии лишь на время локализовать процессы. Решение основных проблем (не говоря уже о полном излечении) видится практически невозможным. Тот факт, что настроение может зависеть от медицинских препаратов, не дает основания считать, что указанная теория верна. К тому же ни одни доктор не может заглянуть в черепную коробку пациента и с точностью определить, какие именно химические нейромедиаторы участвуют в данном конкретном заболевании. Именно поэтому теория так и остается теорией, а доктора по-прежнему «вслепую» выписывают рецепты.

В теле происходят миллионы химических реакций

Как внутри, так и снаружи наших нервных клеток происходят миллионы различных химических реакций. Все вместе это составляет единую динамическую систему, регулирующую наше настроение, восприятие тех или иных процессов, ощущение счастья или печали. Именно поэтому точная причина психических расстройств по-прежнему остается неизвестной. Тем не менее, идея дисбаланса нейротрансмиттеров активно поддерживается фармацевтическими компаниями совместно с врачами-психотерапевтами.

Существуют другие факторы, ведущие к депрессии

На данный момент ученые обнаружили, что к психическим расстройствам может привести целый ряд биологических факторов, среди которых хроническое воспаление, недостаток витамина D, несбалансированность кишечной флоры или избыток сахара в организме. Также существуют альтернативные способы борьбы с депрессией. Возможно, идея о нейропластичности мозга даст некоторые разгадки. Многие из нас слышали, что силой мысли можно влиять на ту или иную ситуацию. Это подтверждают различные научные исследования. Хорошим способом побороть депрессию является правильное сбалансированное питание и физические упражнения. Ну а самое удивительное разнообразие неврологических преимуществ имеет медитация.

Самым главным в центральной-нервной системе является головной мозг. Он контролирует работу всех систем организма. Состоит он из клеток нейронов, которые связаны между собой.

Они связываются между собой посредством импульсов. Все происходящие процессы в мозге изучены не до конца. Некоторые из них уже хорошо известны науке, а некоторые остаются полной загадкой.

Общие сведения

Размеры мозга достаточно невелики, по отношению ко всему организму он занимает всего два процента. Мозг человека самый развитый. Несмотря на его маленькие размеры, он управляет всем организмом.

Мозг человека находится в прочной оболочке, между которыми находятся сосуды. Внутри оболочки находится мозговая жидкость. Он делится на два полушария. Каждое полушарие отвечает за определенные системы организма. Без определенных сигналов головного мозга организм человека функционирует неправильно.

Любые изменения в тканях и структурах мозга могут привести к необратимым процессам. Смерть головного мозга может привести к смерти организма в целом. Его системы могут останавливать свою работу не так стремительно, как мозг. Но чаще всего результат будет неутешительный.

Нарушения в работе мозга имеют много воплощений

Таких заболеваний достаточно много. Одним из них называется абсцесс. Определенная полость головного мозга заполняется гноем. Обычно его может спровоцировать инфекция, которая попала внутрь.

Произойти это может в результате травмы или хирургического вмешательства, а также через кровь. Инкубационный период может длиться довольно долго. Для лечения обычно проводят операцию. Предсказать результат сложно.

Арахноидит – это когда воспаляются соединительные ткани и сосуды. Такие проявления вызывает инфекция или расстройства в работе центральной нервной системы. Имеет много второстепенных эффектов. Полное выздоровление может не наступить.

Атаксия – это нарушение привычных движений, речи. В этой ситуации нарушается связь между спинным и головным мозгом. Такое заболевание может говорить об возможных изменениях и осложнениях в головном мозге человека. Лечится обязательно с участием специалиста.

Атеросклероз сосудов. Становиться заметным, как ухудшение памяти, общим ухудшением состояния, головными болям.

Афазия – несет с собой нарушение работы речевого аппарата.

Бессонница – это заболевание связано с изменениями в работе центральной-нервной системы. Такие проявления могут вызвать стресс, перенапряжение, болевых ощущений в организме.

Разновидности параличей. Они могут появиться вместе с атеросклерозом. В процессе болезни меняется речь. Наблюдается резкая смена настроения. Вегетососудистые изменения могут быть в разных проявлениях.

Лечению они поддаются, но необходимо приложить определенные усилия. Протекает само заболевание довольно долго и в серьезной форме. Головная боль может говорить о, возможно, протекающих заболеваниях в мозге человека. Боли возникают в результате раздражения оболочки головного мозга.

Гипертония стала довольно молодым заболеванием. Когда боль концентрируется в затылке и выражается в ломящих проявлениях, давление может быть пониженным или повышенным. Выяснить это довольно просто. Нужно измерить давление тонометром.

Головокружение может начать проявляться неожиданно. Причины могут быть самые разнообразные. Это связано с нарушением работы вестибулярного аппарата. Резкие движения могут привести к таким ощущениям. Если такие явления не часты и возникают при определенных обстоятельствах можно не беспокоиться. Но когда головокружение сопровождается болями и повторяется с определенной периодичностью, необходимо обязательно посетить врача.

Когда ухудшается кровообращение головного мозга может наступить апоплексическая кома. Происходит разрыв сосудов и кровоизлияние. Этот процесс называют инсультом. В таких случаях нужно обязательно вызвать скорую помощь.

Менингит – это воспаление оболочки мозга. Возникает он по нескольким причинам. Очень сильная головная боль, высокая температура. Лечат его в стационаре. Для установки точного диагноза необходимо сделать пункцию. Выздоровление происходит долго, прогноз неоднозначный.

Мигрень проявляется в виде головной боли. Установить такой диагноз возможно, только после полного медицинского обследования.

Невралгические заболевания головного мозга могут причинить невосполнимый ущерб всему организму. После такого заболевания организм может восстановиться не в полной мере.

Прекращение работы функций головного мозга может происходить когда остальные органы еще работают. Происходит работа сердца и осуществляется дыхание. Обычно при искусственной поддержке. Но в момент остановки работы мозга происходят необратимые процессы, отмирание клеток. Организм еще как бы живет, но отсутствует реакция на все происходящее вокруг. Причин тому очень много. Специалисты называют такое состояние – запредельной комой.

Изменения головного мозга могут происходить не в связи с заболеваниями, а просто с возрастом. Организм в целом и со временем стареет. Все системе постепенно меняют свою работу. Происходят патологические изменения. Обычно в первую очередь это касается лобных долей головного мозга, но постепенно затрагивают и другие его части.

Можно сказать, что это наиболее распространенные и сложные заболевания головного мозга. Процесс течения любого из них может зависеть от множества факторов и индивидуальных особенностей организма. Прислушивайтесь к ритму его работы. Медики называют этот процесс – кортикальной атрофией. Такие изменения происходят в течение нескольких лет.

Что может привести к церебральной атрофии мозга?

Чаще всего существует предрасположенность к такому заболеванию. Происходит разрушение клеток головного мозга. Они могут разрушаться под воздействием алкоголя, никотина, токсичных и наркотических веществ. Употребление наркотических веществ приносит вред всему организму в целом. Все эти вещества накапливаются в головном мозге и во всем организме.

Спровоцировать их реакцию может травма, опухоли головного мозга, гематома или киста. Также послужить началом церебральной атрофии мозга может неврологическое заболевание, плохое кровообращение, ишемия сердца, недостаточное количество кислорода в крови. Эти процессы приводят к снижению умственных способностей, а это влечет деградацию.

Первые признаки церебральной атрофии головного мозга проявляются в расстройстве памяти, забывчивости, рассеянному вниманию. Со временем они начинают прогрессировать. Больному присущи резкие вспышки гнева и агрессии, возможно, длительное депрессивное состояние. Работа всех функций головного мозга нарушена.

Очень характерный признак для заболевания изменения почерка. Речь становится неразборчивой, мысли путаются, словарный запас резко уменьшается. В дальнейшем больной может потерять дееспособность и будет нуждаться в постоянном уходе. Принести продукты, приготовить еду, убрать квартиру – это станет для него непосильным.

Для проведения лечения и профилактических мер необходимо:

  • сократить употребление алкоголя, никотина, наркотических веществ до минимума;
  • при работе с токсичными веществами соблюдать меры собственной безопасности;
  • стараться употреблять здоровую и полезную пищу;
  • заниматься физкультурой и спортом;
  • проводить медикаментозную терапию, строго по назначению врача;
  • стараться избегать стрессовых ситуаций.

Причины остановки работы мозга

Головной мозг прекращает свою работу в результате травмы. Чаще всего это дорожно-транспортные происшествия, ушибы при падении. В такой ситуации травмируется непосредственно сам головной мозг. Если же прямой травмы не было могло произойти кровоизлияние в полость головного мозга.

В этот момент мозг повреждается, как и при прямой травме. Еще мозг может прекратить свою деятельность когда возникла острая сердечная недостаточность. Когда кровь не поступает в мозг в течение получаса, начинают погибать клетки, которые уже не подлежат реанимации. Происходит это в момент резкого повышения давления внутри черепа и из-за остановки сердца, проводится прямой массаж.

Признаки, остановки работы головного мозга.

  • отсутствует дыхание;
  • зрачок не реагирует;
  • реакция на боль отсутствует;
  • непроизвольные движения шеи и рук, без помощи работы головного мозга.

Как диагностируют смерть головного мозга?

Можно провести электроэнцефалограмму головного мозга и если на ней не видна биологическая активность, можно констатировать остановку работы. Когда отсутствует кровообращение в головном мозге нужно провести исследования ультразвуком или магниторезонансную ангиографию, скрининговые исследования.

При этом, желательно, знать причину наступления остановки работы сердца. При проведении обследования может быть выяснено, что борозды сглажены, желудочки уменьшены и наблюдается отек головного мозга. Обязательно проводится тест на проверку работы системы дыхания.

Констатация факта смерти мозга происходит в случае:

  • отсутствие реакции зрачка на световые раздражители;
  • остановки работы системы дыхания;
  • терминальная кома.

Атрофия головного мозга

Так, называют церебральную атрофию, в процессе которой происходит постепенное отмирание нервных клеток в головном мозге. Разрушаются нейроны и их соединения, кора головного мозга. Этому заболеванию подвержены люди в возрасте старше пятидесяти лет. Принято считать, что женщины болеют чаще, чем мужчины. Очень часто в результате наступает полное слабоумие.

Медицина утверждает, что это заболевание заложено на генетическом уровне. Влияние окружающих факторов, может повлиять на форму заболевания или ее течение.

Существует несколько видов атрофии:

  • болезнь Пика;
  • болезнь Альцгеймера.

Атрофия мозга выражается в отношении ко всему происходящему. Человек становится равнодушным, теряет интерес к жизни. Может наступить переоценка моральных ценностей. Мыслительные процессы замедляются, речь становится бессвязной, непоследовательной.

Нарушается робота опорно-двигательного аппарата. Больной может не узнавать людей и предметы. Происходит нарушение ориентации и он может повторять чьи-то поступки или действия. С течением определенного времени может наступить полный маразм. Диагностируют, такое заболевание при обследовании головного мозга и проведении МРТ.

Лечение носит больше профилактический характер. Необходим уход и большое внимание. В медикаментозных процедурах присутствуют лекарства, которые снимают симптомы или облегчают их проявления.

В такие моменты очень важно, чтобы больной находился в спокойной психологической обстановке и привычном образе жизни. Медики не рекомендуют содержать таких больных в клинике. Очень сможет помочь обычные домашние хлопоты, внимание и забота близких.

Из лекарственных препаратов назначают что-то успокоительное и снимающее депрессию. В таком случае желательно разработать специальный режим дня для больного. Он должен чувствовать себя нужным окружающим. Нагрузки обычно небольшие просто требующие определенного времени и занятости. Обязательно должен присутствовать отдых днем.

В процессе заболевания может развиться субатрофия коры головного мозга. Профилактика атрофии головного мозга практически невозможна. Рекомендуется вести здоровый образ жизни и прислушиваться к своему организму.

Подведение итогов

Головной мозг один из важнейших органов нашего организма. Все изменения в работе мозга приводят к сбою в работе всего организма. Каждая клетка головного мозга отвечает за определенную функцию.

При получении травмы, заболевании головного мозга могут происходить необратимые процессы. Отмирание клеток мозга происходит довольно быстро, а восстановление не наступает.

Многие заболевания головного мозга заложены на генетическом уровне. Поэтому очень важны внешние факторы воздействия. Положительные эмоции и здоровый образ жизни могут свести возможность развития сутатрофии головного мозга к минимуму.

При наступлении смерти головного мозга, организм человека прекращает свою деятельность. В зависимости от поврежденных участков мозга могут сохраниться рефлекторные инстинкты, которые происходят неосознанно.

При проявлении любых симптомов мозговых заболеваний необходимо обязательно обращаться к врачу. Пройти полное медицинское обследование.

Профилактика заболеваний головного мозга может принести положительные результаты. Ею нужно заниматься как перенесшим заболевания мозга, так и всем пациентам, имеющим к ним генетическую расположенность.

В современной медицине широко используются препараты, которые улучшаю работу и кровообращение головного мозга. Это прирацетам, церепро, цераксон. Существуют лекарства, которые принимают в профилактических целях – их называют антиоксидантами. Они способны ускорить и улучшить процесс вывода токсичных веществ из организма. «Трентал» предназначен для расширения сосудов и улучшения кислородного обмена.

Но вы должны всегда помнить, что заниматься самолечением категорически запрещено. Тем более, если у вас заболевания головного мозга такие, как: церебральная атрофия головного мозга и субатрофия коры головного мозга и клеток.

Симптомы очень схожи между собой и с другими мозговыми заболеваниями. Правильно поставить диагноз и выбрать терапию, может только специалист. Обязательно проводя полное обследование всего организма и головного мозга.

В профилактических целях, после курса медикаментозного лечения обязательно обратите внимание на народные методы профилактики мигрени или обычной головной боли. Но всегда все процедуры проводите только после согласования со специалистом.

Процесс выздоровления во многом зависит от своевременности обращения в клинику. Это во многом обуславливает положительный эффект лечения. Остановка работы головного мозга нуждается в срочных реанимационных действиях. Потерянное время может оказаться основной причиной невозможности и бесполезности их проведения.

Нейроучёные не так давно начали изучать, какие процессы происходят в мозге в ходе различных видов медитации. Венди Хэзенкамп (Wendy Hasenkamp) и её коллеги из Университета Эмори изучали МРТ-сканы мозга медитирующих, пытаясь понять, какие нейронные сети активируются в процессе медитации концентрации. Участники исследования фокусировали своё внимание на дыхании.

Как правило, в процессе этой медитации ум отвлекается, и медитирующий может заметить это и вернуть внимание обратно - к наблюдению за вдохами и выдохами. Поэтому в ходе исследования, когда медитирующий понимал, что его ум блуждает, он нажимал на кнопку. Исследователи обнаружили цикл, состоящий из 4 фаз, или этапов: 1) момент, когда ум отвлекается; 2) момент, когда медитирующий начинает осознавать это отвлечение; 3) момент, когда медитирующий перенаправляет внимание обратно; и 4) возобновление концентрации внимания.

Каждая из четырёх фаз задействует определенные нейронные сети. На первом этапе, при появлении отвлечений, увеличивается активность обширной «заданной сети» (default mode network, DMN). Эта сеть включает в себя медиальную префронтальную кору, кору задней части поясной извилины, предклинье, нижнюю теменную долю и боковую височную кору. Как известно, «заданная сеть» начинает активироваться тогда, когда наш ум блуждает, а также она играет главную роль в формировании внутренней модели мира, которая строится на базе долговременных воспоминаний о себе и других.

Вторая фаза - осознание того, что ум отвлёкся - активирует другую область мозга: переднюю островковую долю большого мозга и переднюю поясную кору, также известную как «сеть выявления значимости» (salience network, SN). Эта сеть отвечает за субъективное восприятие чувств, из-за которых, к примеру, мы отвлекаемся в ходе практики, а также за нашу способность находить и замечать новые объекты и события. Похоже, что в процессе медитации именно эта сеть регулирует активность нейронных ансамблей, из которых состоят крупные нейронные сети мозга. К примеру, благодаря ей мы можем заметить, что ум блуждает, и выйти из этого состояния.

Третья фаза задействует дополнительную область, в которую входит дорсолатеральная префронтальная кора и боковая нижняя теменная доля, и медитирующий отрывается от отвлекающих стимулов и «возвращает» внимание обратно.

Наконец, в последней, четвертой фазе, дорсолатеральная префронтальная кора продолжает сохранять высокий уровень активности, в то время как внимание медитирующего остаётся направленным прямо на объект - в данном случае на дыхание.

Затем в лаборатории в Висконсине были рассмотрены различные паттерны мозговой активности, которые зависели от того, насколько опытным был медитатор. «Ветераны» медитации с более чем 10 000 часами практики демонстрировали большую активность в областях мозга, связанных с вниманием, по сравнению с начинающими практиками. Парадоксально, но самые опытные из них показывали меньшую активность этих областей.

Это говорит о том, что продвинутые практики обрели тот уровень мастерства, который позволяет им сохранять внимание сконцентрированным без лишних усилий. Это похоже на мастерство профессиональных музыкантов и атлетов, способных «быть в потоке» - и им не требуется дополнительных усилий, чтобы сохранять это состояние.

В ходе изучения влияния медитации концентрации на человеческий мозг также были исследованы добровольцы до и после трёхмесячного ретрита, в течение которого они посвящали практике по меньшей мере 8 часов в день. После завершения ретрита участникам выдали наушники и попросили концентрироваться на звуках, которые в течение 10 минут играли в одном ухе и довольно часто прерывались вкраплениями высокочастотных тонов.

В результате сравнения этих результатов с их же результатами до ретрита и с результатами контрольной группы немедитирующих, было обнаружено, что прошедших ретрит почти не отвлекали внезапно возникающие резкие звуки. Это означает, что у медитирующих растёт способность сохранять бдительность. Электрический ответ мозга на высокочастотные звуки оставался более стабильным только у медитирующих, что позволяло им сохранять более устойчивое внимание.

Экология сознания: Жизнь. Совершенно точно доказано, что наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности.

Если сравнивать с детенышами других животных, можно сказать, что человек рождается с недоразвитым мозгом: его масса у новорожденного составляет всего 30% массы мозга взрослого. Эволюционные биологи предполагают, что мы должны рождаться недоношенными, чтобы наш мозг развивался, взаимодействуя с внешней средой. Научный журналист Ася Казанцева в лекции «Зачем мозгу учиться?» в рамках программы «Арт-образование 17/18» рассказала

О процессе обучения с точки зрения нейробиологии

и объяснила, как мозг меняется под влиянием опыта, а также чем во время учебы полезны сон и лень.

Кто изучает феномен обучения

Вопросом, зачем мозгу учиться, занимаются как минимум две важные науки - нейробиология и экспериментальная психология. Нейробиология, изучающая нервную систему и происходящее в мозге на уровне нейронов в момент обучения, работает чаще всего не с людьми, а с крысами, улиточками и червячками. Специалисты по экспериментальной психологии пытаются понять, какие вещи влияют на обучаемость человека: например, дают ему важное задание, проверяющее его память или обучаемость, и смотрят, как он с ним справляется. Эти науки интенсивно развивались в последние годы.

Если смотреть на обучение с точки зрения экспериментальной психологии, то полезно вспомнить, что эта наука - наследница бихевиоризма, а бихевиористы считали, что мозг - черный ящик, и их принципиально не интересовало, что в нем происходит. Они воспринимали мозг как систему, на которую можно воздействовать стимулами, после чего в ней случается какая-то магия, и она определенным образом на эти стимулы реагирует. Бихевиористов интересовало, как может выглядеть эта реакция и что на нее способно влиять. Они считали, что обучение - это изменение поведения в результате освоения новой информации

Это определение до сих пор широко применяется в когнитивных науках. Скажем, если студенту дали почитать Канта и он запомнил, что есть «звездное небо над головой и моральный закон во мне», озвучил это на экзамене и ему поставили пятерку, значит, произошло обучение.

С другой стороны, такое же определение применимо и к поведению морского зайца (аплизии). Нейробиологи часто ставят опыты с этим моллюском. Если бить аплизию током в хвостик, она начинает бояться окружающей реальности и втягивать жабры в ответ на слабые стимулы, которых она раньше не боялась. Таким образом, у нее тоже происходит изменение поведения, обучение. Это определение можно применять и к еще более простым биологическим системам. Представим себе систему из двух нейронов, соединенных одним контактом. Если мы подадим на нее два слабых импульса тока, то в ней временно изменится проводимость и одному нейрону станет легче подавать сигналы другому. Это тоже обучение на уровне этой маленькой биологической системы. Таким образом, от обучения, которое мы наблюдаем во внешней реальности, можно построить мостик к тому, что происходит в мозге. В нем есть нейроны, изменения в которых влияют на нашу реакцию на среду, т. е. на произошедшее обучение.

Как работает мозг

Но чтобы говорить о мозге, нужно иметь базовое представление о его работе. В конце концов, у каждого из нас в голове есть эти полтора килограмма нервной ткани. Мозг состоит из 86 миллиардов нервных клеток, или нейронов. У типичного нейрона есть тело клетки со множеством отростков. Часть отростков - дендриты, которые собирают информацию и передают ее на нейрон. А один длинный отросток, аксон, передает ее следующим клеткам. Под передачей информации в рамках одной нервной клетки подразумевается электрический импульс, который идет по отростку, как по проводу. Один нейрон взаимодействует с другим через место контакта, которое называется «синапс», сигнал идет с помощью химических веществ. Электрический импульс приводит к высвобождению молекул - нейромедиаторов: серотонина, дофамина, эндорфинов. Они просачиваются через синаптическую щель, воздействуют на рецепторы следующего нейрона, и он изменяет свое функциональное состояние - например, у него на мембране открываются каналы, через которые начинают проходить ионы натрия, хлора, кальция, калия и т. д. Это приводит к тому, что на нем, в свою очередь, тоже формируется разность потенциалов, и электрический сигнал идет дальше, на следующую клетку.

Но когда клетка передает сигнал другой клетке, этого чаще всего недостаточно для каких-то заметных изменений в поведении, ведь один сигнал может получиться и случайно из-за каких-то возмущений в системе. Для обмена информацией клетки передают друг другу много сигналов. Главный кодирующий параметр в мозге - это частота импульсов: когда одна клетка хочет что-то передать другой клетке, она начинает посылать сотни сигналов в секунду. Кстати, ранние исследовательские механизмы 1960–70-х годов формировали звуковой сигнал. В мозг экспериментальному животному вживляли электрод, и по скорости треска пулемета, который слышался в лаборатории, можно было понять, насколько активен нейрон.

Система кодирования с помощью частоты импульсов работает на разных уровнях передачи информации - даже на уровне простых зрительных сигналов. У нас на сетчатке есть колбочки, которые реагируют на разные длины волн: короткие (в школьном учебнике они называются синие), средние (зеленые) и длинные (красные). Когда на сетчатку поступает волна света определенной длины, разные колбочки возбуждаются в разной степени. И если волна длинная, то красная колбочка начинает интенсивно подавать сигнал в мозг, чтобы вы поняли, что цвет красный. Впрочем, тут все не так просто: у колбочек перекрывается спектр чувствительности, и зеленая тоже делает вид, что она что-то такое увидела. Дальше мозг самостоятельно это анализирует.

Как мозг принимает решения

Принципы, аналогичные тем, что используются в современных механических исследованиях и опытах на животных с вживленными электродами, можно применять и к гораздо более сложным поведенческим актам. Например, в мозге есть так называемый центр удовольствия - прилежащее ядро. Чем более активна эта область, тем сильнее испытуемому нравится то, что он видит, и выше вероятность, что он захочет это купить или, например, съесть. Эксперименты с томографом показывают, что по определенной активности прилежащего ядра можно еще до того, как человек озвучит свое решение, допустим, относительно покупки кофточки, сказать, будет он ее покупать или нет. Как говорит прекрасный нейробиолог Василий Ключарев, мы делаем все, чтобы понравиться нашим нейронам в прилежащем ядре.

Сложность в том, что у нас в мозге нет единства суждений, каждый отдел может иметь свое мнение о происходящем. История, похожая на спор колбочек в сетчатке, повторяется и с более сложными вещами. Допустим, вы увидели кофточку, она вам понравилась, и ваше прилежащее ядро издает сигналы. С другой стороны, эта кофточка стоит 9 тысяч рублей, а зарплата еще через неделю - и тогда ваша амигдала, или миндалевидное тело (центр, связанный в первую очередь с негативными эмоциями), начинает издавать свои электрические импульсы: «Слушай, остается мало денег. Если мы сейчас купим эту кофточку, у нас будут проблемы». Лобная кора принимает решение в зависимости от того, кто громче орет - прилежащее ядро или амигдала. И тут еще важно, что каждый раз впоследствии мы способны проанализировать последствия, к которым это решение привело. Дело в том, что лобная кора общается и с амигдалой, и с прилежащим ядром, и с отделами мозга, связанными с памятью: они ей рассказывают, что произошло после того, как в прошлый раз мы принимали такое решение. В зависимости от этого лобная кора может более внимательно отнестись к тому, что говорят ей амигдала и прилежащее ядро. Так мозг способен меняться под влиянием опыта.

Почему мы рождаемся с маленьким мозгом

Все человеческие дети рождаются недоразвитыми, буквально недоношенными в сравнении с детенышами любого другого вида. Ни у одного животного нет настолько длинного детства, как у человека, и у них не бывает потомства, которое рождалось бы с настолько маленьким мозгом относительно массы мозга взрослого: у человеческого новорожденного она составляет лишь 30%.

Все исследователи сходятся во мнении, что мы вынуждены рождать человека незрелым из-за внушительного размера его мозга. Классическое объяснение - это акушерская дилемма, то есть история конфликта между прямохождением и большой головой. Чтобы родить детеныша с такой головой и крупным мозгом, нужно иметь широкие бедра, но невозможно их бесконечно расширять, потому что это будет мешать ходить. По подсчетам антрополога Холли Дансуорт, чтобы рожать более зрелых детей, достаточно было бы увеличить ширину родового канала всего на три сантиметра, но эволюция все равно в какой-то момент остановила расширение бедер. Эволюционные биологи предположили: вероятно, мы и должны рождаться недоношенными, чтобы наш мозг развивался во взаимодействии с внешней средой, ведь в матке в целом довольно мало стимулов.

Есть знаменитое исследование Блэкмора и Купера. Они в 70-е годы проводили опыты с котятами: большую часть времени держали их в темноте и на пять часов в день сажали в освещенный цилиндр, где они получали не совсем обычную картину мира. Одна группа котят в течение нескольких месяцев видела только горизонтальные полосы, а другая - только вертикальные. В итоге у котят возникли большие проблемы с восприятием реальности. Одни врезались в ножки стульев, потому что не видели вертикальных линий, другие таким же образом игнорировали горизонтальные - например, не понимали, что у стола есть край. С ними проводили тесты, играли с помощью палочки. Если котенок рос среди горизонтальных линий, то горизонтальную палочку он видит и ловит, а вертикальную просто не замечает. Затем вживляли электроды в кору головного мозга котят и смотрели, каким должен быть наклон палочки, чтобы нейроны начали издавать сигналы. Важно, что со взрослым котом во время такого эксперимента ничего бы не случилось, а вот мир маленького котенка, чей мозг только учится воспринимать информацию, вследствие подобного опыта может быть навсегда искажен. Нейроны, которые никогда не подвергались воздействию, перестают функционировать.

Мы привыкли считать, что чем больше связей между разными нейронами, отделами человеческого мозга, тем лучше. Это так, но с определенными оговорками. Нужно не просто чтобы связей было много, а чтобы они имели какое-то отношение к реальной жизни. У полуторагодовалого ребенка синапсов, то есть контактов между нейронами в мозге, гораздо больше, чем у профессора Гарварда или Оксфорда. Проблема в том, что эти нейроны связаны хаотично. В раннем возрасте мозг быстро созревает, и его клетки формируют десятки тысяч синапсов между всем и всем. Каждый нейрон раскидывает отростки во все стороны, и они цепляются за все, до чего смогли дотянуться. Но дальше начинает работать принцип «Используй, или потеряешь». Мозг живет в окружающей среде и пытается справляться с разными задачами: ребенка учат координировать движения, хватать погремушку и т. д. Когда ему показывают, как есть ложкой, у него в коре остаются связи, полезные, чтобы есть ложкой, так как именно через них он гонял нервные импульсы. А связи, которые отвечают за то, чтобы расшвыривать кашу по всей комнате, становятся менее выраженными, потому что родители такие действия не поощряют.

Процессы роста синапсов довольно хорошо изучены на молекулярном уровне. Эрику Канделу дали Нобелевскую премию за то, что он догадался изучать память не на людях. У человека 86 миллиардов нейронов, и, пока ученый разобрался бы в этих нейронах, ему пришлось бы извести сотни испытуемых. А поскольку никто не позволяет вскрывать мозги стольким людям ради того, чтобы посмотреть, как они научились держать ложку, Кандел придумал работать с улиточками. Аплизия - суперудобная система: с ней можно работать, изучив всего четыре нейрона. На самом деле у этого моллюска больше нейронов, но на его примере гораздо проще выявить системы, связанные с обучением и памятью. В ходе экспериментов Кандел понял, что кратковременная память - это временное усиление проводимости уже существующих синапсов, а долговременная заключается в росте новых синаптических связей.

Это оказалось применимо и к человеку - похоже на то, как мы ходим по траве . Сначала нам все равно, куда идти на поле, но постепенно мы протаптываем тропинку, которая потом превращается в грунтовую дорогу, а затем в асфальтированную улицу и трехполосное шоссе с фонарями. Похожим образом нервные импульсы протаптывают себе дорожки в мозге.

Как формируются ассоциации

Наш мозг так устроен: он формирует связи между событиями, происходящими одновременно. Обычно при передаче нервного импульса выделяются нейромедиаторы, которые воздействуют на рецептор, и электрический импульс идет на следующий нейрон. Но есть один рецептор, который работает не так, он называется NMDA. Это один из ключевых рецепторов для формирования памяти на молекулярном уровне. Его особенность в том, что он работает в том случае, если сигнал пришел с обеих сторон одновременно.

Все нейроны куда-то ведут. Один может привести в большую нейронную сеть, которая связана со звучанием модной песенки в кафе. А другие - в другую сеть, связанную с тем, что вы пошли на свидание. Мозг заточен на то, чтобы связывать причину и следствие, он на анатомическом уровне способен запомнить, что между песней и свиданием есть связь. Рецептор активируется и пропускает через себя кальций. Он начинает вступать в огромное количество молекулярных каскадов, которые приводят к работе некоторых до этого не работавших генов. Эти гены проводят синтез новых белков, и вырастает еще один синапс. Так связь между нейронной сетью, отвечающей за песенку, и сетью, отвечающей за свидание, становится более прочной. Теперь даже слабого сигнала достаточно, чтобы пошел нервный импульс и у вас сформировалась ассоциация.

Как обучение влияет на мозг

Есть знаменитая история о лондонских таксистах. Не знаю, как сейчас, но буквально несколько лет назад для того, чтобы стать настоящим таксистом в Лондоне, нужно было сдать экзамен по ориентации в городе без навигатора - то есть знать как минимум две с половиной тысячи улиц, одностороннее движение, дорожные знаки, запреты на остановку, а также уметь выстроить оптимальный маршрут. Поэтому, чтобы стать лондонским таксистом, люди несколько месяцев ходили на курсы. Исследователи набрали три группы людей. Одна группа - поступившие на курсы, чтобы стать таксистами. Вторая группа - те, кто тоже ходил на курсы, но бросил обучение. А люди из третьей группы вообще не думали становиться таксистами. Всем трем группам ученые сделали томограмму, чтобы посмотреть плотность серого вещества в гиппокампе. Это важная зона мозга, связанная с формированием памяти и пространственным мышлением. Обнаружилось, что если человек не хотел становиться таксистом или хотел, но не стал, то плотность серого вещества в его гиппокампе оставалась прежней. А вот если он хотел стать таксистом, прошел тренинг и действительно овладел новой профессией, то плотность серого вещества увеличилась на треть - это очень много.

И хотя до конца не ясно, где причина, а где следствие (то ли люди действительно овладели новым навыком, то ли у них изначально была хорошо развита эта область мозга и поэтому им было легко научиться), совершенно точно наш мозг - дико пластичная штука, и индивидуальное обучение серьезно на него влияет - в значительно большей степени, чем врожденные предрасположенности. Важно, что и в 60 лет обучение оказывает воздействие на мозг. Конечно, не так эффективно и быстро, как в 20, но целом мозг в течение всей жизни сохраняет некоторую способность к пластичности.

Зачем мозгу лениться и спать

Когда мозг чему-то учится, он выращивает новые связи между нейронами. А это процесс медленный и дорогостоящий, на него нужно тратить много калорий, сахара, кислорода, энергии. Вообще, человеческий мозг, притом что его вес составляет всего 2% от веса всего тела, потребляет около 20% всей энергии, которую мы получаем. Поэтому при любой возможности он старается ничему не учиться, не тратить энергию. На самом деле это очень мило с его стороны, ведь если бы мы запоминали все, что видим каждый день, то мы довольно быстро сошли бы с ума.

В обучении, с точки зрения мозга, есть два принципиально важных момента. Первый заключается в том, что, когда мы осваиваем любой навык, нам становится легче действовать правильно, чем неправильно. Например, вы учитесь водить машину с механической коробкой передач, и вам сначала все равно, переключать передачу с первой на вторую или с первой на четвертую. Для вашей руки и мозга все эти движения равновероятны; вам неважно, в какую сторону гнать нервные импульсы. А когда вы уже более опытный водитель, то вам физически проще переключать передачи правильно. Если вы попадете в машину с принципиально другой конструкцией, вам снова придется задумываться и контролировать усилием воли, чтобы импульс не пошел по проторенной дорожке.

Второй важный момент:

главное в обучении - это сон

У него много функций: поддержание здоровья, иммунитета, обмена веществ и разных сторон работы мозга. Но все нейробиологи сходятся в том, что самая главная функция сна - это работа с информацией и обучением. Когда мы освоили какой-то навык, то хотим сформировать долговременную память. Новые синапсы растут несколько часов, это долгий процесс, и мозгу удобнее всего это делать именно тогда, когда вы ничем не заняты. Во время сна мозг обрабатывает информацию, полученную за день, и стирает то, что из этого надо забыть.

Есть эксперимент с крысами, где их учили ходить по лабиринту с вживленными в мозг электродами и обнаружили, что во сне они повторяли свой путь по лабиринту, а на следующий день ходили по нему лучше. Во многих тестах на людях показано, что то, что мы выучили перед сном, вспомнится лучше, чем выученное с утра. Выходит, что студенты, которые принимаются за подготовку к экзамену где-то ближе к полуночи, все делают правильно. По той же причине важно думать о проблемах перед сном. Конечно, заснуть будет сложнее, но мы загрузим вопрос в мозг, и, может быть, наутро придет какое-то решение. Кстати, сновидения - это, скорее всего, просто побочный эффект обработки информации.

Как обучение зависит от эмоций

Обучение в большой степени зависит от внимания , потому что оно направлено на то, чтобы снова и снова прогонять импульсы по конкретным путям нейронной сети. Из огромного количества информации мы на чем-то фокусируемся, берем это в рабочую память. Дальше то, на чем мы удерживаем внимание, попадает уже в память долговременную. Вы могли понять всю мою лекцию, но это не означает, что вам будет легко ее пересказать. А если вы прямо сейчас на листке бумаги нарисуете велосипед, то это не значит, что он будет хорошо ездить. Люди склонны забывать важные детали, особенно если они не специалисты по велосипедам.

У детей всегда были проблемы с вниманием. Но сейчас в этом смысле все становится проще. В современном обществе уже не так нужны конкретные фактические знания - просто их стало невероятно много. Гораздо важнее оказывается способность быстро ориентироваться в информации, отличать достоверные источники от недостоверных. Нам уже почти и не нужно долго концентрироваться на одном и том же и запоминать большие объемы информации - важнее быстро переключаться. Кроме того, сейчас появляется все больше профессий как раз для людей, которым сложнее концентрироваться.

Есть еще один важный фактор, влияющий на обучение, - эмоции. На самом деле это вообще главное, что у нас было на протяжении многих миллионов лет эволюции, еще до того, как мы нарастили всю эту огромную лобную кору. Ценность овладения тем или иным навыком мы оцениваем с точки зрения того, радует он нас или нет. Поэтому здорово, если удается наши базовые биологические эмоциональные механизмы вовлекать в обучение. Например, выстраивать такую систему мотивации, в которой лобная кора не думает о том, что мы должны выучить что-то с помощью усидчивости и целенаправленности, а в которой прилежащее ядро говорит, что ему просто чертовски нравится это занятие.