После открытия материалов, способных к самопроизвольному излучению элементарных частиц (радиоизлучению в результате распада), началось изучение их свойств. Активное участие в поиске новых и систематизации уже существующих знаний в физике принимали знаменитые супруги Кюри, а также Именно ему первому удалось открыть гамма-лучи. Поставленный им эксперимент был простым и, одновременно, гениальным.

В качестве источника излучения был взят радий. В толстостенной свинцовой емкости проделывалось узкое отверстие. На дне получившегося канала размещался радий. На небольшом удалении от емкости перпендикулярно оси отверстия был расположен фоточувствительный элемент - пластина. В промежутке между ней и емкостью с специальная установка могла генерировать магнитное поле высокой интенсивности, линии напряженности которого были ориентированы параллельно фоточувствительной пластине. Все элементы, кроме генератора поля, находились в безвоздушной среде, чтобы исключить воздействие атомов воздуха на результат эксперимента. Если бы Резерфорд проигнорировал этот момент, то гамма-лучи мог бы открыть кто-то другой.

При отсутствии магнитного воздействия на пластине возникало темное пятно, свидетельствующее о прямолинейном распространении излучения (все остальные направления попросту отсекались стенками свинцовой емкости). Но стоило появиться как на фоточувствительном элементе системы возникали сразу три пятна. Это означало, что некие частицы, излучаемые радием, отклоняются полем. Резерфорд предположил, что луч состоит как минимум из трех компонентов. Характер отклонения указывал на то, что частицы двух лучей обладают электрическим зарядом, а третий луч электронейтрален. Причем, отрицательная составляющая исходного излучения отклонялась гораздо выраженнее, чем положительная. Электронейтральная составляющая - это и есть гамма-лучи. Компонент с отрицательным зарядом получил название бета-лучей, а последний, положительный заряд - альфа-луч.

Кроме того, что они вели себя по-разному в магнитном поле, лучи обладали различными свойствами. Гамма-лучи способны проникать в материю на довольно большие расстояния. Так, свинцовая пластина толщиной в 1 см уменьшает их интенсивность всего в два раза. Альфа-луч может быть остановлен даже тонким листом бумаги. А вот бета-излучение занимает промежуточное положение: остановить поток можно металлом толщиной в несколько миллиметров.

Впоследствии выяснилось, что:

  • бета-луч представляет собой поток отрицательно заряженных частиц (электронов), перемещающихся с высокой скоростью;
  • альфа-луч - это ядра гелия, очень устойчивое образование;
  • гамма-луч - одна из разновидностей Спектр излучения полностью линейчатый, так как излучающее ядро характеризуется дискретными энергетическими состояниями. Представляют в виде уровней распределения энергии излученных квантов. Термин «гамма-излучение» все чаще применяется не только для описания процессов но и, вообще, для любого жесткого излучения электромагнитной природы в котором каждому кванту соответствует энергия не менее 10 кэВ. Источником данного вида излучения являются электроны в структуре возбужденных атомов. Излишек энергии переводит электроны на более высокие Оттуда они возвращаются к прежнему состоянию, выделяя излучение в виде рентгена или света (электромагнитные волны). Спектр электромагнитного излучения в случае гамма-лучей чрезвычайно мал и составляет не более 5*0,001 нм из-за чего отчетливее проявляются свойства частиц, а не волн.

Это самый широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение образуется при энергетических переходах внутри атомных ядер, более жесткое - при ядерных реакциях. Гамма-кванты легко разрушают молекулы, в том числе биологические, но, к счастью, не проходят через атмосферу. Наблюдать их можно только из космоса.

Гамма-кванты сверхвысоких энергий рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они крушат ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают специальными телескопами на Земле.

При энергии свыше 10 14 эВ лавины частиц прорываются до поверхности Земли. Их регистрируют сцинтилляционными датчиками. Где и как образуются гамма-лучи ультравысоких энергий, пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные кванты - 10 20 –10 21 эВ , приходят из космоса крайне редко - примерно один квант в 100 лет на квадратный километр.

Источники

Изображение получено в 2005 году гамма-телескопом HESS . Оно стало подтверждением того, что остатки сверхновых служат источниками космических лучей - энергичных заряженных частиц, которые, взаимодействуя с веществом, порождают гамма-излучение (см. ). Ускорение частиц, по всей видимости, обеспечивается мощным электромагнитным полем компактного объекта - нейтронной звезды, которая образуется на месте взорвавшейся сверхновой.

Столкновения энергичных заряженных частиц космических лучей с ядрами атомов межзвездной среды порождают каскады других частиц, а также гамма-квантов. Этот процесс аналогичен каскадам частиц в земной атмосфере, которые возникают под воздействием космических лучей (см. ). Происхождение космических лучей с самыми высокими энергиями еще изучается, но уже есть данные, что они могут генерироваться в остатках сверхновых звезд .

Аккреционный диск вокруг сверхмассивной черной дыры (рис. художника )

В ходе эволюции крупных галактик в их центрах образуются сверхмассивные черные дыры, массой от нескольких миллионов до миллиардов масс Солнца. Они растут за счет аккреции (падения) межзвездного вещества и даже целых звезд на черную дыру.

При интенсивной аккреции вокруг черной дыры образуется быстро вращающийся диск (из-за сохранения момента вращения падающего на дыру вещества). Из-за вязкого трения слоев, вращающихся с разной скоростью, он всё время разогревается и начинает излучать в рентгеновском диапазоне.

Часть вещества при аккреции может выбрасываться в виде струй (джетов) вдоль оси вращающегося диска. Этот механизм обеспечивает активность ядер галактик и квазаров. В ядре нашей Галактики (Млечного Пути) также располагается черная дыра. В настоящее время ее активность минимальна, однако по некоторым признакам около 300 лет назад она была значительно выше.

Приемники

Расположен в Намибии, состоит из 4 параболических тарелок диаметром 12 метров, размещенных на площадке размером 250 метров. На каждой из них закреплено 382 круглых зеркала диаметром 60 см , которые концентрируют тормозное излучение, возникающее при движении энергичных частиц в атмосфере (см. схему телескопа).

Телескоп начал работать в 2002 году. Он в равной мере может использоваться для регистрации энергичных гамма-квантов и заряженных частиц - космических лучей. Одним из главных его результатов стало прямое подтверждение давнего предположения о том, что остатки вспышек сверхновых звезд являются источниками космических лучей.

Когда энергичный гамма-квант входит в атмосферу, он сталкивается с ядром одного из атомов и разрушает его. При этом порождается несколько обломков атомного ядра и гамма-квантов меньшей энергии, которые по закону сохранения импульса движутся почти в том же направлении, что и исходный гамма-квант. Эти обломки и кванты вскоре сталкиваются с другими ядрами, образуя в атмосфере лавину частиц.

Большинство этих частиц имеет скорость, превышающую скорость света в воздухе. Вследствие этого частицы испускают тормозное излучение , которое достигает поверхности Земли и может регистрироваться оптическими и ультрафиолетовыми телескопами. Фактически сама земная атмосфера служит элементом гамма-телескопа. Для гамма-квантов сверхвысоких энергий расходимость пучка, достигающего поверхности Земли, составляет около 1 градуса. Этим определяется разрешающая способность телескопа.

При еще более высокой энергии гамма-квантов до поверхности доходит сама лавина частиц - широкий атмосферный ливень (ШАЛ). Их регистрируют сцинтилляционными датчиками. В Аргентине сейчас строится обсерватория имени Пьера Оже (в честь первооткрывателя ШАЛ) для наблюдения гамма-излучения и космических лучей ультравысоких энергий. Он будет включать несколько тысяч цистерн с дистиллированной водой. Установленные в них ФЭУ будут следить за вспышками, происходящими в воде под воздействием энергичных частиц ШАЛ.

Орбитальная обсерватория, работающая в диапазоне от жесткого рентгена до мягкого гамма-излучения (от 15 кэВ до 10 МэВ ), была выведена на орбиту с космодрома Байконур в 2002 году. Обсерватория построена Европейским космическим агентством (ESA) при участии России и США. В конструкции станции использована такая же платформа, как и в ранее запущенной (1999) европейской рентгеновской обсерватории XMM-Newton.

Электронное устройство для измерения слабых потоков видимого и ультрафиолетового излучения. ФЭУ представляет собой электронную лампу с фотокатодом и набором электродов, к которым приложено последовательно возрастающее напряжение с суммарным перепадом до нескольких киловольт.

Кванты излучения падают на фотокатод и выбивают из него электроны, которые движутся к первому электроду, образуя слабый фотоэлектрический ток. Однако по пути электроны ускоряются приложенным напряжением и выбивают из электрода значительно большее число электронов. Так повторяется несколько раз - по числу электродов. В итоге поток электронов, пришедший от последнего электрода к аноду, увеличивается на несколько порядков по сравнению с первоначальным фотоэлектрическим током. Это позволяет регистрировать очень слабые световые потоки, вплоть до отдельных квантов.

Важная особенность ФЭУ - быстрота срабатывания. Это позволяет использовать их для регистрации скоротечных явлений, таких как вспышки, возникающие в сцинтилляторе при поглощении энергичной заряженной частицы или кванта.

Среди изобилия различных излучений, наряду с рентгеновским лучом расположились весьма короткие волны – гамма лучи. Обладая той же природой, что и свет, может набирать скорость до 300 тысяч километров в секунду. Учитывая особые свойства, данные частицы оказывают пагубное воздействие на все живые организмы, а именно – травмирующее, отравляющее. Именно поэтому важно узнать, как и чем можно защитить себя от подобного облучения.

Особенности лучей

Гамма-излучения является наиболее опасным по сравнению с бета, альфа-частицами, поэтому нужна прочная и надежная защита. Гамма-излучение имеет особые источники – космические лучи, распад ядерных атомов, а также их взаимодействие. Частота гамма-излучения больше 3·10 18 Гц.

Облучение имеет искусственные, естественные источники.

Гамма-излучение приходит из глубин космоса, рождается на земле, поэтому оказывает опасное ионизирующее влияние на человеческий организм. Что касается дозы гамма-излучения, то она зависит от многих факторов.

Не стоит забывать об особой закономерности, которая гласит, чем меньше длина волны гамма излучения, тем выше энергия у дозы, эквивалента. Именно поэтому можно смело говорить, что гамма-излучение – это некий поток квантовый, обладающий очень большой энергией.

Гамма-излучение имеет разрушающее воздействие, заключающееся в следующем:

  • За счет высокой проникающей способности, единицы облучения с легкостью проникают в клетки и живые организмы, провоцируя поражение, сильное отравление.
  • В процессе движения поток частиц оставляет поврежденные ионы, молекулы, которые начинают ионизировать новые дозы молекул.
  • Подобная клеточная трансформация становится причиной огромных изменений в структуре. Что касается разрушенных, изменившихся частей клеток, получивших дозы облучения, начинается отравление за счет яда.
  • Завершающий этап – рождение новых, дефектных клеток, неспособных выполнять собственные функции, так как мощность поражения слишком велика.

Гамма-излучение несет особую опасность, которая усугубляется тем, что человек неспособен самостоятельно почувствовать всю мощность воздействия радиоактивной волны. Подобное явление происходит вплоть до смертельной дозы.

Каждый человеческий орган имеет определенную чувствительность к влиянию радиационной волны, которую дает гамма-излучение. Особая уязвимость наблюдается у делящихся кровеносных клеток, лимфатических желез и ЖКТ, ДНК и фолликул волосяных. Поток гамма частиц способен разрушить слаженность всех процессов, которые действуют в живом организме. Гамма-излучение приводит к серьезной мутации, которая затрагивает генетический механизм. Важно знать, что гамма-излучение, любой дозы, может скапливаться, а затем начать действовать.

Сила облучения

Что касается единицы амбиентного экивалента дозы, то это особая биологическая доза нейтронного излучения гамма частиц. Эквивалентной считается нормируемая величина ущерба, который наносит гамма-излучение. К огромному сожалению, ее невозможно измерить, поэтому в практике принято использовать особые величины дозиметрические, которые можно приблизит к нормируемым. Основная величина – амбиентный эквивалент дозы.

Эквивалент амбиентный – это эквивалент дозы, созданный в фантоме шаровом на определенной глубине от поверхности, учитывая отношение к диаметру, который направлен параллельно излучению. Эквивалент рассматривают в поле излучения, идентичное флюенсу, распределению энергетическому и составу. Подобный эквивалент способен выявить дозировку облучения, его мощность, которую может получить человек. Единица такого эквивалента – зиверт. Следует отметить, что единица измерения коллективной дозировки считается человеко-зиверт, если же единица внесистемная, то человеко-бэр.

Интенсивность, мощность подобного облучения показывает приращение дозы под влиянием излучения за конкретную единицу времени. Размерность дозировки принято делить на единицу времени. Можно использовать разные единицы – 3в/час, м3в/год и прочее. Простыми словами, мощность эквивалентной дозы можно характеризовать дозировкой, которая была получена благодаря единице времени.

Мощность измеряют разнообразными приборами, у которых имеются химические системы, камеры ионизационные, а также те камеры, которые содержат люминесцирующее вещество. Мощность измеряется на высоте одного метра от поверхности земли.

Защитные мероприятия

Гамма-излучение и его источники являются чрезвычайно опасными для человеческого организма. Жизнь человека протекает на фоне природных электромагнитных излучений, имеющих разную длину волны и частоту. Несмотря на всплески, подобный вред минимален для людей, так как в качестве защиты выступает огромное расстояние, отделяющее источники радиации о всего живого.

Совсем другое – это источники земные. Например, наибольшую опасность несут такие источники, как АЭС: контуры технологические, реакторы и прочее. Подобные рукотворные источники способны натворить беды и причинить печальные последствия, поэтому важно знать о мерах защиты от волны радиации гамма частиц. Защита от гамма излучения организовывается в обучении персонала, имеющего отношение к такому источнику.

Основные мероприятия:

  • Защита временем и расстоянием.
  • Использование барьера, особого материала, имеющего большую плотность – сталь, бетон и свинец, стекло свинцовое.

Лучшая сила поглощения облучения у свинца.

Ослабит силу лучей вдвое можно так: воспользоваться свинцовой пластинкой, толщина которой составляет 1 сантиметр, воды – не менее 10 см, а бетона – 5 сантиметров. Однако данную преграду нельзя называть непреодолимой. Свинец не выдерживает высокой температуры, поэтому для горячих областей нужны другие металлы: тантал и вольфрам.

Чтобы сделать защитную одежду для персонала, необходимо применить специальный материал. Основой послужит каучук, пластик или же резина. Можно задействовать экраны противорадиационные. Гамма облучение признано самым опасным, поэтому в качестве укрытия может послужить подвал дома. Укрытие будет надежнее, когда толстые стены. Подвал, расположенный в многоэтажках, снижает воздействие и силу радиации в тысячу раз.

– это электромагнитное излучение с очень короткой длиной волны, менее 0,1 нм (1 А), испускаемое возбужденными атомными ядрами при радиоактивных превращениях и ядерных реакциях (взрывах), а также возникающее при торможении заряженных частиц в веществе, их распаде, при аннигиляции пар «частица-античастица», при прохождении быстрых заряженных частиц через вещество, в лазерных пучках света, в межзвездном пространстве.

Основными источниками Г.и. служат естественные и искусственные радиоактивные изотопы радия, кобальта, цезия и др. химических элементов. Гамма-лучи (γ-лучи) принято рассматривать как поток частиц - γ-квантов, а не электромагнитных волн, т.к. волновые свойства заметно проявляются лишь у самых длинноволновых гамма-лучей, корпускулярные же их свойства выражены достаточно отчетливо. Г.и. не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Оно идентифицировано как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Г.и. испускается при переходах ядра из более возбужденного энергетического состояния в менее возбужденное или основное.

Энергия γ-кванта равна разнице энергий состояний, между которыми происходит переход. Испускание ядром γ-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от др. радиоактивных излучений (α-, β-распадов). Г.и. обладает большей проникающей способностью, чем альфа и бета-излучение, т.е. может проходить через большие толщины вещества без заметного ослабления. Основные процессы, происходящие при взаимодействии Г.и. с веществом - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (Комптон-эффект) и образование пар «электрон-позитрон». Действие Г.и. на организм аналогично действию др. ионизирующих излучений, вызывает в зависимости от дозы лучевое поражение вплоть до гибели. Характер воздействия Г.и. зависит от энергии γ-квантов и пространственных особенностей излучения (внутреннее, внешнее). Повреждения организма радиоактивными излучениями могут носить наследственный характер. Воздействие Г.и. на растения, животных и микроорганизмы может вызывать образование мутаций. Относительная биологическая эффективность Г.и. составляет 0,7-0,9 от эффективности жесткого рентгеновского излучения, принятого равной 1. Предупреждение опасного воздействия Г.и. достигается снижением риска аварий на радиационноопасном объекте с выбросом радиоактивных веществ, построением защитных систем от ионизирующих излучений естественного и искусственного происхождения, регламентацией интенсивности и доз облучения, проведением реабилитационно-восстановительных процедур. Ликвидация последствий аварий и катастроф с источниками ионизирующих излучений (в т.ч. Г.и.) - одна из самых сложных задач специальных и общих служб ликвидации чрезвычайных ситуаций.

В ядрах одного и того же элемента число нейтронов может быть различным, а число протонов всегда одно и то же. Такие ядра называются изотопами . Например, в ядрах водорода всегда 1 протон, а число нейтронов может быть 0, 1, 2, 3, 4, 6.

Радиоактивность

Радиоактивность - явление самопроизвольного превращения неустойчивого изотопа одного химического элемента в изотоп другого элемента. При этом испускаются частицы, обладающие большой проникающей способностью.

Например, радиоактивный элемент радий превращается в другой химический элемент - радон с выделением гелия.

В 1899 г. Э. Резерфорд провел опыт, в результате которого было обнаружено, что радиоактивное излучение неоднородно. Существуют три различные частицы с разными зарядами. Альфа-частица - положительно заряженная (лишенный электронов атом гелия), бета-частица - отрицательно заряженная (электрон), и нейтральная гамма-частица (фотон).

Три вида излучения обладают разной проникающей способностью. Самые поникающие - гамма-лучи. Они легко проходят через вещество. Чтобы их остановить нужна свинцовая пластина толщиной 5 см, либо 30 см бетона, либо 60 см грунта.

Ядерные реакции

Альфа-распад

Пример:
где - альфа-излучение - ядра гелия.

Этот распад наблюдается для тяжелых ядер с А>200. При альфа-распаде одного химического элемента образуется другой химический элемент, который в таблице Менделеева расположен на 2 клетки ближе к ее началу, чем исходный.

Бета-распад

Пример:
где - бета-излучение - электроны.

При бета-распаде одного химического элемента образуется другой химический элемент, который расположен в таблице Менделеева в следующей клетке за исходным.

Гамма-излучение

Испускание гамма-излучения не приводит к превращениям элементов.

В ходе ядерной реакции суммарный электрический заряд и число нуклонов сохраняются. Ядерные реакции бывают двух типов: эндотермические (с поглощением энергии) и экзотермические (с выделением энергии). Если сумма масс исходного ядра и частиц, больше суммы масс конечного ядра и испускаемых частиц, то энергия выделяется, и наоборот.

Открытие протона: