Подробности

Страница 1 из 2

Сосуды - это важный компонент сердечно-сосудистой системы. Они участвуют не только в доставке крови и кислорода к тканям и органам, но и осущевтляют регуляцию этих процессов.

1. Отличия в структуре стенки артерий и вен.

У артерий толстая мышечная медия, выраженный эластический слой.

Стенка вен менее плотная и более тонкая. Наиболее выраженный слой - адвентиция.

2. Типы мышечных волокон.

Многоядерные скелетные поперечно-полосатые мышечные волокна (по сути состоят не из отдельных клеток, а из синцитиев).

Кардиомиоциты тоже относятся к поперечно-полосатой мускулатуре, однако в них волокна связаны между собой контактами - нексусами, это обеспечивает распространение возбуждения по миокарду при его сокращении.

Гладкомышечные клетки имеют веретеновидную форму, они одноядерные.

3. Электронномикроскопическоая структура гладкой мышцы.

4. Фенотип гладкомышечной клетки.

5. Щелевые контакты в гладкой мышце осуществляют передачу возбуждения от клетки к клетке в унитарном типе гладких мышц.

6. Сравнительное изображение трех типов мышц.

7. Потенциал действия гладких мышц сосудов.

8. Тонический и фазический тип сокращений гладких мышц.


Артерии мышечного типа обладают выраженной способностью к изменению просвета, поэтому их относят к распределительным артериям, контролирующим интенсивность кровотока между органами. ГМК, идущие по спирали, регулируют величину просвета сосуда. Внутренняя эластическая мембрана расположена между внутренней и средней оболочками. Наружная эластическая мембрана, разделяющая среднюю и наружную оболочки, как правило, менее выражена. Наружная оболочка представлена волокнистой соединительной тканью; имеет, как и в других сосудах, многочисленные нервные волокна и окончания. Сравнительно с сопровождающими венами артерия содержит больше эластических волокон, поэтому её стенка эластичнее.
  1. Правильный ответ - В
Субэндотелиальный слой артерии эластического типа образован рыхлой волокнистой неоформленной соединительной тканью. Здесь присутствуют эластические и коллагеновые волокна, фибробласты, группы продольно ориентированных ГМК. Последнее обстоятельство необходимо учитывать при рассмотрении механизма развития атеросклеротического повреждения сосудистой стенки. На границе внутренней и средней оболочек расположен мощный слой эластических волокон. В средней оболочке присутствуют многочисленные окончатые эластические мембраны. Между эластическими мембранами располагаются ГМК. Направление хода ГМК - по спирали. ГМК артерий эластического типа специализированы для синтеза эластина, коллагена и компонентов аморфного межклеточного вещества.
  1. Правильный ответ - Д
Мезотелий покрывает свободную поверхность эпикарда и выстилает перикард. Наружная (адвентициальная) оболочка кровеносных сосудов (аорты в т.ч.) содержит пучки коллагеновых и эластических волокон, ориентированных продольно или идущих по спирали; мелкие кровеносные и лимфатические сосуды, а также миелиновые и безмиелиновые нервные волокна. Vasa vasorum кровоснабжают наружную оболочку и наружную треть средней оболочки. Предполагается, что ткани внутренней оболочки и внутренних двух третей средней оболочки питаются за счёт диффузии веществ из крови, находящейся в просвете сосуда.
  1. Правильный ответ - Г
Артерии мышечного типа переходят в короткие сосуды - артериолы. Стенка артериолы состоит из эндотелия, нескольких слоёв циркулярно ориентированных ГМК в средней оболочке и наружной оболочки. Эндотелий отделён от ГМК внутренней эластической мембраной. В наружной оболочке артериолы отсутствуют vasa vasorum. Здесь имеются периваскулярные соединительнотканные клетки, пучки коллагеновых волокон, безмиелиновые нервные волокна. Изменение величины просвета сосуда осуществляется за счёт изменения тонуса ГМК, имеющих рецепторы вазодилататоров и вазоконстрикторов, включая рецепторы ангиотензина II. Самые мелкие артериолы (терминальные) переходят в капилляры. Терминальные артериолы содержат продольно ориентированные эндотелиальные клетки и вытянутые ГМК.
  1. Правильный ответ - Б
Вены имеют больший диаметр, чем одноимённые артерии. Их просвет, в отличие от артерий, не зияет. Стенка вены тоньше. Субэндотелиальный слой внутренней оболочки содержит ГМК. Внутренняя эластическая мембрана выражена слабо и часто отсутствует. Средняя оболочка вены тоньше, чем одноимённой артерии. В средней оболочке присутствуют циркулярно ориентированные ГМК, коллагеновые и эластические волокна. Количество ГМК в средней оболочке вены существенно меньше, чем в средней оболочке сопровождающей её артерии. Исключение составляют вены нижних конечностей. Эти вены содержат значительное количество ГМК в средней оболочке.
  1. Правильный ответ - Г
Микроциркуляторное русло включает: терминальные артериолы (метартериолы), анастомозирующую сеть капилляров и посткапиллярные венулы. В местах отделения капилляров от метартериолы имеются прекапиллярные сфинктеры, контролирующие локальный объём крови, проходящей через истинные капилляры. Объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериовенозные анастомозы, связывающие артериолы непосредственно с венулами, или мелкие артерии с мелкими венами. Стенка сосудов анастомоза богата ГМК. Артерновенозные анастомозы в большом количестве присутствуют в некоторых участках кожи, где они играют важную роль в терморегуляции.
  1. Правильный ответ - Б
Стенка капилляра образована эндотелием, его базальной мембраной и перицитами. Капилляры с фенестриро- ванным эндотелием присутствуют в капиллярных клубочках почки, эндокринных железах, ворсинках кишки, в экзокринной части поджелудочной железы. Фенестра - истончённый участок эндотелиальной клетки диаметром 50-80 нм. Предполагается, что фенестры облегчают транспорт веществ через эндотелий. В цитоплазме эндотелиальных клеток содержатся пиноцитозные пузырьки, участвующие в транспорте метаболитов между кровью и тканями. Базальная мембрана у капилляра с фенестрированным эндотелием сплошная.
  1. Правильный ответ - Д
В стенке капилляра имеются эндотелиальные клетки и перициты, но отсутствуют ГМК. Перициты - клетки, содержащие сократительные белки (актин, миозин). Вероятно участие перицита в регуляции просвета капилляра. Капилляры с непрерывным и фенестрированным эндотелием имеют сплошную базальную мембрану. Для синусоидов характерно наличие щелей между эндотелиальными клетками и в базальной мембране, что позволяет клеткам крови свободно проходить сквозь стенку такого капилляра. Капилляры синусоидного типа присутствуют в кроветворных органах. В организме постоянно происходит образование новых капилляров.
  1. Правильный ответ - Г
Гематотимический барьер образован капиллярами с непрерывным эндотелием и сплошной базальной мембраной. Между эндотелиальными клетками имеются плотные контакты, в цитоплазме мало пиноци- тозных пузырьков. Стенка такого капилляра непроницаема для веществ, проходящих через стенку обычных капилляров. Капилляры с фенестрированным эндотелием и синусоиды барьеров не образуют, поскольку содержат фенестры и поры в эндотелии, щели между эндотелиальными клетками и в базальной мембране, облегчающие прохождение веществ сквозь стенку капилляра. Капилляров с непрерывным эндотелием и прерывистой базальной мембраной не найдено.
  1. Правильный ответ - В
Основа гематоэнцефалического барьера - непрерывный эндотелий. Эндотелиальные клетки связаны при помощи непрерывных цепочек плотных контактов, что не позволяет проникать в мозг многим веществам. Снаружи эндотелий покрыт сплошной базальной мембраной. К базальной мембране примыкают ножки астроцитов, почти полностью охватывая капилляр. Базальная мембрана и астроциты не являются компонентами барьера. Олигодендроциты связаны с нервными волокнами и формируют мие- линовую оболочку. Синусоидные капилляры присутствуют в кроветворных органах. Капилляры с фенестрированным эндотелием характерны для почечных телец, ворсинок кишечника, эндокринных желёз.
  1. Правильный ответ - А
В эндокарде выделяют три слоя: внутренний соединительнотканный, мышечно-эластический и наружный соединительнотканный, переходящий в соединительную ткань миокарда. Внутренний соединительнотканный слой - аналог субэндотелиального слоя интимы кровеносных сосудов, образован рыхлой соединительной тканью. Этот слой покрыт эндотелием со стороны поверхности, обращённой в полость сердца. Между эндотелием и омывающей его кровью происходит обмен веществ. О его активности говорит наличие большого количества пиноцитозных пузырьков в цитоплазме эндотелиальных клеток. Клетки расположены на базальной мембране и связаны с ней полудесмосомами. Эндотелий - обновляющаяся клеточная популяция. Его клетки - мишени многочисленных ангиогенных факторов, следовательно, содержат их рецепторы.
  1. Правильный ответ - Г
Эндотелиальные клетки происходят из мезенхимы. Они способны к пролиферации и составляют обновляющуюся клеточную популяцию. Эндотелиальные клетки синтезируют и секретируют ряд факторов роста и цитокинов. С другой стороны, они сами являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток вызывает щелочной фактор роста фибробластов (bFGF). Цитокины макрофагов и Т-лимфоцитов (трансформирующий фактор роста р , ИЛ-1 и у-ИФН) угнетают пролиферацию эндотелиальных клеток. Эндотелий капилляров мозга является основой гематоэнцефалического барьера. Барьерная функция эндотелия выражается в наличии обширных плотных контактов между клетками.
  1. Правильный ответ - А
Функциональное состояние ГМК контролируют многочисленные гуморальные факторы, в т.ч. фактор некроза опухолей, стимулирующий пролиферацию клеток; гистамин, вызывающий расслабление ГМК и повышение проницаемости стенки сосудов. Оксид азота, выделяемый эндотелиальными клетками, - вазодилататор. ГМК, экспрессирующие синтетический фенотип, синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликаны), цитокины и факторы роста. Гемокапилляры не имеют ГМК и, значит, симпатической иннервации.
  1. Правильный ответ - Б
Миокард не содержит нервно-мышечных веретён, они присутствуют исключительно в скелетной мышце. Кардиомиоциты лишены способности к пролиферации (в отличие от ГМК сосудов). Кроме того, в сердечной мышечной ткани отсутствуют малодифференцированные камбиальные клетки (подобные клеткам-сателлитам скелетной мышечной ткани). Таким образом, регенерация кардиомиоцитов невозможна. Под действием катехоловых аминов (стимуляция симпатических нервных волокон) сила сокращений предсердий и желудочков увеличивается, возрастает частота сокращений сердца, укорачивается интервал между сокращениями предсердий и желудочков. Ацетилхолин (парасимпатическая иннервация) вызывает снижение силы сокращений предсердий и частоты сокращений сердца. Кардиомиоциты предсердий секретируют атриопептин (натриуретический фактор) - гормон, контролирующий объём внеклеточной жидкости и гомеостаз электролитов.
  1. Правильный ответ - Г
Величина просвета сосуда регулируется за счёт сокращения или расслабления присутствующих в его стенке ГМК. ГМК имеют рецепторы к многим веществам, действующим как вазоконстрикторы (сокращение ГМК) и как вазодилататоры (расслабление ГМК). Так, вазодилатацию вызывают атриопептин, брадикинин, гистамин, VlP, простагландины, оксид азота, относящиеся к кальцитониновому гену пептиды. Ангиотензин II - вазоконстриктор.
  1. Правильный ответ - Б
Миокард развивается из миоэпикардиальной пластинки - утолщённого участка висцерального листка спланхнотома, т.е. имеет мезодермальное происхождение. Промежуточные филаменты кардиомиоцитов состоят из десмина - белка, характерного для мышечных клеток. Кардиомиоциты волокон Пуркинье связаны десмосомами и многочисленными щелевыми контактами, обеспечивающими высокую скорость проведения возбуждения. Секреторные кардиомиоциты, находящиеся преимущественно в правом предсердии, вырабатывают натриуретические факторы и к проводящей системе отношения не имеют.
  1. Правильный ответ - Б
Полые вены, а также вены головного мозга и его оболочек, внутренних органов, подчревные, подвздошные и безымянные клапанов не имеют. Нижняя полая вена - сосуд мышечного типа. Внутренняя и средняя оболочки выражены слабо, тогда как наружная развита хорошо и по толщине превышает внутреннюю и среднюю в несколько раз. В субэндотелиальном слое присутствуют ГМК. В средней оболочке имеются циркулярно расположенные пучки ГМК; окончатые эластические мембраны отсутствуют. Наружная оболочка нижней полой вены содержит продольно ориентированные пучки ГМК.
  1. Правильный ответ - Д
Подкожные вены нижних конечностей относятся к мышечным венам. Средняя оболочка этих вен хорошо развита и содержит продольно лежащие пучки ГМК во внутренних слоях и циркулярно ориентированные ГМК в наружных слоях. ГМК также образуют продольные пучки и в наружной оболочке. Последняя состоит из волокнистой соединительной ткани, в которой присутствуют нервные волокна и vasa vasorum. Vasa vasorum у вен значительно многочисленнее, чем у артерий, и могут достигать интимы. Большинство вен имеет клапаны, образованные складками интимы. Основу створок клапана составляет волокнистая соединительная ткань. В области фиксированного края клапана располагаются пучки ГМК. Средняя оболочка отсутствует в безмышечных венах головного мозга, мозговых оболочек, сетчатки глаза, трабекул селезёнки, костей, в мелких венах внутренних органов.
  1. Правильный ответ - Д
Синусоидные капилляры образуют капиллярное русло красного костного мозга, печени, селезёнки. Эндотелиальные клетки уплощены и имеют вытянутую полигональную форму, содержат микротрубочки, филаменты, образуют микроворсинки. Между клетками имеются щели, через которые могут мигрировать клетки крови. Базальная мембрана также содержит различные по размерам щелевидные отверстия и может отсутствовать вообще (синусоиды печени).
  1. Правильный ответ - Д
Плазматическая мембрана эндотелиальных клеток содержит рецепторы гистамина, серотонина, м-холиноре- цепторы, а2-адренорецепторы. Их активация приводит к высвобождению из эндотелия фактора вазоди- латации - окиси азота. Её мишень - расположенные поблизости ГМК. В результате расслабления ГМК просвет сосуда увеличивается.
  1. Правильный ответ - А
Эндотелий входит в состав эндокарда, выстилая его со стороны поверхности, обращённой в полость сердца. Эндотелий лишён кровеносных сосудов и получает питательные вещества непосредственно из омывающей его крови. Как и у других клеточных типов мезенхимного происхождения, промежуточные филаменты эндотелиальных клеток состоят из виментина. Эндотелий участвует в восстановлении кровотока при тромбозе. Из агрегированных тромбоцитов в составе тромба выделяются АДФ и серотонин. Они взаимодействуют со своими рецепторами в плазматической мембране эндотелиальных клеток (пу- ринергический рецептор АДФ и рецептор серотонина). Co своим рецептором в эндотелиальной клетке взаимодействует и тромбин - белок, образующийся при свёртывании крови. Воздействие этих агонистов на эндотелиальную клетку стимулирует секрецию расслабляющего фактора - оксида азота.
  1. Правильный ответ - В
ГМК артериол скелетной мышцы, как и ГМК всех сосудов, имеют мезенхимное происхождение. ГМК, экспрессирующие сократительный фенотип, содержат многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов и вазодилататоров. Так, ГМК артериол скелетной мышцы имеют рецепторы ангиотензина II, вызывающего сокращение ГМК. Миофиламенты в этих клетках не организованы по типу саркомеров. Сократительный аппарат ГМК образован стабильными актиновыми и подвергающимися сборке и разборке миозиновыми миофиламентами. ГМК артериол иннервированы нервными волокнами вегетативного отдела нервной системы. Сосудосуживающий эффект реализуется при помощи норадреналина - агониста а-адренорецепторов.
  1. Правильный ответ - Б
Эпикард образован тонким слоем волокнистой соединительной ткани, плотно срастающейся с миокардом. Свободная поверхность эпикарда покрыта мезотелием. Стенка сердца получает симпатическую и парасимпатическую иннервацию. Симпатические нервные волокна оказывают положительный хронот- ропный эффект, агонисты p-адренорецепторов увеличивают силу сердечного сокращения. Волокна Пуркинъё входят в состав проводящей системы сердца и передают возбуждение на рабочие кардиомиоциты.
  1. Правильный ответ - А
Атриопептин - натриуретический пептид, его синтезируют кардиомиоциты предсердий. Мишени - клетки почечных телец, клетки собирательных трубочек почки, клетки клубочковой зоны коры надпочечников, ГМК сосудов. Рецепторы трёх типов для натриуретических факторов - мембранные белки, активирующие гуанилатциклазу, экспрессируются в ЦНС, сосудах, почке, коре надпочечника, плаценте. Атриопептин угнетает образование альдостерона клетками клубочковой зоны коры надпочечников и способствует расслаблению ГМК стенки сосуда. На просвет капилляров не оказывает влияния, т.к. капилляры не содержат ГМК.

С морфологической точки зрения кровеносные сосуды – трубки различного диаметра, состоящие из 3-х основных слоёв: внутреннего (эндотелиального), среднего (ГМК, коллагеновые и эластические волокна), наружного.

Помимо размеров, сосуды отличаются строением среднего слоя:

В аорте и крупных артериях преобладают эластические и коллагеновые волокна, что

обеспечивает их упругость и растяжимость (сосуды эластического типа);

В артериях среднего и мелкого калибра, артериолах, прекапиллярах и венулах

преобладают ГМК (сосуды мышечного типа, обладающие высокой сократимостью);

В средних и крупных венах есть ГМК, но их сократительная активность невысока;

Капилляры вообще лишены ГМК.

Это имеет определённое значение для функциональной классификации :

1) Упруго-растяжимые (магистральные) сосуды – аорта с крупными артериями в большом круге кровообращения и лёгочная артерия с её ветвями в малом круге кровообращения. Это сосуды эластического типа, образующие эластическую, или компрессионную, камеру. Обеспечивают преобразование пульсирующего кровотока в более равномерный и плавный. Часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение этой компрессионной камеры, в которую поступает значительный объём крови, растягивающий её. При этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий компрессионной камеры спадаются и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.

2) Сосуды сопротивления (резистивные сосуды) – артериолы и прекапиллярные сфинктеры, т.е. сосуды мышечного типа. От прекапиллярных сфинктеров зависит число функционирующих капилляров.

3) Обменные сосуды – капилляры. Обеспечивают обмен газами и другими веществами между кровью и тканевой жидкостью. Количество функционирующих капилляров может изменяться в каждом участке ткани в значительных пределах, в зависимости от функциональной и метаболической активности.

4) Шунтирующие сосуды (артериовенозные анастомозы) – обеспечивают «сброс» крови из артериальной системы в венозную, минуя капилляры; значительно повышают скорость кровотока; участвуют в теплообмене.

5) Собирательные сосуды (кумулятивные) – вены.

6) Ёмкостные сосуды – крупные вены, обладающие высокой растяжимостью. Содержат ~ 75 % объёма циркулирующей крови (ОЦК). Артериальный отдел ~ 20 % ОЦК, капиллярный ~ 5-7,5 %.

ОЦК распределяется по частям тела не равномерно. Почки, печень, сердце, мозг, составляющие 5 % массы тела, получают более половины всей крови.

ОЦК – это не вся кровь организма. В состоянии покоя до 45 - 50 % всего объёма крови, имеющейся в организме, находится в кровяных депо: селезёнке, печени, подкожном сосудистом сплетении и лёгких. В селезёнке содержится ~ 500 мл крови, которая может быть почти выключена из кровотока. Кровь в сосудах печени и сосудистом сплетении кожи (до 1 л) циркулирует в 10 – 20 раз медленнее, чем в других сосудах.

Микроциркуляторное русло – совокупность конечных артерий, артериол, капилляров, венул, мелких венул. Движение крови по микроциркуляторному руслу обеспечивает транскапиллярный обмен.

Капилляры имеют диаметр ~ 5 – 7 мкм, длину ~ 0,5 – 1 мм. Скорость кровотока ~ 0,5 – 1 мм/с, т.е. каждая частица крови находится в капилляре ~ 1 с. Общая длина капилляров составляет ~ 100000 км.

Есть 2 вида функционирующих капилляров – магистральные, образующие кратчайший путь между артериолами и венулами, и истинные, которые отходят от артериального конца магистрального капилляра и впадают в его венозный конец. Истинные образуют капиллярные сети. В магистральных скорость кровотока выше.

В тканях с более интенсивным обменом число капилляров больше.

Капилляры различаются по строению эндотелиального каркаса:

1) С непрерывной стенкой – «закрытые». Это большинство капилляров большого круга кровообращения. Обеспечивают гистогематический барьер.

2) Окончатые (с фанестрами – окошечками). Способны пропускать вещества, диаметр которых достаточно велик. Располагаются в почечных клубочках, в слизистой кишечника.

3) С прерывистой стенкой – между соседними эндотелиальными клетками есть щели, через которые проходят форменные элементы крови. Располагаются в костном мозге, печени, селезёнке.

В закрытых капиллярах переход веществ из капилляра в ткань и наоборот совершается за счёт диффузии и фильтрации (с реабсорбцией). Пока кровь проходит через капилляр, может произойти 40-кратный обмен между кровью и тканями. Лимитирующий фактор – способность вещества проходить через фосфолипидные участки мембраны и размеры вещества. В среднем из капилляров каждую минуту выходит ~ 14 мл жидкости (~20 л/сутки). Вышедшая на артериальном конце капилляра жидкость дренирует межклеточное пространство, очищает его от метаболитов и ненужных частиц. На венозном конце капилляра большая часть жидкости с метаболитами вновь поступает в капилляр.

Закономерности, обуславливающие обмен жидкости между капиллярами и тканевыми пространствами, были описаны Старлингом.

Силы, способствующие фильтрации, - это гидростатическое давление крови (Ргк) и онкотическое тканевой жидкости (Рот), составляющие в сумме фильтрационное давление. Силы, препятствующие фильтрации, но способствующие реабсорбции, - это онкотическое давление крови (Рок) и гидростатическое давление тканевой жидкости (Ргт), составляющие в сумме реабсорбционное давление.

На артериальном конце капилляра:

Ргк ~ 32,5 мм рт. ст., Рот ~ 4,5 мм рт.ст., (Ргк + Рот) ~ 37 мм рт. ст.

Результирующее давление, обеспечивающее фильтрацию: 37 – 28 = 9 мм рт.ст.

На венозном конце капилляра:

Ргк ~ 17 мм рт. ст., Рот ~ 4,5 мм рт.ст., (Ргк + Рот) ~ 21,5 мм рт. ст.

Рок ~ 25 мм рт.ст., Ргт ~ 3 мм рт.ст., (Рок + Ргт) ~ 28 мм рт. ст.

Результирующее давление, обеспечивающее реабсорбцию: 21,5 – 28 = - 6,5 мм рт. ст.

Т.к. фильтрационная результирующая на артериальном конце капилляра выше, чем реабсорбционная результирующая на венозном, объём фильтрации на артериальном конце капилляра выше, чем объём реабсорбции на венозном (20 л/18 л в сутки). Остальные 2 л идут на образование лимфы. Это своеобразный дренаж тканей, благодаря которому крупные частицы, не способные пройти через стенку капилляра, проходят по лимфатической системе, в том числе через лимфатические узлы, где подвергаются разрушению. В конечном итоге, лимфа через грудной и шейный протоки возвращается в венозное русло.



Венозное русло предназначено для сбора крови, т.е. выполняет коллекторную функцию. В венозном русле кровь испытывает меньшее сопротивление, чем в мелких артериях и артериолах, однако большая протяжённость венозного русла приводит к тому, что давление крови по мере приближения к сердцу снижается почти до 0. Давление в венулах 12 – 18 мм рт.ст., в венах среднего калибра 5 – 8 мм рт.ст., в полых венах 1 – 3 мм рт.ст.. В то же время, линейная скорость кровотока, по мере приближения к сердцу, последовательно возрастает. В венулах она составляет 0,07 см/с, в средних венах 1,5 см/с, в полых венах 25 – 33 см/с.

Низкое гидростатическое давление в венозном русле затрудняет возврат крови к сердцу. Для улучшения венозного возврата есть ряд компенсаторных механизмов:

1) наличие в венах многочисленных полулунных клапанов эндотелиального происхождения, пропускающих кровь только по направлению к сердцу (исключение – полые вены, вены воротной системы, мелкие венулы);

2) мышечный насос – динамическая работа мышц приводит к выталкиванию венозной крови по направлению к сердцу (за счёт сдавливания вен и наличия в них клапанов);

3) присасывающее действие грудной клетки (снижение внутриплеврального давления на вдохе);

4) присасывающее действие полостей сердца (расширение предсердий во время систолы желудочков);

5) сифонное явление – устье аорты выше устья полых вен.

Время полного кругооборота крови (время прохождения 1 частицы крови через оба круга кровообращения) составляет в среднем 27 систол сердца. При ЧСС 70 – 80 в минуту кругооборот происходит ~ за 20 – 23 с. Однако скорость движения по оси сосуда выше, чем у его стенок и, поэтому, не вся кровь совершает полный кругооборот так быстро. Примерно 1/5 времени полного кругооборота приходится на прохождение малого круга и 4/5 – на прохождение большого.

Артериальный пульс – ритмические колебания стенки артерии, обусловленные повышением давления в период систолы. В момент изгнания крови из желудочков давление в аорте повышается, и стенка её растягивается. Волна повышенного давления и колебания сосудистой стенки распространяются до артериол и капилляров, где пульсовая волна гаснет. Скорость распространения пульсовой волны не зависит от скорости движения крови. Максимальная скорость кровотока по артериям 0,3 – 0,5 м/с; скорость же пульсовой волны в аорте 5,5 – 8 м/с, в периферических артериях 6 - 9 м/с. С возрастом, по мере понижения эластичности сосудов, скорость распространения пульсовой волны увеличивается.

Артериальный пульс можно обнаружить прикосновением к любой доступной ощупыванию артерии: лучевой, височной, наружной артерии стопы и т.д. Исследование пульса позволяет оценить наличие биений сердца, частоту его сокращений, напряжение. Напряжение (твёрдый, мягкий) пульса определяется по величине усилия, которое необходимо приложить для того, чтобы пульс в дистальном участке артерии исчез. В определённой степени отображает величину среднего АД.

Поражение сердца или кровеносных сосудов индуцирует процесс ремоделирования, который при нормальных условиях является путем адаптации, а с точки зрения патофизиологии заболевания выступает как звено дезадаптации. В ответ на физиологические стимулы сосудистые гладкомышечные клетки (ГМК) медии пролиферируют и мигрируют в интиму, где формируется многослойное сосудистое поражение, или неоинтима.

В норме этот процесс самоограничен, поэтому в результате образуется хорошо зарубцевавшаяся рана, а кровоток не изменяется. Однако при определенных сосудистых заболеваниях пролиферация сосудистых ГМК становится избыточной, в результате развивается патологическое поражение сосудистой стенки, и появляются клинические симптомы. Для этих заболеваний обычно характерно системное или локальное воспаление, усугубляющее пролиферативную реакцию сосудистых ГМК. Ингибиторы CDK семейства CIP/ KIP - важнейшие регуляторы ремоделировапия тканей сосудистой системы. Белок p27(Kipl) конститутивно экспрессирован в сосудистых ГМК и эндотелиальных клетках артерий.

При сосудистом поражении или воздействии митогенов на сосудистые ГМК и эндотелиальные клетки его активность угнетается. После всплеска пролиферации сосудистые ГМК синтезируют и секретируют молекулы внеклеточного матрикса, которые, передавая сигнал сосудистым ГМК и клеткам эндотелия, стимулируют активность белков p27(Kipl) и p21(Cip1) и подавляют циклин E-CDK2. Экспрессия CIP/KIP ингибиторов CDK останавливает клеточный цикл и тормозит деление клеток. Белок p27(Kipl), благодаря своим эффектам на пролиферацию Т-лимфоцигов, выступает и в роли важнейшего регулятора процессов воспаления тканей. В кровеносной системе белок p27(Kipl), регулируя процессы пролиферации, воспаления и образования в костном мозге клеток-предшественников, участвует в заживлении сосудистых повреждений.
В опытах на мышах было показано , что деления в гене p27(Kip1) сопровождается доброкачественной гиперплазией эпителиальных и мезодермальных клеток во многих органах, включая сердце и сосуды.

Белок p21 (Cipl) необходим для роста и дифференцировки клеток сердца, костей, кожи и почек; кроме того, он обеспечивает восприимчивость клеток к апоптозу. Этот ингибитор CDK функционирует как р53-зависимым, так и р53-независимым путем. В сердце p21(Cipl) экспрессируется независимо от наличия р53 в кардиомиоцитах; избыточная экспрессия p2l(Cip1) в миоцитах приводит к гипертрофии миокарда.

Большинство раковых клеток человека несут мутации, изменяющие функции р53, Rb либо путем прямой модификации их генетической последовательности, либо путем воздействия на гены-мишени, которые, действуя эпистатически, т.е. подавляя проявление других генов, препятствуют их нормальному функционированию. Белок Rb ограничивает пролиферацию клеток, препятствует их переходу в S-фазу. Механизм состоит в блокировании факторов транскрипции E2F генов-активаторов, необходимых для репликации ДНК и метаболизма нуклеотидов. Мутации в белке р53 встречаются более чем в 50% всех случаев рака у человека.

Белок р53 накапливается в ответ на клеточный стресс, обусловленный повреждениями , гипоксией и активацией онкогенов. Белок р53 инициирует программу транскрипции, которая запускает остановку клеточного цикла или апоптоз. Под действием р53 белок p21(Cipl) индуцирует апоптоз в опухолевых и других клетках.

Основной функцией клеточного цикла является регуляция процесса деления клеток. Репликация ДНК и цитокинез зависят от нормального функционирования клеточного цикла. Циклины, CDK и их ингибиторы рассматривают как вторичные важнейшие регуляторы процессов карциногенеза, воспаления тканей и заживления ран.