С. ТРАНКОВСКИЙ

Среди наиболее важных и интересных проблем современной физики и астрофизики академик В. Л. Гинзбург назвал вопросы, связанные с черными дырами (см. "Наука и жизнь" №№ 11, 12, 1999 г.). Существование этих странных объектов было предсказано более двухсот лет назад, условия, приводящие к их образованию, точно рассчитали в конце 30-х годов XX века, а вплотную астрофизика занялась ими менее сорока лет назад. Сегодня научные журналы мира ежегодно публикуют тысячи статей, посвященных черным дырам.

Образование черной дыры может происходить тремя путями.

Так принято изображать процессы, идущие в окрестностях коллапсирующей черной дыры. С течением времени (Y) пространство (X) вокруг нее (закрашенная область) сжимается, устремляясь к сингулярности.

Гравитационное поле черной дыры вносит сильнейшие искажения в геометрию пространства.

Черная дыра, невидимая в телескоп, обнаруживает себя только по своему гравитационному воздействию.

В мощном поле тяготения черной дыры происходит рождение пар частица-античастица.

Рождение пары частица-античастица в лаборатории.

КАК ОНИ ВОЗНИКАЮТ

Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в двести пятьдесят раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, что самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми.
Пьер Симон Лаплас.
Изложение системы мира. 1796 год.

В 1783 году английский математик Джон Митчел, а спустя тринадцать лет независимо от него французский астроном и математик Пьер Симон Лаплас провели очень странное исследование. Они рассмотрели условия, при которых свет не сможет покинуть звезду.

Логика ученых была проста. Для любого астрономического объекта (планеты или звезды) можно вычислить так называемую скорость убегания, или вторую космическую скорость, позволяющую любому телу или частице навсегда его покинуть. А в физике того времени безраздельно господствовала ньютоновская теория, согласно которой свет - это поток частиц (до теории электромагнитных волн и квантов оставалось еще почти полтораста лет). Скорость убегания частиц можно рассчитать исходя из равенства потенциальной энергии на поверхности планеты и кинетической энергии тела, "убежавшего" на бескончно большое расстояние. Эта скорость определяется формулой #1#

где M - масса космического объекта, R - его радиус, G - гравитационная постоянная.

Отсюда легко получается радиус тела заданной массы (позднее получивший название "гравитационный радиус r g "), при котором скорость убегания равна скорости света:

Это значит, что звезда, сжатая в сферу радиусом r g < 2GM /c 2 , перестанет излучать - свет покинуть ее не сможет. Во Вселенной возникнет черная дыра.

Несложно рассчитать, что Солнце (его масса 2 . 10 33 г) превратится в черную дыру, если сожмется до радиуса примерно 3 километра. Плотность его вещества при этом достигнет 10 16 г/см 3 . Радиус Земли, сжатой до состояния черной дыры, уменьшился бы примерно до одного сантиметра.

Казалось невероятным, что в природе могут найтись силы, способные сжать звезду до столь ничтожных размеров. Поэтому выводы из работ Митчела и Лапласа более ста лет считались чем-то вроде математического парадокса, не имеющего физического смысла.

Строгое математическое доказательство того, что подобный экзотический объект в космосе возможен, было получено только в 1916 году. Немецкий астроном Карл Шварц-шильд, проведя анализ уравнений общей теории относительности Альберта Эйнштейна, получил интересный результат. Исследовав движение частицы в гравитационном поле массивного тела, он пришел к выводу: уравнение теряет физический смысл (его решение обращается в бесконечность) при r = 0 и r = r g .

Точки, в которых характеристики поля теряют смысл, называются сингулярными, то есть особыми. Сингулярность в нулевой точке отражает точечную, или, что то же самое, центрально-симметричную структуру поля (ведь любое сферическое тело - звезду или планету - можно представить как материальную точку). А точки, расположенные на сферической поверхности радиусом r g , образуют ту самую поверхность, с которой скорость убегания равна скорости света. В общей теории относительности она именуется сингулярной сферой Шварц-шильда или горизонтом событий (почему - станет ясно в дальнейшем).

Уже на примере знакомых нам объектов - Земли и Солнца - ясно, что черные дыры представляют собой весьма странные объекты. Даже астрономы, имеющие дело с веществом при экстремальных значениях температуры, плотности и давления, считают их весьма экзотическими, и до последнего времени далеко не все верили в их существование. Однако первые указания на возможность образования черных дыр содержались уже в общей теории относительнос-ти А. Эйнштейна, созданной в 1915 году. Английский астроном Артур Эддингтон, один из первых интерпретаторов и популяризаторов теории относительности, в 30-х годах вывел систему уравнений, описывающих внутреннее строение звезд. Из них следует, что звезда находится в равновесии под действием противополож но направленных сил тяготения и внутреннего давления, создаваемого движением частиц горячей плазмы внутри светила и напором излучения, образующегося в его недрах. А это означает, что звезда представляет собой газовый шар, в центре которого высокая температура, постепенно понижающаяся к периферии. Из уравнений, в частности, следовало, что температура поверхности Солнца составляет около 5500 градусов (что вполне соответствовало данным астрономических измерений), а в его центре должна быть порядка 10 миллионов градусов. Это позволило Эддингтону сделать пророческий вывод: при такой температуре "зажигается" термоядерная реакция, достаточная для обеспечения свечения Солнца. Физики-атомщики того времени с этим не соглашались. Им казалось, что в недрах звезды слишком "холодно": температура там недостаточна, чтобы реакция "пошла". На это взбешенный теоретик отвечал: "Поищите местечко погорячее!".

И в конечном итоге он оказался прав: в центре звезды действительно идет термоядер ная реакция (другое дело, что так называемая "стандартная солнечная модель", основанная на представлениях о термоядерном синтезе, по-видимому, оказалась неверной - см., например, "Наука и жизнь" №№ 2, 3, 2000 г.). Но тем не менее реакция в центре звезды проходит, звезда светит, а излучение, которое при этом возникает, удерживает ее в стабильном состоянии. Но вот ядерное "горючее" в звезде выгорает. Выделение энергии прекращается, излучение гаснет, и сила, сдерживающая гравитационное притяжение, исчезает. Существует ограничение на массу звезды, после которого звезда начинает необратимо сжиматься. Расчеты показывают, что это происходит, если масса звезды превышает две-три массы Солнца.

ГРАВИТАЦИОННЫЙ КОЛЛАПС

Вначале скорость сжатия звезды невелика, но его темп непрерывно возрастает, поскольку сила притяжения обратно пропорциональна квадрату расстояния. Сжатие становится необратимым, сил, способных противодействовать самогравитации, нет. Такой процесс называется гравитационным коллапсом. Скорость движения оболочки звезды к ее центру увеличивается, приближаясь к скорости света. И здесь начинают играть роль эффекты теории относительности.

Скорость убегания была рассчитана исходя из ньютоновсих представлений о природе света. С точки зрения общей теории относительности явления в окрестностях коллапсирующей звезды происходят несколько по-другому. В ее мощном поле тяготения возникает так называемое гравитационное красное смещение. Это означает, что частота излучения, исходящего от массивного объекта, смещается в сторону низких частот. В пределе, на границе сферы Шварцшильда, частота излучения становится равной нулю. То есть наблюдатель, находящийся за ее пределами, ничего не сможет узнать о том, что происходит внутри. Именно поэтому сферу Шварцшильда и называют горизонтом событий.

Но уменьшение частоты равнозначно замедлению времени, и, когда частота становится равна нулю, время останавливается. Это означает, что посторонний наблюдатель увидит очень странную картину: оболочка звезды, падающая с нарастающим ускорением, вместо того, чтобы достигнуть скорости света, останавливается. С его точки зрения, сжатие прекратится, как только размеры звезды приблизятся к гравитационному ради
усу. Он никогда не увидит, чтобы хоть одна частица "нырнула" под сферу Шварцшиль да. Но для гипотетического наблюдателя, падающего на черную дыру, все закончится в считанные мгновения по его часам. Так, время гравитационного коллапса звезды размером с Солнце составит 29 минут, а гораздо более плотной и компактной нейтронной звезды - только 1/20 000 секунды. И здесь его подстерегает неприятность, связанная с геометрией пространства-времени вблизи черной дыры.

Наблюдатель попадает в искривленное пространство. Вблизи гравитационного радиуса силы тяготения становятся бесконечно большими; они растягивают ракету с космонавтом-наблюдателем в бесконечно тонкую нить бесконечной длины. Но сам он этого не заметит: все его деформации будут соответствовать искажениям пространственно-временн ых координат. Эти рассуждения, конечно, относятся к идеальному, гипотетическому случаю. Любое реальное тело будет разорвано приливными силами задолго до подхода к сфере Шварцшильда.

РАЗМЕРЫ ЧЕРНЫХ ДЫР

Размер черной дыры, а точнее - радиус сферы Шварцшильда пропорционален массе звезды. А поскольку астрофизика никаких ограничений на размер звезды не накладывает, то и черная дыра может быть сколь угодно велика. Если она, например, возникла при коллапсе звезды массой 10 8 масс Солнца (или за счет слияния сотен тысяч, а то и миллионов сравнительно небольших звезд), ее радиус будет около 300 миллионов километров, вдвое больше земной орбиты. А средняя плотность вещества такого гиганта близка к плотности воды.

По-видимому, именно такие черные дыры находятся в центрах галактик. Во всяком случае, астрономы сегодня насчитывают около пятидесяти галактик, в центре которых, судя по косвенным признакам (речь о них пойдет ниже), имеются черные дыры массой порядка миллиарда (10 9) солнечной. В нашей Галактике тоже, видимо, есть своя черная дыра; ее массу удалось оценить довольно точно - 2,4 . 10 6 ±10% массы Солнца.

Теория предполагает, что наряду с такими сверхгигантами должны были возникать и черные мини-дыры массой порядка 10 14 г и радиусом порядка 10 -12 см (размер атомного ядра). Они могли появляться в первые мгновения существования Вселенной как проявление очень сильной неоднородности пространства-времени при колоссальной плотности энергии. Условия, которые были тогда во Вселенной, исследователи сегодня реализуют на мощных коллайдерах (ускорителях на встречных пучках). Эксперименты в ЦЕРНе, проведенные в начале этого года, позволили получить кварк-глюонную плазму - материю, существовавшую до возникновения элементарных частиц. Исследования этого состояния вещества продолжаются в Брукхевене - американском ускорительном центре. Он способен разогнать частицы до энергий, на полтора-два порядка более высоких, чем ускоритель в
ЦЕРНе. Готовящийся эксперимент вызвал нешуточную тревогу: не возникнет ли при его проведении черная мини-дыра, которая искривит наше пространство и погубит Землю?

Это опасение вызвало столь сильный резонанс, что правительство США было вынуждено созвать авторитетную комиссию для проверки такой возможности. Комиссия, состоявшая из видных исследователей, дала заключение: энергия ускорителя слишком мала, чтобы черная дыра могла возникнуть (об этом эксперименте рассказано в журнале "Наука и жизнь" № 3, 2000 г.).

КАК УВИДЕТЬ НЕВИДИМОЕ

Черные дыры ничего не излучают, даже свет. Однако астрономы научились видеть их, вернее - находить "кандидатов" на эту роль. Есть три способа обнаружить черную дыру.

1. Нужно проследить за обращением звезд в скоплениях вокруг некоего центра гравитации. Если окажется, что в этом центре ничего нет, и звезды крутятся как бы вокруг пустого места, можно достаточно уверенно сказать: в этой "пустоте" находится черная дыра. Именно по этому признаку предположили наличие черной дыры в центре нашей Галактики и оценили ее массу.

2. Черная дыра активно всасывает в себя материю из окружающего пространства. Межзвездная пыль, газ, вещество ближайших звезд падают на нее по спирали, образуя так называемый аккреционный диск, подобный кольцу Сатурна. (Именно это и пугало в брукхевенском эксперименте: черная мини-дыра, возникшая в ускорителе, начнет всасывать в себя Землю, причем процесс этот никакими силами остановить было бы нельзя.) Приближаясь к сфере Шварцшильда, частицы испытывают ускорение и начинают излучать в рентгеновском диапазоне. Это излучение имеет характерный спектр, подобный хорошо изученному излучению частиц, ускоренных в синхротроне. И если из какой-то области Вселенной приходит такое излучение, можно с уверенностью сказать - там должна быть черная дыра.

3. При слиянии двух черных дыр возникает гравитационное излучение. Подсчитано, что если масса каждой составляет около десяти масс Солнца, то при их слиянии за считанные часы в виде гравитационных волн выделится энергия, эквивалентная 1% их суммарной массы. Это в тысячу раз больше той световой, тепловой и прочей энергии, которую излучило Солнце за все время своего существования - пять миллиардов лет. Обнаружить гравитаци онное излучение надеются с помощью гравитационно-волновых обсерваторий LIGO и других, которые строятся сейчас в Америке и Европе при участии российских исследователей (см. "Наука и жизнь" № 5, 2000 г.).

И все-таки, хотя у астрономов нет никаких сомнений в существовании черных дыр, категорически утверждать, что в данной точке пространства находится именно одна из них, никто не берется. Научная этика, добросовестность исследователя требуют получить на поставленный вопрос ответ однозначный, не терпящий разночтений. Мало оценить массу невидимого объекта, нужно измерить его радиус и показать, что он не превышает шварцшильдовский. А даже в пределах нашей Галактики эта задача пока не разрешима. Именно поэтому ученые проявляют известную сдержанность в сообщениях об их обнаружении, а научные журналы буквально набиты сообщениями о тео-ретических работах и наблюдениях эффектов, способных пролить свет на их загадку.

Есть, правда, у черных дыр и еще одно свойство, предсказанное теоретически, которое, возможно, позволило бы увидеть их. Но, правда, при одном условии: масса черной дыры должна быть гораздо меньше массы Солнца.

ЧЕРНАЯ ДЫРА МОЖЕТ БЫТЬ И "БЕЛОЙ"

Долгое время черные дыры считались воплощением тьмы, объектами, которые в вакууме, в отсутствии поглощения материи, ничего не излучают. Однако в 1974 году известный английский теоретик Стивен Хокинг показал, что черным дырам можно приписать температуру, и, следовательно, они должны излучать.

Согласно представлениям квантовой механики, вакуум - не пустота, а некая "пена пространства-времени", мешанина из виртуалных (ненаблюдаемых в нашем мире) частиц. Однако квантовые флуктуации энергии способны "выбросить" из вакуума пару частица-античастица. Например, при столкновении двух-трех гамма-квантов как бы из ничего возникнут электрон и позитрон. Это и аналогичные явления неоднократно наблюдались в лабораториях.

Именно квантовые флуктуации определяют процессы излучения черных дыр. Если пара частиц, обладающих энергиями E и -E (полная энергия пары равна нулю), возникает в окрестности сферы Шварцшильда, дальнейшая судьба частиц будет различной. Они могут аннигилировать почти сразу же или вместе уйти под горизонт событий. При этом состояние черной дыры не изменится. Но если под горизонт уйдет только одна частица, наблюдатель зарегистрирует другую, и ему будет казаться, что ее породила черная дыра. При этом черная дыра, поглотившая частицу с энергией -E , уменьшит свою энергию, а с энергией E - увеличит.

Хокинг подсчитал скорости, с которыми идут все эти процессы, и пршел к выводу: вероятность поглощения частиц с отрицательной энергией выше. Это значит, что черная дыра теряет энергию и массу - испаряется. Кроме того она излучает как абсолютно черное тело с температурой T = 6 . 10 -8 M с /M кельвинов, где M с - масса Солнца (2 . 10 33 г), M - масса черной дыры. Эта несложная зависимость показывает, что температура черной дыры с массой, в шесть раз превышающей солнечную, равна одной стомиллионной доле градуса. Ясно, что столь холодное тело практически ничего не излучает, и все приведенные выше рассуждения остаются в силе. Иное дело - мини-дыры. Легко увидеть, что при массе 10 14 -10 30 граммов они оказываются нагретыми до десятков тысяч градусов и раскалены добела! Следует, однако, сразу отметить, что противоречий со свойствами черных дыр здесь нет: это излучение испускается слоем над сферой Шварцшильда, а не под ней.

Итак, черная дыра, которая казалась навеки застывшим объектом, рано или поздно исчезает, испарившись. Причем по мере того, как она "худеет", темп испарения нарастает, но все равно идет чрезвычайно долго. Подсчитано, что мини-дыры массой 10 14 граммов, возникшие сразу после Большого взрыва 10-15 миллиардов лет назад, к нашему времени должны испариться полностью. На последнем этапе жизни их температура достигает колоссальной величины, поэтому продуктами испарения должны быть частицы чрезвычайно высокой энергии. Возможно, именно они порождают в атмосфере Земли широкие амосферные ливни - ШАЛы. Во всяком случае, происхождение частиц аномально высокой энергии - еще одна важная и интересная проблема, которая может быть вплотную связана с не менее захватывающими вопросами физики черных дыр.

Таинственные и неуловимые черные дыры. Законы физики подтверждают возможность их существования во вселенной, но сих пор остается множество вопросов. Многочисленные наблюдения показывают, что дыры существуют во вселенной и этих объектов - больше миллиона.

Что такое черные дыры?

Ещё в 1915 году при решении уравнений Эйнштейна было предсказано такое явление как «черные дыры». Однако научное сообщество заинтересовалось ими только в 1967 году. Их тогда называли «сколлапсировавшие звёзды», «застывшие звёзды».

Сейчас черной дырой называют область времени и пространства, которые обладают такой гравитацией, что из неё не может выбраться даже луч света.

Как образуются черные дыры?

Существуют несколько теорий появления черных дыр, которые делятся на гипотетические и реалистичные. Самая простая и распространенная реалистичная - теория гравитационного каллапса больших звезды.

Когда достаточно массивная звезда перед «смертью» разрастается в размерах и становится не стабильной, расходуя последнее топливо. В то же время масса звезды остается неизменной, но её размеры уменьшаются так как происходит, так называемое, уплотнение. Иными словами при уплотнении тяжелое ядро "падает" в само себя. Параллельно с этим уплотнение приводит к резкому повышению температуры внутри звезды и внешние слои небесного тела отрываются, из них образуются новые звезды. В это же время в центре звезды - ядро падает в свой собственный "центр". В результате действия сил гравитации центр обваливается в точку - т.е силы гравитации на столько сильны, что поглощают уплотненное ядро. Так рождается черная дыра, которая начинает искажать пространство и время, что даже свет не может вырваться из неё.

В центрах всех галактик находится сверхмассивная черная дыра. Согласно теории относительности Эйнштейна:

«Любая масса искажает пространство и время».

А теперь представьте, как сильно черная дыра искажает время и пространство, ведь её масса огромна и одновременно втиснута в сверхмалый объем. Из-за этой способности возникает следующая странность:

«Черные дыры обладают способностью практически останавливать время и сжимать пространство. Из-за этого сильнейшего искажения дыры становятся не видимыми для нас».

Если черные дыры не видны, откуда мы знаем, что они существуют?

Да, хоть черная дыра и невидимка, но она должна быть заметна за счет материи, которая падает в неё. А так же звездный газ, который притягивается черной дырой, при приближении к горизонту событий температура газа начинает расти до сверхвысоких значений, что приводит к свечению. Именно поэтому черные дыры светятся. Благодаря такому, хоть и слабому свечению, астрономы и астрофизики объясняют наличие в центре галактики объекта с малым объемом, но огромной массой. В данный момент в результате наблюдений обнаружено порядка 1000 объектов, которые похожи по поведению на черные дыры.

Черные дыры и галактики

Как черные дыры могут влиять на галактики? Этот вопрос мучает ученых всего мира. Есть гипотеза, согласно которой именно черные дыры, находящиеся в центре галактики влияет на её формы и эволюцию. И что при столкновении двух галактик происходит слияние черных дыр и во время этого процесса выбрасывается такое огромное количество энергии и материи, что образуются новые звезды.

Типы черных дыр

  • Согласно существующей теории, есть три типа черных дыр: звездные, сверхмассивные, миниатюрные. И каждая из них сформировалась особым образом.
  • - Черные дыры звездных масс, она разрастается до огромных размеров и разрушается.
    - Сверхмассивные черные дыры, которые могут иметь массу, эквивалентную миллионам Солнц, с большой вероятностью существуют в центрах практически всех галактик, включая наш Млечный путь. Ученые все ещё имеют разные гипотизы образования сверхмассивных черных дыр. Пока известно только одно - сверхмассивные черные дыры - побочный продукт образования галактик. Сверхмассивные черные дыры - они отличаются от обычных тем, что имеют очень большой размер, но парадоксально маленькую плотность.
  • - Еще никто не смог обнаружить миниатюрную черную дыру, которая имела бы массу меньшую, чем Солнце. Вполне возможно, что миниатюрные дыры могли бы образоваться вскоре после «Большого взрыва», который является начальной точной существования нашей вселенной (около 13,7 млрд лет назад).
  • - Совсем недавно было введено новое понятие как "белые черные дыры". Это пока гипотетическая черня дыра, которая является противоположностью черной дыре. Активно изучал возможность существования белых дыр Стивен Хокинг.
  • - Квантовые черные дыры - они существуют пока только в теории. Квантовые черные дыры могут образовываться при столкновении сверхмалых частиц в результате ядерной реакции.
  • - Первичные черные дыры - тоже теория. Они образовались сразу после возникновения.

В данный момент существует большое количество открытых вопросов, на которые ещё предстоит ответить будущим поколениям. Например, могут ли в действительности существовать так называемые "кротовые норы", с помощью которых можно путешествовать по пространству и времени. Что именно происходит внутри черной дыры и каким законам подчиняются эти явления. И как быть с исчезновением информации в черной дыре?

Как для ученых минувших столетий, так и для исследователей нашего времени наибольшей загадкой космоса является черная дыра. Что внутри этой совсем незнакомой для физики системы? Какие законы там действуют? Как идет время в черной дыре, и почему оттуда не могут вырваться даже кванты света? Сейчас мы попробуем, конечно же, с точки зрения теории, а не практики, разобраться в том, что внутри черной дыры, почему она, в принципе, образовалась и существует, как она притягивает объекты, которые ее окружают.

Для начала опишем этот объект

Итак, черной дырой именуется определенная область пространства во Вселенной. Выделить ее как отдельную звезду или планету невозможно, так как это не твердое и не газовое тело. Не имея базовых пониманий того, что такое пространство-время и как эти измерения могут видоизменяться, невозможно постичь того, что находится внутри черной дыры. Дело в том, что эта область не является лишь пространственной единицей. который искажает как три известных нам измерения (длину, ширину и высоту), так и временную шкалу. Ученые уверены в том, что в районе горизонта (так называется область, окружающая дыру) время принимает пространственное значение и может двигаться как вперед, так и назад.

Познаем тайны гравитации

Если мы желаем разобраться в том, что внутри черной дыры, рассмотрим детально, что такое гравитация. Именно это явление ключевое в понимании природы так называемых «кротовых нор», из которых не выбирается даже свет. Гравитацией называется взаимодействие между всеми телами, которые имеют материальную основу. Сила такого тяготения зависит от молекулярного состава тел, от концентрации атомов, а также от их состава. Чем больше частиц сколлапсировано в определенном участке пространства, тем больше гравитационная сила. Это неразрывно связано с Теорией Большого взрыва, когда наша Вселенная была размером с горошину. Это было состояние максимальной сингулярности, и в результате вспышки квантов света пространство стало расширяться за счет того, что частицы отталкивались друг от друга. С точностью до наоборот описывается учеными черная дыра. Что внутри такой штуковины в соответствии с ТБЗ? Сингулярность, которая равна показателям, присущим нашей Вселенной в момент зарождения.

Как попадает материя в «кротовую нору»?

Бытует мнение, что человек никогда не сможет понять, что происходит внутри черной дыры. Так как, попав туда, он будет буквально раздавлен гравитацией и силой тяжести. На самом деле это не совсем так. Да, действительно, черная дыра представляет собой область сингулярности, где все сжато до максимума. Но это вовсе не «космический пылесос», который способен затянуть в себя все планеты и звезды. Любой материальный объект, оказавшийся на горизонте событий, будет наблюдать сильное искажение пространства и времени (пока что эти единицы стоят отдельно). Эвклидова система геометрии начнет давать сбои, иными словами, пересекутся, очертания стереометрических фигур перестанут быть привычными. Что касается времени, то оно будет постепенно замедляться. Чем ближе вы будете приближаться к дыре, тем медленнее будут идти часы относительно Земного времени, но вы этого не заметите. При попадании в «кротовую нору» тело будет падать с нулевой скоростью, но при этом данная единица будет равняться бесконечности. кривизны, который приравнивает бесконечное к нулю, что окончательно останавливает время в области сингулярности.

Реакция на излучаемый свет

Единственным объектом в космосе, который притягивает свет, является черная дыра. Что внутри нее находится и в каком оно там виде - неизвестно, но полагают, что это кромешная тьма, которую представить себе невозможно. Световые кванты, попадая туда, не просто исчезают. Их масса умножается на массу сингулярности, что делает ее еще больше и увеличивает ее Таким образом, если внутри «кротовой норы» вы включите фонарик, чтобы осмотреться, он не будет светиться. Излучаемые кванты будут постоянно множиться на массу дыры, и вы, грубо говоря, лишь усугубите свое положение.

Черные дыры на каждом шагу

Как мы уже разобрались, основой образования является гравитация, величина которой там в миллионы раз превосходит земную. Точное представление о том, что такое черная дыра, подарил миру Карл Шварцшильд, который, собственно, и открыл тот самый горизонт событий и точку невозврата, а также установил, что ноль в состоянии сингулярности равен бесконечности. По его мнению, черная дыра может образоваться в любой точке пространства. При этом определенный материальный объект, имеющий сферическую форму, должен достичь гравитационного радиуса. Например, масса нашей планеты должна уместиться в объеме одного горошка, чтобы стать черной дырой. А Солнце должно иметь диаметр в 5 километров при своей массе - тогда его состояние станет сингулярным.

Горизонт образования нового мира

Законы физики и геометрии отлично действуют на земле и в открытом космосе, где пространство близится к вакууму. Но они полностью теряют свою значимость на горизонте событий. Именно поэтому с математической точки зрения невозможно рассчитать, что внутри черной дыры. Картинки, которые можно придумать, если искривлять пространство в соответствии с нашими представлениями о мире, наверняка далеки от истины. Установлено лишь, что время тут превращается в пространственную единицу и, скорее всего, к существующим измерениям прибавляются еще какие-то. Это дает возможность полагать, что внутри черной дыры (фото, как известно, этого не покажет, так как свет там съедает сам себя) образуются совсем иные миры. Эти Вселенные могут состоять из антивещества, которое ныне незнакомо ученым. Также существуют версии, что сфера невозврата - это лишь портал, который ведет либо в другой мир, либо в другие точки нашей Вселенной.

Рождение и смерть

Куда более чем существование черной дыры, является ее зарождение или исчезновение. Сфера, искажающая пространство-время, как мы уже выяснили, образуется в результате коллапса. Это может быть взрыв большой звезды, столкновение двух и более тел в космосе и так далее. Но каким образом материя, которую теоретически можно было бы ощупать, превратилась в область искажения времени? Загадка находится в процессе работы. Но за ней следует второй вопрос - почему такие сферы невозврата исчезают? И если черные дыры испаряются, то почему из них не выходит тот свет и вся космическая материя, которую они втянули? Когда вещество в зоне сингулярности начинает расширяться, гравитация постепенно снижается. В результате черная дыра просто растворяется, и на ее месте остается обычное вакуумное космическое пространство. Из этого вытекает еще одна загадка - куда подевалось все то, что в нее попало?

Гравитация - наш ключ к счастливому будущему?

Исследователи уверены в том, что энергетическое будущее человечества может сформировать именно черная дыра. Что внутри этой системы, пока что неизвестно, но удалось установить, что на горизонте событий любая материя трансформируется в энергию, но, конечно же, частично. К примеру, человек, оказываясь около точки невозврата, отдаст 10 процентов своей материи для ее переработки в энергию. Этот показатель просто колоссальный, он стал сенсацией у астрономов. Дело в том, что на Земле при материя перерабатывается в энергию лишь на 0,7 процента.

Не так давно (по научным меркам) объект под названием черная дыра был сугубо гипотетическим и описывался лишь только поверхностными теоретическими выкладками. Но прогресс технологий не стоит на месте, и сейчас в существовании черных дыр уже ни у кого не вызывает сомнений. Про черные дыры написано не мало, но зачастую их описания крайне трудно понимать обычному обозревателю. В данной статье попробуем разобраться с этим весьма интересным объектом.

Черная дыра обычно образуется вследствие смерти нейтронной звезды. Нейтронные звезды обычно очень массивные, яркие и крайне горячие, если сравнивать с нашим Солнцем, то это как лампочка от фонарика и гигантский прожектор на кучу мегаватт, которые используют при съемках кинофильмов. Нейтронные звезды, крайне не экономные, они используют огромные запасы ядерного топлива за относительно малые промежутки времени, по сути как малолитражка и какой-нибудь гелик, если опять таки сравнить с нашей звездой. Сжигая ядерное топливо, в ядре образуются новые элементы, более тяжелые, можно смотреть таблицу Менделеева, водород превращается в гелий, гелий в литий и тд. Продукты распада ядерного синтеза, аналогичны дыма из выхлопной трубы, за исключением, что могут повторно использоваться. И вот так звезда набирает обороты, пока дело не доходит до железа. Накопления железа в ядре - это как рак… Оно начинает убивать ее изнутри. Из-за железа масса ядра стремительно растет и в конце концов сила гравитации становится больше сил ядерных взаимодействий и ядро буквально падает, что приводит к взрыву. В момент такого взрыва освобождается колоссальное количество энергии, причем возникают два направленных луча гамма-излучения, как-будто лазерная пушка с двух концов выстреливает во вселенную, причем все что находится на пути таких лучей на расстоянии около 10 световых лет пронизывается этой радиацией. Естественно ничто живое не выживает от таких лучей, а что по-ближе вовсе сгорает. Данное излучение считается наиболее сильным во всей вселенной, большей энергией разве что обладает энергия большого взрыва. Но не все так плохо, все что было в ядре испускается в космос и в дальнейшем используется для создания планет, звезд и прочее. Давление от силы взрыва сжимает звезду до крохотных размеров, учитывая ее былые размеры плотность становится невероятно огромной. Крошка от гамбургера сделанная из такого вещества будет весить больше нашей планеты. В следствии чего получается черная дыра, которая обладает невероятной гравитацией и черной называется потому что даже свет не может вырваться из нее.

Законы физики рядом с черной дырой уже не работают в том представлении, в котором мы привыкли. Пространство-время искривляется и все события протекают уже совсем по другому. Словно пылесос, черная дыра поглощает все что находится около нее: планеты, астероиды, свет и прочее. Ранее считалось, что черная дыра ничего не излучает, но как доказал Стивен Хоукинг, черная дыра излучает антивещество. То есть, поедает вещество, выделяет антивещество. К слову, если соединить вещество и антивещество, получаем бомбу которая выделит энергию E=mc2, ну тобишь самое мощное оружие на планете. Коллайдер полагаю затем и построили, чтобы попробовать такое получить, так как при столкновении протонов внутри данной машины, также возникают миниатюрные черные дыры, которые быстро испаряются, что хорошо для нас, иначе могло бы быть, как в фильмах про конец света.

Ранее думали, что если кинуть в черную дыру человека, то ему труба - порвет на субатомы, но как оказалось, по некоторым уравнениям, есть определенные траектории путешествия сквозь черную дыру, чтоб чувствовать себя нормально, правда не ясно, что будет за ней, другой мир или ничего. Область вокруг черной дыры, которая интересна, называется горизонтом событий. Если туда полететь, не зная волшебное уравнение, то будет конечно не очень. Наблюдатель будет видеть, как космический корабль влетает в горизонт событий и крайне медленно потом отдаляется, пока не застынет в центре. У самого же космонавта дела будут идти крайне по другому, искривленной пространство будет лепить из него, как из пластелина различные формы, пока наконец не разорвет все на субатомы. Но для внешнего наблюдателя, космонавт навсегда останется улыбающимся и махающим в иллюминатор, застывшим изображением.

Вот такие вот странные штуки эти черные дыры…

Бескрайняя Вселенная полна тайн, загадок и парадоксов. Несмотря на то, что современная наука сделала огромный скачок вперед в исследовании космоса, многое в этом бескрайнем мире остается непостижимым для человеческого мировосприятия. Нам достаточно много известно о звездах , туманностях, скоплениях и планетах. Однако на просторах Вселенной встречаются такие объекты, о существовании которых мы можем только догадываться. Например, о черных дырах нам известно крайне мало. Основные сведения и знания о природе черных дыр строятся на предположениях и догадках. Астрофизики, ученые-атомщики бьются над этим вопросом уже не один десяток лет. Что же такое черная дыра в космосе? Какова природа подобных объектов?

Говоря о черных дырах простым языком

Чтобы представить, как выглядит черная дыра, достаточно увидеть хвост уходящего в туннель поезда. Сигнальные фонари на последнем вагоне по мере углубления поезда в туннель, будут уменьшаться в размерах, пока совсем не исчезнут из поля зрения. Другими словами — это объекты, где в силу чудовищного притяжения исчезает даже свет. Элементарные частицы, электроны, протоны и фотоны не в состоянии преодолеть невидимый барьер, проваливаются в черную бездну небытия, поэтому такая дыра в пространстве и получила название — черная. Нет внутри нее ни малейшего светлого участка, сплошная чернота и бесконечность. Что находится по ту стороны черной дыры – неизвестно.

Этот космический пылесос обладает колоссальной силой притяжения и в состоянии поглотить целую галактику со всеми скоплениями и сверхскоплениями звезд, с туманностями и с темной материей в придачу. Каким образом это возможно? Остается только догадываться. Известные нам законы физики в данном случае трещат по швам и не дают объяснения происходящим процессам. Суть парадокса заключается в том, что в данном участке Вселенной гравитационное взаимодействие тел определяется их массой. На процесс поглощения одним объектом другого не оказывают влияния их качественный и количественный состав. Частицы, достигнув критического количества на определенном участке, входят в другой уровень взаимодействия, где гравитационные силы становятся силами притяжения. Тело, объект, субстанция или материя под воздействием гравитации начинает сжиматься, достигая колоссальной плотности.

Примерно такие процессы происходят при образовании нейтронной звезды , где звездная материя под воздействием внутренней гравитации сжимается в объеме. Свободные электроны соединяются с протонами, образуя электрически нейтральные частицы — нейтроны. Плотность этой субстанции огромна. Частица материи размером с кусок рафинада имеет вес в миллиарды тонн. Здесь уместным будет вспомнить общую теорию относительности, где пространство и время — величины непрерывные. Следовательно, процесс сжатия не может быть остановлен на полпути и поэтому не имеет предела.

Потенциально черная дыра выглядит как нора, в которой возможно существует переход из одного участка пространства в другой. При этом свойства самого пространства и времени меняются, закручиваясь в пространственно-временную воронку. Достигая дна этой воронки, любая материя распадается на кванты. Что находится по ту стороны черной дыры, этой гигантской норы? Возможно, там существует другое иное пространство, где действуют другие законы и время течет в обратном направлении.

В разрезе теории относительности теория черной дыры выглядит следующим образом. Точка пространства, где гравитационные силы сжали любую материю до микроскопических размеров, обладает колоссальной силой притяжения, величина которой возрастает до бесконечности. Появляется складка времени, а пространство искривляется, замыкаясь в одной точке. Поглощенные черной дырой объекты не в состоянии самостоятельно противостоять силе втягивания этого чудовищного пылесоса. Даже скорость света, которой обладают кванты, не позволяет элементарным частицам преодолеть силу притяжения. Любое тело, попавшее в такую точку, перестает быть материальным объектом, сливаясь с пространственно-временным пузырем.

Черные дыры с точки зрения науки

Если задаться вопросом, как образуются черные дыры? Однозначного ответа не будет. Во Вселенной достаточно много парадоксов и противоречий, которые невозможно объяснить с точки зрения науки. Теория относительности Эйнштейна позволяет только теоретически объяснить природу подобных объектов, однако квантовая механика и физика в данном случае молчат.

Пытаясь объяснить законами физики происходящие процессы, картина будет выглядеть следующим образом. Объект, образуется в результате колоссального гравитационного сжатия массивного или сверхмассивного космического тела. Этот процесс носит научное название — гравитационный коллапс. Термин «черная дыра» впервые прозвучал в научной среде в 1968 году, когда американский астроном и физик Джон Уиллер пытался объяснить состояние звездного коллапса. По его теории, на месте массивной звезды подвергнувшейся гравитационному коллапсу возникает пространственный и временной провал, в котором действует постоянно растущее сжатие. Все, из чего состояла звезда, уходит внутрь себя.

Такое объяснение позволяет сделать вывод, что природа черных дыр никоим образом не связана с процессами, происходящими во Вселенной. Все, что происходит внутри этого объекта, никак не отражается на окружающем пространстве при одном «НО». Сила гравитации черной дыры настолько сильна, что искривляет пространство, заставляя вращаться галактики вокруг черных дыр. Соответственно становится понятна причина, почему галактики принимают форму спиралей. Сколько понадобится времени на то, чтобы огромная галактика Млечный путь исчезла в бездне сверхмассивной черной дыры, неизвестно. Любопытен факт, что черные дыры могут возникать в любой точке космического пространства, там, где для этого созданы идеальные условия. Такая складка времени и пространства нивелирует те огромные скорости, с которыми вращаются звезды и перемещаются в пространстве галактики. Время в черной дыре течет в другом измерении. Внутри этой области никакие законы гравитации не поддаются интерпретации с точки зрения физики. Такое состояние называется сингулярностью черной дыры.

Черные дыры не проявляют никаких внешних идентификационных признаков, об их существовании можно судить по поведению других космических объектов, на которые воздействуют гравитационные поля. Вся картина борьбы не на жизнь, а на смерть происходит на границе черной дыры, которая прикрыта мембраной. Эта мнимая поверхность воронки называется «горизонтом событий». Все, что мы видим до этой границы, осязаемо и материально.

Сценарии образования черных дыр

Развивая теорию Джона Уиллера, можно сделать вывод, что тайна черных дыр скорее не в процессе ее формирования. Образование черной дыры возникает в результате коллапса нейтронной звезды. Причем масса такого объекта должна превосходить массу Солнца в три и более раз. Нейтронная звезда сжимается до тех пор, пока ее собственный свет уже не в состоянии вырваться из тесных объятий силы притяжения. Существует граничный предел в размере, до которого может сжиматься звезда, давая рождение черной дыре. Этот радиус называется гравитационным радиусом. Массивные звезды на финальной стадии своего развития должны иметь гравитационный радиус в несколько километров.

Сегодня ученые получили косвенные доказательства присутствия черных дыр в десятке рентгеновских двойных звездах. У рентгеновских звезд, пульсара или барстера нет твердой поверхности. К тому же их масса больше массы трех Солнц. Нынешнее состояние космического пространства в созвездии Лебедя – рентгеновская звезда Лебедь Х-1, позволяет проследить процесс образования этих любопытных объектов.

Исходя из исследований и теоретических предположений, сегодня в науке существует четыре сценария образования черных звезд:

  • гравитационный коллапс массивной звезды на финальном этапе ее эволюции;
  • коллапс центральной области галактики;
  • формирование черных дыр в процессе Большого взрыва;
  • образование квантовых черных дыр.

Первый сценарий является самым реалистичным, однако то количество черных звезд, с которым мы знакомы на сегодняшний день, превышает количество известных нейтронных звезд. Да и возраст Вселенной не настолько большой, чтобы такое количество массивных звезд смогло пройти полный процесс эволюции.

Второй сценарий имеет право на жизнь, и тому существует яркий пример – сверхмассивная черная дыра Стрелец А*, приютившаяся в центре нашей галактики. Масса этого объекта 3,7 массы Солнца . Механизм этого сценария схож со сценарием гравитационного коллапса с той лишь разницей, что коллапсу подвергается не звезда, а межзвездный газ. Под воздействием гравитационных сил происходит сжатие газа до критической массы и плотности. В критический момент материя распадается на кванты, образуя черную дыру. Однако эта теория вызывает сомнения, так как недавно астрономы Колумбийского университета выявили спутники черной дыры Стрелец А*. Ими оказалось множество мелких черный дыр, которые вероятно образовались другим способом.

Третий сценарий больше теоретический и связан с существованием теории Большого взрыва. В момент образования Вселенной часть материи и гравитационные поля претерпели флуктуацию. Другими словами, процессы пошли другим путем, не связанным с известными процессами квантовой механики и ядерной физики.

Последний сценарий ориентирован на физику ядерного взрыва. В сгустках материи в процессе ядерных реакций под влиянием гравитационных сил происходит взрыв, на месте которого образуется черная дыра. Материя взрывается внутрь себя, поглощая все частицы.

Существование и эволюция черных дыр

Имея приблизительное представление о природе столь странных космических объектов, интересно другое. Какие истинные размеры черных дыр, как быстро они растут? Размеры черных дыр определяются их гравитационным радиусом. Для черных дыр радиус черной дыры определяется ее массой и называется радиусом Шварцшильда. К примеру, если объект имеет массу равную массу нашей планеты, то радиус Шварцшильда в таком случае составляет 9 мм. Наше главное светило имеет радиус в 3 км. Средняя плотность черной дыры, образовавшейся на месте звезды массой 10⁸ масс Солнца, будет близкой к плотности воды. Радиус такого образования составит 300 млн. километров.

Вероятно, что такие гигантские черные дыры располагаются в центре галактик. На сегодняшний день известны 50 галактик, в центре которых находятся огромные временные и пространственные колодцы. Масса таких гигантов составляет миллиарды масса Солнца. Можно только представить, какой колоссальной и чудовищной силой притяжения обладает такая дыра.

Что касается мелких дырочек, то это мини-объекты, радиус которых достигает ничтожных величин, всего 10¯¹² см. Масса такой крошки составляет 10¹⁴гр. Подобные образования возникли в момент Большого взрыва, однако со временем увеличились в размерах и сегодня красуются в космическом пространстве в качестве монстров. Условия, при которых шло образование мелких черных дыр, ученые сегодня пытаются воссоздать в земных условиях. Для этих целей проводятся эксперименты в электронных коллайдерах, посредством которых элементарные частицы разгоняются до скорости света. Первые опыты позволили получить в лабораторных условиях кварк-глюонную плазму — материю, которая существовала на заре образования Вселенной. Подобные эксперименты позволяют надеяться, что черная дыра на Земле – дело времени. Другое дело, не обернется ли подобное достижение человеческой науки катастрофой для нас и для нашей планеты. Создав искусственно черную дыру, мы можем открыть ящик Пандоры.

Последние наблюдения за другими галактиками, позволили ученым открыть черные дыры, размеры которых превышают все мыслимые ожидания и предположения. Эволюция, которая происходит с подобными объектами, позволяет лучше понять, от чего растет масса черных дыр, каков ее реальный предел. Ученые пришли к выводу, что все известные черные дыры выросли до своих реальных размеров в течение 13-14 млрд. лет. Разница в размерах объясняется плотностью окружающего пространства. Если у черной дыры достаточно пищи в пределах досягаемости сил притяжения, она растет словно на дрожжах, достигая массы в сотни и тысячи солнечных масс. Отсюда и гигантские размеры таких объектов, расположенных в центре галактик. Массивное скопление звезд, огромные массы межзвездного газа являются обильной пищей для роста. При слиянии галактик, черные дыры могут сливаться воедино, образуя новый сверхмассивный объект.

Судя по анализу эволюционных процессов, принято выделять два класса черных дыр:

  • объекты с массой в 10 раз больше солнечной массы;
  • массивные объекты, масса которых составляет сотни тысяч, миллиарды солнечных масс.

Существуют черные дыры со средней промежуточной массой равной 100-10 тыс. масс Солнца, однако их природа до сих пор остается неизвестной. На одну галактику приходится примерно один такой объект. Изучение рентгеновских звезд позволило найти на расстоянии 12 миллионов световых лет в галактике М82 сразу две средние по массе черные дыры. Масса одного объекта варьируется в диапазоне 200-800 масс Солнца. Другой объект гораздо больше и имеет массу 10-40 тыс. солнечных масс. Судьба таких объектов интересна. Располагаются они вблизи звездных скоплений, постепенно притягиваясь к сверхмассивной черной дыре, расположенной в центральной части галактики.

Наша планета и черные дыры

Несмотря на поиски разгадки о природе черных дыр, научный мир беспокоит место и роль черной дыры в судьбе галактики Млечный путь и, в частности, в судьбе планеты Земля. Складка времени и пространства, которая существует в центре Млечного пути, постепенно поглощает все существующие вокруг объекты. Уже поглощены в черной дыре миллионы звезд и триллионы тонн межзвездного газа. Со временем дойдет очередь и до рукавов Лебедя и Стрельца, в которых находится Солнечная система, пройдя расстояние в 27 тыс. световых лет.

Другая ближайшая сверхмассивная черная дыра находится в центральной части галактики Андромеда. Это около 2,5 млн. световых лет от нас. Вероятно, до того времени, как наш объект Стрелец А* поглотит собственную галактику, следует ожидать слияния двух соседствующих галактик. Соответственно произойдет и слияние двух сверхмассивных черных дыр в одно целое, страшное и чудовищное по размерам.

Совершенно другое дело — черные дыры небольших размеров. Чтобы поглотить планету Земля достаточно черной дыры радиусом в пару сантиметров. Проблема заключается в том, что по своей природе черная дыра совершенно безликий объект. Из ее чрева не исходит никакое излучение, ни радиация, поэтому заметить столь загадочный объект достаточно трудно. Только с близкого расстояния можно обнаружить искривление фонового света, которое свидетельствует о том, что в этом районе Вселенной имеется дырка в пространстве.

На сегодняшний день ученые установили, что ближайшая к Земле черная дыра — это объект V616 Monocerotis. Чудовище расположено в 3000 световых лет от нашей системы. По своим размерам это крупное образование, его масса составляет 9-13 солнечных масс. Другим близким объектом, несущим угрозу нашему миру, является черная дыра Gygnus Х-1. С этим монстром нас разделяет расстояние в 6000 световых лет. Выявленные по соседству с нами черные дыры, являются частью бинарной системы, т.е. существуют в тесном соседстве со звездой, питающей ненасытный объект.

Заключение

Существование в космосе таких загадочных и таинственных объектов, какими являются черные дыры, безусловно, заставляет нас находиться на стороже. Однако все, что происходит с черными дырами, случается достаточно редко, если брать во внимание возраст Вселенной и огромные расстояния. В течение 4,5 млрд. лет Солнечная система пребывает в состоянии покоя, существуя по известным нам законам. За это время ничего подобного, ни искажения пространства, ни складки времени вблизи Солнечной системы не появилось. Вероятно, для этого нет подходящих условий. Та часть Млечного пути, в которой пребывает система звезды Солнце, является спокойным и стабильным участком космоса.

Ученые допускают мысль, что появление черных дыр не случайно. Такие объекты выполняют во Вселенной роль санитаров, уничтожающих излишек космических тел. Что же касается судьбы самих монстров, то их эволюция еще до конца не изучена. Существует версия, что черные дыры не вечны и на определенном этапе могут прекратить свое существование. Уже ни для кого не секрет, что такие объекты представляют собой мощнейшие источники энергии. Какая это энергия и в чем она измеряется – это другое дело.

Стараниями Стивена Хокинга науке была предъявлена теория о то, что черная дыра все-таки излучает энергию, теряя свою массу. В своих предположениях ученый руководствовался теорией относительности, где все процессы взаимосвязаны друг с другом. Ничего просто так не исчезает, не появившись в другом месте. Любая материя может трансформироваться в другую субстанцию, при этом один вид энергии переходит на другой энергетический уровень. Так, может быть, обстоит дело и с черными дырами, которые являются переходным порталом, из одного состояния в другое.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них