В 1887 году Генрих Рудольф Герц обнаружил явление, впоследствии названное фотоэффектом. Его суть он определил в следующем:

Если свет от ртутной лампы направить на металл натрий, то с его поверхности будут вылетать электроны.

Современная формулировка фотоэффекта иная:

При падении световых квантов на вещество и при их последующем поглощении в веществе будут частично или полностью освобождаться заряженные частицы.

Другими словами при поглощении световых фотонов наблюдается:

  1. Эмиссия электронов из вещества
  2. Изменение электропроводности вещества
  3. Возникновение фото-ЭДС на границе сред с различной проводимостью (например, металл-полупроводник)

В настоящее время существует три вида фотоэффекта:

  1. Внутренний фотоэффект. Заключается в изменении проводимости полупроводников. Он используется в фоторезисторах, которые применяются в дозиметрах рентгеновского и ультрафиолетового излучения, также используется в медицинских приборах (оксигемометр) и в пожарной сигнализации.
  2. Вентильный фотоэффект. Заключается в возникновении фото-ЭДС на границе веществ с разным типом проводимости, в результате разделения носителей электрического заряда электрическим полем. Он используется в солнечных батареях, в селеновых фотоэлементах и датчиках, регистрирующих уровень освещенности.
  3. Внешний фотоэффект. Как уже говорилось ранее, это процесс выхода электронов из вещества в вакуум под действием квантов электромагнитного излучения.

Законы внешнего фотоэффекта.

Они были установлены Филиппом Ленардом и Александром Григорьевичем Столетовым на рубеже 20 века. Эти ученые измеряли число выбитых электронов и их скорость в зависимости от интенсивности и частоты подающего излучения.

Первый закон (закон Столетова):

Сила фототока насыщения прямо пропорциональна световому потоку, т.е. падающему излучению на вещество.


Теоретическая формулировка: При напряжении между электродами равном нулю фототок не равен нулю. Это объясняется тем, что после выхода из металла электроны обладают кинетической энергией. При наличии напряжения между анодом и катодом сила фототока растет с ростом напряжения, а при определенном значении напряжения ток достигает своего максимального значения (фототок насыщения). Это значит, что все электроны ежесекундно испускаемые катодом под действием электромагнитного излучения принимают участие в создании тока. При смене полярности ток падает и скоро становится равным нулю. Здесь электорон совершает работу против задерживающего поля за счет кинетпческой энергии. При увеличении интенсивности излучения (рост числа фотонов) растет число поглощенных металлом квантов энергии, а следовательно и число вылетевших электронов. Значит, чем больше световой поток, тем больше фототок насыщения.

I ф нас ~ Ф, I ф нас = k·Ф

k - коэффициент пропорциональности. Чувствительность зависит от природы металла. Чувствительность металла к фотоэффекту увеличивается с увеличением частоты света (при уменьшении длины волны).

Эта формулировка закона является технической. Она справедлива для вакуумных фотоэлектрических приборов.

Количество испускаемых электронов прямопропорционально плотности падающего потока при его постоянном спектральном составе.

Второй закон (закон Эйнштейна):

Максимальная начальная кинетическая энергия фотоэлектрона промопропорциональна частоте падающего лучистого потока и не зависит от его интенсивности.

E kē = => ~ hυ

Третий закон (закон “красной границы”):

Для каждого вещества существует минимальная частота или максимальная длина волны, за пределами которой фотоэффект отсутствует.

Эта частота (длина волны) называется “красной границей” фотоэффекта.

Таким образом, он устанавливает условия фотоэффекта для данного вещества в зависимости от работы выхода электрона из вещества и от энергии падающих фотонов.

Если энергия фотона меньше работы выхода электрона из вещества, то фотоэффект отсутствует. Если же энергия фотона превышает работу выхода, то ее избыток после поглощения фотона идет на начальную кинетическую энергию фотоэлектрона.

Применение его для объяснения законов фотоэффекта.

Уравнение Эйнштейна для фотоэффекта является частным случаем закона сохранения и превращения энергии. Свою теорию он основал на законах еще зарождающейся квантовой физики.

Эйнштейн сформулировал три положения:

  1. При воздействии с электронами вещества падающие фотоны поглощаются полностью.
  2. Один фотон взаимодействует только с одним электроном.
  3. Один поглощенный фотон способствует выходу только одного фотоэлектрона с некоторой E kē .

Энергия фотона расходуется на работу выхода (А вых) электрона из вещества и на его начальную кинетическую энергию, которая будет максимальна, если электрон выходит с поверхности вещества.

E kē = hυ - А вых

Чем больше частота падающего излучения, тем больше энергия фотонов и тем больше (за вычетом работы выхода) остается на начальную кинетическую энергию фотоэлектронов.

Чем интенсивнее падающее излучение, тем больше фотонов входит в световой поток и тем больше электронов смогут выйти из вещества и участвовать в создании фототока. Именно поэтому сила фототока насыщения промопропорциональна световому потоку (I ф нас ~ Ф). Однако начальная кинетическая энергия от интенсивности не зависит, т.к. один электрон поглощает энергию только одного фотона.

Фотоэффектом называется освобождение (полное или частичное) электронов от связей с атомами и молекулами вещества под воздействием света (видимого, инфракрасного и ультрафиолетового). Если электроны выходят за пределы освещаемого вещества (полное освобождение), то фотоэффект называется внешним (открыт в 1887 г. Герцем и подробно исследован в 1888 г. Л. Г. Столетовым). Если же электроны теряют связь только со «своими» атомами и молекулами, но остаются внутри освещаемого вещества в качестве «свободных электронов» (частичное освобождение), увеличивая тем самым электропроводность вещества, то фотоэффект называется внутренним (открыт в 1873 г. американским физиком У. Смитом).

Внешний фотоэффект наблюдается у металлов. Если, например, цинковую пластинку, соединенную с электроскопом и заряженную отрицательно, осветить ультрафиолетовыми лучами, то электроскоп быстро разрядится; в случае положительно заряженной пластинки разрядки не происходит. Отсюда следует, что свет вырывает из металла отрицательно заряженные частицы; определение величины их заряда (выполненное в 1898 г. Дж. Дж. Томсоном) показало, что эти частицы являются электронами.

Принципиальная измерительная схема, с помощью которой исследовался внешний фотоэффект, изображена на рис. 368.

Отрицательный полюс батареи присоединен к металлической пластинке К (катод), положительный - к вспомогательному электроду а (анод). Оба электрода помещены в эвакуированный сосуд, имеющий кварцевое окно F (прозрачное для оптического излучения). Поскольку электрическая цепь оказывается разомкнутой, ток в ней отсутствует. При освещении катода К свет вырывает из него электроны (фотоэлектроны), устремляющиеся к аноду; в цепи появляется ток (фототок).

Схема дает возможность измерять силу фототока (гальванометром и скорость фотоэлектронов при различных значениях напряжения между катодом и анодом и при различных условиях освещения катода.

Экспериментальные исследования, выполненные Столетовым, а также другими учеными, привели к установлению следующих основных законов внешнего фотоэффекта.

1. Фототок насыщения I (т. е. максимальное число электронов. освобождаемых светом в 1 с) прямо пропорционален световому потоку Ф:

где коэффициент пропорциональности называется фоточувствительностью освещаемой поверхности (измеряется в микроамперах на люмен, сокращенно -

2. Скорость фотоэлектронов возрастает с увеличением частоты падающего света и не зависит от его интенсивности.

3. Независимо от интенсивности света фотоэффект начинается только при определенной (для данного металла) минимальной частоте света, называемой «красной границей» фотоэффекта.

Второй и третий законы фотоэффекта нельзя объяснить на основе волновой теории света. Действительно, по этой теории, интенсивность света пропорциональна квадрату амплитуды электромагнитной волны, «раскачивающей» электрон в металле. Поэтому свет любой частоты, но достаточно большой интенсивности, должен был бы вырывать электроны из металла; иначе говоря, не должно было бы существовать «красной границы» фотоэффекта. Этот вывод противоречит третьему закону фотоэффекта. Далее, чем больше интенсивность света, тем большую кинетическую энергию должен был бы получить от него электрон. Поэтому скорость фотоэлектрона должна была бы возрастать с увеличением интенсивности света; этот вывод противоречит второму закону фотоэффекта.

Законы внешнего фотоэффекта получают простое истолкование на основе квантовой теории света. По этой теории, величина светового потока определяется числом световых квантов (фотонов), падающих в единицу времени на поверхность металла. Каждый фотон может взаимодействовать только с одним электроном. Поэтому

максимальное число фотоэлектронов должно быть пропорционально световому потоку (первый закон фотоэффекта).

Энергия фотона поглощенная электроном, расходуется на совершение электроном работы выхода А из металла (см. § 87); оставшаяся часть этой энергии представляет собой кинетическую энергию фотоэлектрона масса электрона, его скорость). Тогда, согласно закону сохранения энергии, можно написать

Эта формула, предложенная в 1905 г. Эйнштейном и подтвержденная затем многочисленными экспериментами, называется уравнением Эйнштейна.

Из уравнения Эйнштейна непосредственно видно, что скорость фотоэлектрона возрастает с увеличением частоты света и не зависит от его интенсивности (поскольку ни ни не зависят от интенсивности света). Этот вывод соответствует второму закону фотоэффекта.

Согласно формуле (26), с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (величина А постоянна для данного освещаемого вещества). При некоторой достаточно малой частоте (или длине волны кинетическая энергия фотоэлектрона станет равной нулю и фотоэффект прекратится (третий закон фотоэффекта). Это имеет место при т. е. в случае, когда вся энергия фотона расходуется на совершение работы выхода электрона. Тогда

Формулы (27) определяют «красную границу» фотоэффекта. Из этих формул следует, что она зависит от величины работы выхода (от материала фотокатода).

В таблице приведены значения работы выхода А (в электрон-вольтах) и красной границы фотоэффекта (в микрометрах) для некоторых металлов.

(см. скан)

Из таблицы видно, что, например, цезиевая пленка, нанесенная на вольфрам, дает фотоэффект даже при инфракрасном облучении, у натрия фотоэффект может быть вызван только видимым и ультрафиолетовым светом, а у цинка - только ультрафиолетовым.

На внешнем фотоэффекте основан важный физико-технический прибор, называемый вакуумным фотоэлементом (он является некоторым видоизменением установки, схематически изображенной на рис. 368).

Катодом К вакуумного фотоэлемента служит слой металла, нанесенный на внутреннюю поверхность эвакуированного стеклянного баллона В (рис. 369; G - гальванометр); анод А выполнен в виде металлического кольца, помещенного в центральной части баллона. При освещении катода в цепи фотоэлемента возникает электрический ток, сила которого пропорциональна величине светового потока.

Большинство современных фотоэлементов имеет сурьмяно-цезиевые или кислородно-цезиевые катоды, обладающие высокой фоточувствительностью. Кисйородно-цезиевые фотоэлементы чувствительны к инфракрасному и видимому свету (чувствительность сурьмяно-цезиевые фотоэлементы чувствительны к видимому и ультрафиолетовому свету (чувствительность

В некоторых случаях для увеличения чувствительности фотоэлемента его наполняют аргоном при давлении порядка 1 Па. Фототок в таком фотоэлементе усиливается вследствие ионизации аргдна, вызванной столкновениями фотоэлектронов с атомами аргона. Фоточувствительность газонаполненных фотоэлементов составляет около

Внутренний фотоэффект наблюдается у полупроводников и в меньшей мере у диэлектриков. Схема наблюдения внутреннего фотоэффекта показана на рис. 370. Полупроводниковая пластинка присоединена последовательное гальванометром к полюсам батареи. Ток в этой цепи незначителен, поскольку полупроводник обладает большим сопротивлением. Однако при освещении пластинки ток в цепи резко возрастает. Это обусловлено тем, что свет вырывает из атомов полупроводника электроны, которые, оставаясь внутри полупроводника, увеличивают его электропроводность (уменьшают сопротивление).

Фотоэлементы, основанные на внутреннем фотоэффекте, называются полупроводниковыми фотоэлементамиили фотосопротивлениями. Для их изготовления используют селен, сернистый свинец, сернистый кадмий и некоторые другие полупроводники. Фоточувствительность полупроводниковых фотоэлементов в сотни раз превышает фоточувствительность вакуумных фотоэлементов. Некоторые фотоэлементы обладают отчетливо выраженной спектральной чувствительностью. У селенового фотоэлемента спектральная чувствительность близка к спектральной чувствительности человеческого глаза (см рис. 304, § 118).

Недостатком полупроводниковых фотоэлементов является их заметная инерционность: изменение фототока запаздывает относительно изменения освещенности фотоэлемента. Поэтому полупроводниковые

фотоэлементы непригодны для регистрации быстропеременных световых потоков.

На внутреннем фотоэффекте основана еще одна разновидность фотоэлемента - полупроводниковый фотоэлемент с запирающий слоем или вентильный фотоэлемент. Схема этого фотоэлемента дана на рис. 371.

Металлическая пластинка и нанесенный на нее тонкий слой полупроводника соединены внешней электрической цепью, содержащей гальванометр Как было показано (см. § 90), в зоне контакта полупроводника с металлом образуется запирающий слой Б, обладающий вентильной проводимостью: он пропускает электроны только в направлении от полупроводника к металлу. При освещении полупроводникового слоя в нем, благодаря внутреннему фотоэффекту, появляются свободные электроны. Проходя (в процессе хаотического движения) через запирающий слой в металл и не имея возможности перемещаться в обратном направлении, эти электроны образуют в металле избыточный отрицательный заряд. Полупроводник, лишенный части «своих» электронов, приобретает положительный заряд. Разность потенциалов (порядка 0,1 В), возникающая между полупроводником и металлом, создает ток в цепи фотоэлемента.

Таким образом, вентильный фотоэлемент представляет собой генератор тока, непосредственно преобразующий световую энергию в электрическую.

В качестве полупроводников в вентильном фотоэлементе используют селен, закись меди, сернистый таллий, германий, кремний. Фоточувствительность вентильных фотоэлементов составляет

Коэффициент полезного действия современных кремниевых фотоэлементов (освещаемых солнечным светом) достигает по теоретическим расчетам, его можно повысить до 22%.

Поскольку фототок пропорционален световому потоку, фотоэлементы используются в качестве фотометрических приборов. К таким приборам относятся, например, люксметр (измеритель освещенности) и фотоэлектрический экспонометр.

Фотоэлемент позволяет преобразовывать колебания светового потока в соответствующие колебания фототока, что находит широкое применение в технике звукового кино, телевидения и т. п.

Исключительно велико значение фотоэлементов для телемеханизации и автоматизации производственных процессов. В сочетании с электронным усилителем и реле фотоэлемент является неотъемлемой частью автоматических устройств, которые, реагируя на световые сигналы, управляют работой различных промышленных и сельскохозяйственных установок и транспортных механизмов.

Весьма перспективным является практическое использование вентильных фотоэлементов в качестве генераторов электроэнергии. Батареи кремниевых фотоэлементов, получившие название солнечных батарей, успешно применяются на советских космических спутниках и кораблях для питания радиоаппаратуры. Для этого общая площадь фотоэлементов должна быть достаточно большой. Например, на космическом корабле «Союз-3» площадь поверхности солнечных батарей составляла около

Когда коэффициент полезного действия солнечных батарей будет повышен до 20-22%, они, несомненно, приобретут первостепенное значение среди источников, вырабатывающих электроэнергию для производственных и бытовых нужд.

1. История открытия фотоэффекта

2. Законы Столетова

3. Уравнение Эйнштейна

4. Внутренний фотоэффект

5. Применение явления фотоэффекта

Введение

Многочисленные оптические явления непротиворечиво объясняли, исходя из представлений о волновой природе света. Однако в конце XIX – начале XX в. были открыты и изучены такие явления, как фотоэффект, рентгеновское излучение, эффект Комптона, излучение атомов и молекул, тепловое излучение и другие, объяснение которых с волновой точки зрения оказалось невозможным. Объяснение новых экспериментальных фактов было получено на основе корпускулярных представлений о природе света. Возникла парадоксальная ситуация, связанная с применением совершенно противоположных физических моделей волны и частицы для объяснения оптических явлений. В одних явлениях свет проявлял волновые свойства, в других – корпускулярные.

Среди разнообразных явлений, в которых проявляется воздействие света на вещество, важное место занимаетфотоэлектрический эффект , то есть испускание электронов веществом под действием света. Анализ этого явления привел к представлению о световых квантах и сыграл чрезвычайно важную роль в развитии современных теоретических представлений. Вместе с тем фотоэлектрический эффект используется в фотоэлементах получивших исключительно широкое применение в разнообразнейших областях науки и техники и обещающих еще более богатые перспективы.

История открытия фотоэффекта

Открытие фотоэффекта следует отнести к 1887 г., когда Герц обнаружил, что освещение ультрафиолетовым светом электродов искрового промежутка, находящегося под напряжением, облегчает проскакивание искры между ними.

Явление, обнаруженное Герцом, можно наблюдать на следующем легко осуществимом опыте (рис. 1).

Величина искрового промежутка F подбирается таким образом, что в схеме, состоящей из трансформатора Т и конденсатора С, искра проскакивает с трудом (один – два раза в минуту). Если осветить электроды F, сделанные из чистого цинка, светом ртутной лампы Hg, то разряд конденсатора значительно облегчается: искра начинает проскакивать Рис. 1. Схема опыта Герца.



Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном (за что в 1921 году он получил Нобелевскую премию) на основе гипотезы Макса Планка о квантовой природе света. В работе Эйнштейна содержалась важная новая гипотеза – если Планк предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантовых порций. Из представления о свете как о частицах (фотонах) немедленно следует формула Эйнштейна для фотоэффекта:

где – кинетическая энергия вылетающего электрона, – работа выхода для данного вещества, – частота падающего света, – постоянная Планка, которая оказалась ровно той же, что и в формуле Планка для излучения абсолютно чёрного тела.

Из этой формулы следует существование красной границы фотоэффекта. Таким образом, исследования фотоэффекта были одними из самых первых квантово – механических исследований.

Законы Столетова

Впервые (1888–1890), подробно анализируя явление фотоэффекта, русский физик А.Г. Столетов получил принципиально важные результаты. В отличие от предыдущих исследователей он брал малую разность потенциалов между электродами. Схема опыта Столетова представлена на рис. 2.

Два электрода (один в виде сетки, другой – плоский), находящиеся в вакууме, присоединены к батарее. Включенный в цепь амперметр служит для измерения возникающей силы тока. Облучая катод светом различных длин волн, Столетов пришел к выводу, что наиболее эффективное действие оказывают ультрафиолетовые лучи. Кроме того, было установлено, что сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

В 1898 г. Ленард и Томсон методом отклонения зарядов в электрическом и магнитном полях определили удельный заряд заряженных частиц, вырываемых Рис. 2. Схема опыта Столетова.

светом из катода, и получили выражение

СГСЕ ед. з/г, совпадающее с известным удельным зарядом электрона. Отсюда следовало, что под действием света происходит вырывание электронов из вещества катода.

Путем обобщения полученных результатов были установлены следующие закономерности фотоэффекта:

1. При неизменном спектральном составе света сила фототока насыщения прямо пропорциональна падающему на катод световому потоку.

2. Начальная кинетическая энергия вырванных светом электронов линейно растет с ростом частоты света и не зависит от его интенсивности.

3. Фотоэффект не возникает, если частота света меньше некоторой характерной для каждого металла величины , называемой красной границей.

Первую закономерность фотоэффекта, а также возникновение самого фотоэффекта легко объяснить, исходя из законов классической физики. Действительно, световое поле, воздействуя на электроны внутри металла, возбуждает их колебания. Амплитуда вынужденных колебаний может достичь такого значения, при котором электроны покидают металл; тогда и наблюдается фотоэффект.

Ввиду того, что согласно классической теории интенсивность света прямо пропорциональна квадрату электрического вектора, число вырванных электронов растет с увеличением интенсивности света.

Вторая и третья закономерности фотоэффекта законами классической физики не объясняются.

Изучая зависимость фототока (рис. 3), возникающего при облучении металла потоком монохроматического света, от разности потенциалов между электродами (такая зависимость обычно называется вольт – амперной характеристикой фототока), установили, что: 1) фототок возникает не только при , но и при ; 2) фототок отличен от нуля до строго определенного для данного металла отрицательного значения разности потенциалов , так называемого задерживающего потенциала; 3) величина запирающего (задерживающего) потенциала не зависит от интенсивности падающего света; 4) фототок растет с уменьшением абсолютного значения задерживающего потенциала; 5) величина фототока растет с ростом и с какого-то определенного значения фототок (так называемый ток насыщения) становится постоянным; 6) величина тока насыщения растет с увеличением интенсивности падающего света; 7) величина задерживающего Рис. 3. Характеристика

потенциала зависит от частоты падающего света; фототока.

8) скорость вырванных под действием света электронов не зависит от интенсивности света, а зависит только от его частоты.

Уравнение Эйнштейна

Явление фотоэффекта и все его закономерности хорошо объясняются с помощью квантовой теории света, что подтверждает квантовую природу света.

Как уже было отмечено, Эйнштейн (1905 г.), развивая квантовую теорию Планка, выдвинул идею, согласно которой не только излучение и поглощение, но и распространение света происходит порциями (квантами), энергия и импульс которых:

где – единичный вектор, направленный по волновому вектору. Применяя к явлению фотоэффекта в металлах закон сохранения энергии, Эйнштейн предложил следующую формулу:

, (1)

где - работа выхода электрона из металла, – скорость фотоэлектрона. Согласно Эйнштейну, каждый квант поглощается только одним электроном, причем часть энергии падающего фотона тратится на совершение работы выхода электрона металла, оставшаяся же часть сообщает электрону кинетическую энергию .

Как следует из (1), фотоэффект в металлах может возникнуть только при , в противном случае энергия фотона будет недостаточной для вырывания электрона из металла. Наименьшая частота света , под действием которого происходит фотоэффект, определяется, очевидно, из условия

Частота света, определяемая условием (2), называется «красной границей» фотоэффекта. Слово «красная» не имеет никакого отношения к цвету света, при котором происходит фотоэффект. В зависимости от рода металлов «красная граница» фотоэффекта может соответствовать красному, желтому, фиолетовому, ультрафиолетовому свету и т. д.

С помощью формулы Эйнштейна можно объяснить и другие закономерности фотоэффекта.

Положим, что , т. е. между анодом и катодом существует тормозящий потенциал. Если кинетическая энергия электронов достаточна, то они, преодолев тормозящее поле, создают фототок. В фототоке участвуют те электроны, для которых удовлетворяется условие . Величина задерживающего потенциала определяется из условия

, (3)

где – максимальная скорость вырванных электронов. Рис. 4.

Подставив (3) в (1), получим

Таким образом, величина задерживающего потенциала не зависит от интенсивности, а зависит только от частоты падающего света.

Работу выхода электронов из металла и постоянную Планка можно определить, построив график зависимости от частоты падающего света (рис. 4). Как видно, и отрезок, отсекаемый от оси потенциала, дает .

Ввиду того, что интенсивность света прямо пропорциональна количеству фотонов, увеличение интенсивности падающего света приводит к увеличению числа вырванных электронов, т. е. к увеличению фототока.

Формула Эйнштейна для фотоэффекта в неметаллах имеет вид

.

Наличие – работы отрыва связанного электрона от атома внутри неметаллов – объясняется тем, что в отличие от металлов, где имеются свободные электроны, в неметаллах электроны находятся в связанном с атомами состоянии. Очевидно, при падении света на неметаллы часть световой энергии тратится на фотоэффект в атоме – на отрыв электрона от атома, а оставшаяся часть тратится на работу выхода электрона и сообщение электрону кинетической энергии.

Электроны проводимости не покидают самопроизвольно металл в заметном количестве. Это объясняется тем, что металл представляет для них потенциальную яму. Покинуть металл удается только тем электронам, энергия которых оказывается достаточной для преодоления потенциального барьера, имеющегося на поверхности. Силы, обуславливающие этот барьер, имеют следующее происхождение. Случайное удаление электрона от наружного слоя положительных ионов решетки приводит к возникновению в том месте, которое покинул электрон, избыточного положительного заряда. Кулоновское взаимодействие с этим зарядом заставляет электрон, скорость которого не очень велика, вернуться обратно. Таким образом, отдельные электроны все время покидают поверхность металла, удаляются от нее на несколько межатомных расстояний и затем поворачивают обратно. В результате металл оказывается окруженным тонким облаком электронов. Это облако образует совместно с наружным слоем ионов двойной электрический слой (рис. 5; кружки – ионы, черные точки – электроны). Силы, действующие на электрон в таком слое,направлены внутрь металла. Работа, совершаемая против этих сил при переводе электрона из металла наружу, идет на увеличение потенциальной энергии электрона (рис. 5).

Таким образом, потенциальная энергия валентных электронов внутри металла меньше, чем вне металла, на величину, равную глубине потенциальной ямы (рис. 6). Изменение энергии происходит на длине порядка нескольких межатомных расстояний, поэтому стенки ямы можно считать вертикальными.

Потенциальная энергия электрона Рис. 6.

и потенциал той точки, в которой находится электрон, имеют противоположные знаки. Отсюда следует, что потенциал внутри металла больше, чем потенциал в непосредственной близости к его поверхности, на величину .

Сообщение металлу избыточного положительного заряда увеличивает потенциал как на поверхности, так и внутри металла. Потенциальная энергия электрона соответственно уменьшается (рис. 7, а).

За начало отсчета приняты значения потенциала и потенциальной энергии на бесконечности. Сообщение отрицательного заряда понижает потенциал внутри и вне металла. Соответственно потенциальная энергия электрона возрастает (рис. 7, б).

Полная энергия электрона в металле слагается из потенциальной и кинетической энергий. При абсолютном нуле значения кинетической энергии электронов проводимости заключены в пределах от нуля до совпадающей с уровнем ферми энергии . На рис. 8 энергетические уровни зоны проводимости вписаны в потенциальную яму (пунктиром изображены незанятые при 0К уровни). Для удаления за пределы металла разным электронам нужно сообщить не одинаковую энергию. Так, электрону, находящемуся на самом нижнем уровне зоны проводимости, необходимо сообщить энергию ; для электрона, находящегося на уровне Ферми, достаточна энергия .

Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого или жидкого тела в вакуум, называется работой выхода. Работа выхода электрона из металла определяется выражением

Мы получили это выражение в предположении, что температура металла равна 0К. При других температурах работу выхода также определяют как разность глубины потенциальной ямы и уровня Ферми, т. е. распространяют определение (4) на любые температуры. Это же определение применяется и для полупроводников.

Уровень Ферми зависит от температуры. Кроме того, из – за обусловленного тепловым расширением изменения средних расстояний между атомами слегка изменяется глубина потенциальной ямы . Это приводит к тому, что работа выхода немного зависит от температуры.

Работа выхода очень чувствительна к состоянию поверхности металла, в частности к ее чистоте. Подобрав надлежащим образом Рис. 8.

покрытие поверхности, можно сильно снизить работу выхода. Так, например, нанесение на поверхность вольфрама слоя окисла щелочноземельного металла (Ca, Sr, Ba) снижает работу выхода с 4,5 эВ (для чистого W) до 1,5 – 2 эВ.

Внутренний фотоэффект

Выше мы говорили об освобождении электронов из освещаемой поверхности вещества и переходе их в другую среду, в частности в вакуум. Такое испускание электронов называют фотоэлектронной эмиссией , а само явление внешним фотоэффектом. Наряду с ним известен также и широко используется в практических целях так называемый внутренний фотоэффект , при котором, в отличие от внешнего, оптически возбужденные электроны остаются внутри освещенного тела, не нарушая нейтральности последнего. При этом в веществе изменяется концентрация носителей заряда или их подвижность, что приводит к изменению электрических свойств вещества под действием падающего на него света. Внутренний фотоэффект присущ только полупроводникам и диэлектрикам. Его можно обнаружить, в частности, по изменению проводимости однородных полупроводников при их освещении. На основе этого явления – фотопроводимости создана и постоянно совершенствуется большая группа приемников света – фоторезисторов . Для них используется в основном селенид и сульфид кадмия.

В неоднородных полупроводниках наряду с изменением проводимости наблюдается также образование разности потенциалов (фото – э.д.с.). Это явление (фотогальванический эффект) обусловлено тем, что в силу однородностей проводимости полупроводников происходит пространственное разделение внутри объема проводника оптически возбужденных электронов, несущих отрицательный заряд и микрозон (дырок), возникающих в непосредственной близости от атомов, от которых оторвались электроны, и подобно частицам несущих положительный элементарный заряд. Электроны и дырки концентрируются на разных концах полупроводника, вследствие чего и возникает электродвижущая сила, благодаря которой и вырабатывается без приложения внешней э.д.с. электрический ток в нагрузке, подключенной параллельно освещенному полупроводнику. Таким образом достигается прямое преобразование световой энергии в электрическую. Именно по этой причине фотогальванические приемники света и используются не только для регистрации световых сигналов, Нои в электрических цепях как источники электрической энергии.

Основные промышленно выпускаемые типы таких приемников работают на основе селена и сернистого серебра. Весьма распространен также кремний, германий и ряд соединений – GaAs, InSb, CdTeи другие. Фотогальванические элементы, используемые для преобразования солнечной энергии в электрическую, приобрели особенно широкое применение в космических исследованиях как источники бортового питания. Они обладают относительно высоким коэффициентом полезного действия (до 20 %), весьма удобны в условиях автономного полета космического корабля. В современных солнечных элементах в зависимости от полупроводникового материала фото – э.д.с. достигает 1 – 2 В, съем тока с – нескольких десятков миллиампер, а на 1 кг массы выходная мощность достигает сотен ватт.

Темы кодификатора ЕГЭ : гипотеза М.Планка о квантах, фотоэффект, опыты А.Г.Столетова, уравнение Эйнштейна для фотоэффекта.

Фотоэффект - это выбивание электронов из вещества падающим светом. Явление фотоэффекта было открыто Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн.
Напомним, что Герц использовал специальный разрядник (вибратор Герца) - разрезанный пополам стержень с парой металлических шариков на концах разреза. На стержень подавалось высокое напряжение, и в промежутке между шариками проскакивала искра. Так вот, Герц обнаружил, что при облучении отрицательно заряженного шарика ультрафиолетовым светом проскакивание искры облегчалось.

Герц, однако, был поглощён исследованием электромагнитных волн и не принял данный факт во внимание. Год спустя фотоэффект был независимо открыт русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведённые Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта.

Опыты Столетова

В своих знаменитых экспериментах Столетов использовал фотоэлемент собственной конструкции (Фотоэлементом называется любое устройство, позволяющее наблюдать фотоэффект). Его схема изображена на рис. 1 .

Рис. 1. Фотоэлемент Столетова

В стеклянную колбу, из которой выкачан воздух (чтобы не мешать лететь электронам), введены два электрода: цинковый катод и анод . На катод и анод подаётся напряжение, величину которого можно менять с помощью потенциометра и измерять вольтметром .

Сейчас на катод подан «минус», а на анод - «плюс», но можно сделать и наоборот (и эта перемена знака - существенная часть опытов Столетова). Напряжению на электродах приписывается тот знак, который подан на анод (Поэтому поданное на электроды напряжение часто называют анодным напряжением ). В данном случае, например, напряжение положительно.

Катод освещается ультрафиолетовыми лучами УФ через специальное кварцевое окошко, сделанное в колбе (стекло поглощает ультрафиолет, а кварц пропускает). Ультрафиолетовое излучение выбивает с катода электроны , которые разгоняются напряжением и летят на анод. Включённый в цепь миллиамперметр регистрирует электрический ток. Этот ток называется фототоком , а выбитые электроны, его создающие, называются фотоэлектронами .

В опытах Столетова можно независимо варьировать три величины: анодное напряжение, интенсивность света и его частоту.

Зависимость фототока от напряжения

Меняя величину и знак анодного напряжения, можно проследить, как меняется фототок. График этой зависимости, называемый характеристикой фотоэлемента , представлен на рис. 2 .

Рис. 2. Характеристика фотоэлемента

Давайте обсудим ход полученной кривой. Прежде всего заметим, что электроны вылетают из катода с различными скоростями и в разных направлениях; максимальную скорость, которую имеют фотоэлектроны в условиях опыта, обозначим .

Если напряжение отрицательно и велико по модулю, то фототок отсутствует. Это легко понять: электрическое поле, действующее на электроны со стороны катода и анода, является тормозящим (на катоде «плюс», на аноде «минус») и обладает столь большой величиной, что электроны не в состоянии долететь до анода. Начального запаса кинетической энергии не хватает - электроны теряют свою скорость на подступах к аноду и разворачиваются обратно на катод. Максимальная кинетическая энергия вылетевших электронов оказывается меньше, чем модуль работы поля при перемещении электрона с катода на анод:

Здесь кг - масса электрона, Кл - его заряд.

Будем постепенно увеличивать напряжение, т.е. двигаться слева направо вдоль оси из далёких отрицательных значений.

Поначалу тока по-прежнему нет, но точка разворота электронов становится всё ближе к аноду. Наконец, при достижении напряжения , которое называется задерживающим напряжением , электроны разворачиваются назад в момент достижения анода (иначе говоря, электроны прибывают на анод с нулевой скоростью). Имеем:

(1)

Таким образом, величина задерживающего напряжения позволяет определить максимальную кинетическую энергию фотоэлектронов .

При небольшом превышении задерживающего напряжения появляется слабый фототок. Его формируют электроны, вылетевшие с максимальной кинетической энергией почти точно вдоль оси колбы (т.е. почти перпендикулярно катоду): теперь электронам хватает этой энергии, чтобы добраться до анода с ненулевой скоростью и замкнуть цепь. Остальные электроны, которые имеют меньшие скорости или полетели в сторону от анода, на анод не попадают.

При повышении напряжения фототок увеличивается. Анода достигает большее количество электронов, вылетающих из катода под всё большими углами к оси колбы. Обратите внимание, что фототок присутствует при нулевом напряжении!

Когда напряжение выходит в область положительных значений, фототок продолжает возрастать. Оно и понятно: электрическое поле теперь разгоняет электроны, поэтому всё большее их число получают шанс оказаться на аноде. Однако достигают анода пока ещё не все фотоэлектроны. Например, электрон, вылетевший с максимальной скоростью перпендикулярно оси колбы (т.е. вдоль катода), хоть и развернётся полем в нужном направлении, но не настолько сильно, чтобы попасть на анод.

Наконец, при достаточно больших положительных значениях напряжения ток достигает своей предельной величины , называемой током насыщения , и дальше возрастать перестаёт.

Почему? Дело в том, что напряжение, ускоряющее электроны, становится настолько велико, что анод захватывает вообще все электроны, выбитые из катода - в каком бы направлении и с какими бы скоростями они не начинали движение. Стало быть, дальнейших возможностей увеличиваться у фототока попросту нет - ресурс, так сказать, исчерпан.

Законы фотоэффекта

Величина тока насыщения - это, по существу, количество электронов, выбиваемых из катода за одну секунду. Будем менять интенсивность света, не трогая частоту. Опыт показывает, что ток насыщения меняется пропорционально интенсивности света.

Первый закон фотоэффекта . Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте) .

Ничего неожиданного в этом нет: чем больше энергии несёт излучение, тем ощутимее наблюдаемый результат. Загадки начинаются дальше.

А именно, будем изучать зависимость максимальной кинетической энергии фотоэлектронов от частоты и интенсивности падающего света. Сделать это несложно: ведь в силу формулы (1) нахождение максимальной кинетической энергии выбитых электронов фактически сводится к измерению задерживающего напряжения.

Сначала меняем частоту излучения при фиксированной интенсивности. Получается такой график (рис. 3 ):

Рис. 3. Зависимость энергии фотоэлектронов от частоты света

Как видим, существует некоторая частота , называемая красной границей фотоэффекта , разделяющая две принципиально разные области графика. Если , то фотоэффекта нет.

Если же class="tex" alt="\nu > \nu_0"> , то максимальная кинетическая энергия фотоэлектронов линейно растёт с частотой.

Теперь, наоборот, фиксируем частоту и меняем интенсивность света. Если при этом , то фотоэффект не возникает, какова бы ни была интенсивность! Не менее удивительный факт обнаруживается и при class="tex" alt="\nu > \nu_0"> : максимальная кинетическая энергия фотоэлектронов от интенсивности света не зависит.

Все эти факты нашли отражение во втором и третьем законах фотоэффекта.

Второй закон фотоэффекта . Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности .

Третий закон фотоэффекта . Для каждого вещества существует красная граница фотоэффекта - наименьшая частота света , при которой фотоэффект ещё возможен. При фотоэффект не наблюдается ни при какой интенсивности света .

Трудности классического объяснения фотоэффекта

Как можно было бы объяснить фотоэффект с точки зрения классической электродинамики и волновых представлений о свете?

Известно, что для вырывания электрона из вещества требуется сообщить ему некоторую энергию , называемую работой выхода электрона. В случае свободного электрона в металле это работа по преодолению поля положительных ионов кристаллической решётки, удерживающего электрон на границе металла. В случае электрона, находящегося в атоме, работа выхода есть работа по разрыву связи электрона с ядром.

В переменном электрическом поле световой волны электрон начинает совершать колебания.

И если энергия колебаний превысит работу выхода, то электрон будет вырван из вещества.

Однако в рамках таких представлений невозможно понять второй и третий законы фотоэффекта . Действительно, почему кинетическая энергия выбитых электронов не зависит от интенсивности излучения? Ведь чем больше интенсивность, тем больше напряжённость электрического поля в электромагнитной волне, тем больше сила, действующая на электрон, тем больше энергия его колебаний и с тем большей кинетической энергией электрон вылетит из катода. Логично? Логично. Но эксперимент показывает иное.

Далее, откуда берётся красная граница фотоэффекта? Чем «провинились» низкие частоты? Казалось бы, с ростом интенсивности света растёт и сила, действующая на электроны; поэтому даже при низкой частоте света электрон рано или поздно будет вырван из вещества - когда интенсивность достигнет достаточно большого значения. Однако красная граница ставит жёсткий запрет на вылет электронов при низких частотах падающего излучения.

Кроме того, неясна безынерционность фотоэффекта. Именно, при освещении катода излучением сколь угодно слабой интенсивности (с частотой выше красной границы) фотоэффект начинается мгновенно - в момент включения освещения. Между тем, казалось бы, электронам требуется некоторое время для «расшатывания» связей, удерживающих их в веществе, и это время «раскачки» должно быть тем больше, чем слабее падающий свет. Аналогия такая: чем слабее вы толкаете качели, тем дольше придётся их раскачивать до заданной амплитуды.

Выглядит опять-таки логично, но опыт - единственный критерий истины в физике! - этим доводам противоречит.

Так на рубеже XIX и XX столетий в физике возникла тупиковая ситуация: электродинамика, предсказавшая существование электромагнитных волн и великолепно работающая в диапазоне радиоволн, отказалась объяснять явление фотоэффекта.

Выход из этого тупика был найден Альбертом Эйнштейном в 1905 году. Он нашёл простое уравнение, описывающее фотоэффект. Все три закона фотоэффекта оказались следствиями уравнения Эйнштейна.

Главная заслуга Эйнштейна состояла в отказе от попыток истолковать фотоэффект с позиций классической электродинамики. Эйнштейн привлёк к делу смелую гипотезу о квантах, высказанную Максом Планком пятью годами ранее.

Гипотеза Планка о квантах

Классическая электродинамика отказалась работать не только в области фотоэффекта. Она также дала серьёзный сбой, когда её попытались использовать для описания излучения нагретого тела (так называемого теплового излучения).

Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля. Как мы прекрасно знаем, ничего подобного не наблюдается.

В ходе решения этой проблемы Макс Планк высказал свою знаменитую гипотезу.

Гипотеза о квантах . Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными неделимыми порциями - квантами. Энергия кванта пропорциональна частоте излучения :

(2)

Cоотношение (2) называется формулой Планка , а коэффициент пропорциональности - постоянной Планка .

Принятие этой гипотезы позволило Планку построить теорию теплового излучения, прекрасно согласующуюся с экспериментом. Располагая известными из опыта спектрами теплового излучения, Планк вычислил значение своей постоянной:

Дж·с. (3)

Успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Подтверждением данной мысли как раз и послужило явление фотоэффекта.

Уравнение Эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света - это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошёл ещё дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями - квантами, обладающими энергией .

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами . Таким образом, свет состоит из особых частиц - фотонов, движущихся в вакууме со скоростью .

Каждый фотон монохроматического света, имеющего частоту , несёт энергию .

Фотоны могут обмениваться энергией и импульсом с частицами вещества (об импульсе фотона речь пойдёт в следующем листке); в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света - это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передаёт ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идёт энергия фотона ? при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода по извлечению электрона из вещества и на придание электрону кинетической энергии :

(4)

Слагаемое оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Электроны в металле могут быть свободными и связанными. Свободные электроны «гуляют» по всему металлу, связанные электроны «сидят» внутри своих атомов. Кроме того, электрон может находиться как вблизи поверхности металла, так и в его глубине.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадёт на свободный электрон в поверхностном слое металла - тогда для выбивания электрона достаточно одной лишь работы выхода.

Во всех других случаях придётся затрачивать дополнительную энергию - на вырывание связанного электрона из атома или на «протаскивание» глубинного электрона к поверхности.

Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта. Давайте посмотрим, какое объяснение получают законы фотоэффекта с точки зрения уравнения Эйнштейна.

1. Число выбиваемых электронов пропорционально числу поглощённых фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает.

Стало быть, пропорционально возрастает число поглощённых фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию:

Действительно, кинетическая энергия выбитых электронов линейно растёт с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку . Этим полностью объясняется ход графика на рис. 3 .

3. Для того, чтобы начался фотоэффект, энергии фотона должно хватить как минимум на совершение работы выхода: . Наименьшая частота , определяемая равенством

как раз и будет красной границей фотоэффекта. Как видим, красная граница фотоэффекта определяется только работой выхода, т.е. зависит лишь от вещества облучаемой поверхности катода.

Если , то фотоэффекта не будет - сколько бы фотонов за секунду не падало на катод. Следовательно, интенсивность света роли не играет; главное - хватает ли отдельному фотону энергии, чтобы выбить электрон.

Уравнение Эйнштейна (4) даёт возможность экспериментального нахождения постоянной Планка. Для этого надо предварительно определить частоту излучения и работу выхода материала катода, а также измерить кинетическую энергию фотоэлектронов.

В ходе таких опытов было получено значение , в точности совпадающее с (3) . Такое совпадение результатов двух независимых экспериментов - на основе спектров теплового излучения и уравнения Эйнштейна для фотоэффекта - означало, что обнаружены совершенно новые «правила игры», по которым происходит взаимодействие света и вещества. В этой области классическая физика в лице механики Ньютона и электродинамики Максвелла уступает место квантовой физике - теории микромира, построение которой продолжается и сегодня.

Фотоэффект- это явление вырывания света электронов из металла(внешний)

Фотоэффе́кт - это испускание электронов веществом под действием света (или любого другого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твёрдых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости иливентильного фотоэффекта.

Фотопроводимостью называется увеличение электрической проводимости вещества под действием излучения.

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Законы Столетова

Первый закон
Исследуя зависимость силы тока в баллоне от напряжения между электродами при постоянном световом потоке на один из них, он установил первый закон фотоэффекта.

Фототок насыщения пропорционален световому потоку, падающему на металл.

T.к. сила тока определяется величиной заряда, a световой поток - энергией светового пучка, то можно сказать:

число электронов, выбиваемых за 1 c из вещества, пропорционально интенсивности света, падающего на это вещество.

Второй закон

Изменяя условия освещения на этой же установке, A. Г. Столетов открыл второй закон фотоэффекта: кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, a зависит от его частоты.

Из опыта следовало, что если частоту света увеличить, то при неизменном световом потоке запирающее напряжение увеличивается, a, следовательно, увеличивается и кинетическая энергия фотоэлектронов. Таким образом, кинетическая энергия фотоэлектронов линейно возрастает c частотой света.


Третий закон

Заменяя в приборе материал фотокатода, Столетов установил третий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т. e. существует наименьшая частота nmin, при которой еще возможен фотоэффект.

Закон сохранения энергии, записанный Эйнштейном для фотоэффекта, состоит в утверждении, что энергия фотона, приобретенная электроном, позволяет ему покинуть поверхность проводника, совершив работу выхода. Остаток энергии реализуется в виде кинетической энергии теперь уже свободного электрона

Энергия падающего фотона расходуется на совершение электроном работы вы­хода А из металла и на сообщение вылетевшему фотоэлектрону кинетичес­кой энергии mv2max/2. По закону сохранения энергии,

(203.1)

Уравнение (203.1) называется уравнением Эйнштейна для внешнего фотоэффекта.

Эффект Комптона

Изменение длины волны света при рассеивании на связанных электронов

ОПЫТЫ РЕЗЕРФОРДА.ПЛАНЕТАРНАЯ МОДЕЛЬ АТОМА

Опыты Резерфорда. Масса электронов в несколько тысяч раз меньше массы атомов. Так как атом в целом нейтрален, то, следовательно, основная масса атома приходится на его положительно заряженную часть.

Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Эрнест Резерфорд предложил в 1906 г. применить зондирование атома с помощью -частиц. Эти частицы возникают при распаде радия и некоторых других элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона. Это не что иное, как полностью ионизированные атомы гелия. Скорость -частиц очень велика: она составляет 1/15 скорости света.

Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут заметно изменить траекторию -частицы, подобно тому как камушек в несколько десятков граммов при столкновении с автомобилем не может значительно изменить его скорость.

Планетарная модель атома. На основе своих опытов Резерфорд создал планетарную модель атома. В центре атома расположено положительно заряженное ядро, в котором сосредоточена почти вся масса атома. В целом атом нейтрален. Поэтому число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической системе. Ясно, что покоиться электроны внутри атома не могут, так как они упали бы на ядро. Они движутся вокруг ядра, подобно тому как планеты обращаются вокруг Солнца. Такой характер движения электронов определяется действием кулоновских сил притяжения со стороны ядра.