Хром (лат. Cromium), Cr, химический элемент VI группы периодической системы Менделеева, атомный номер 24, атомная масса 51,996; металл голубовато-стального цвета.

Природные стабильные изотопы: 50 Cr (4,31%), 52 Cr (87,76%), 53 Cr (9,55%) и 54 Cr (2,38%). Из искусственных радиоактивных изотопов наиболее важен 51 Cr (период полураспада T ½ = 27,8 суток), который применяется как изотопный индикатор.

Историческая справка. Хром открыт в 1797 году Л. Н. Вокленом в минерале крокоите - природном хромате свинца РbCrО 4 . Название Хром получил от греческого слова chroma - цвет, краска (из-за разнообразия окраски своих соединений). Независимо от Воклена Хром был открыт в крокоите в 1798 году немецким ученым М. Г. Клапротом.

Распространение Хрома в природе. Среднее содержание Хрома в земной коре (кларк) 8,3·10 -3 % . Этот элемент, вероятно, более характерен для мантии Земли, так как ультраосновные породы, которые, как полагают, ближе всего по составу к мантии Земли, обогащены Хромом (2·10 -4 %). Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений Хрома. В основных породах содержание Хрома достигает лишь 2·10 -2 %, в кислых - 2,5·10 -3 %, в осадочных породах (песчаниках) - 3,5·10 -3 %, глинистых сланцах - 9·10 -3 % . Хром - сравнительно слабый водный мигрант; содержание Хрома в морской воде 0,00005 мг/л.

В целом Хром - металл глубинных зон Земли; каменные метеориты (аналоги мантии) тоже обогащены Хромом (2,7·10 -1 %). Известно свыше 20 минералов Хрома. Промышленное значение имеют только хромшпинелиды (до 54% Сr); кроме того, Хром содержится в ряде других минералов, которые нередко сопровождают хромовые руды, но сами не представляют практическое ценности (уваровит, волконскоит, кемерит, фуксит).

Физические свойства Хрома. Хром - твердый, тяжелый, тугоплавкий металл. Чистый Хром пластичен. Кристаллизуется в объемноцентрированной решетке, а = 2,885Å (20 °С); при 1830 °С возможно превращение в модификацию с гранецентрированной решеткой, а = 3,69Å.

Атомный радиус 1,27 Å; ионные радиусы Cr 2+ 0,83Å, Cr 3+ 0,64Å, Cr 6+ 0,52 Å. Плотность 7,19 г/см 3 ; t пл 1890 °С; t кип 2480 °С. Удельная теплоемкость 0,461 кдж/(кг·К) (25°С); термический коэффициент линейного расширения 8,24·10 -6 (при 20 °С); коэффициент теплопроводности 67 вт/(м·К) (20 °С); удельное электросопротивление 0,414 мком·м(20 °С); термический коэффициент электросопротивления в интервале 20-600 °С составляет 3,01·10 -3 . Хром антиферромагнитен, удельная магнитная восприимчивость 3,6·10 -6 . Твердость высокочистого Хрома по Бринеллю 7-9 Мн/м 2 (70-90 кгс/см 2).

Химические свойства Хрома. Внешняя электронная конфигурация атома Хрома 3d 5 4s 1 . В соединениях обычно проявляет степени окисления +2, +3, +6, среди них наиболее устойчивы Сr 3+ ; известны отдельные соединения, в которых Хром имеет степени окисления +1, +4, +5. Хром химически малоактивен. При обычных условиях устойчив к кислороду и влаге, но соединяется с фтором, образуя CrF 3 . Выше 600 °С взаимодействует с парами воды, давая Сr 2 О 3 ; азотом - Cr 2 N, CrN; углеродом - Сr 23 С 6 , Сr 7 С 3 , Сr 3 С 2 ; серой - Cr 2 S 3 . При сплавлении с бором образует борид СrВ, с кремнием - силициды Cr 3 Si, Cr 2 Si 3 , CrSi 2 . Со многими металлами Хром дает сплавы. Взаимодействие с кислородом протекает сначала довольно активно, затем резко замедляется благодаря образованию на поверхности металла оксидной пленки. При 1200 °С пленка разрушается и окисление снова идет быстро. Хром загорается в кислороде при 2000 °С с образованием темно-зеленого оксида Хрома (III) Сr 2 О 3 . Помимо оксида (III), известны других соединения с кислородом, например CrO, СrО 3 , получаемые косвенным путем. Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата Хрома и выделением водорода; царская водка и азотная кислота пассивируют Хром.

С увеличением степени окисления возрастают кислотные и окислительные свойства Хром Производные Сr 2+ - очень сильные восстановители. Ион Сr 2+ образуется на первой стадии растворения Хрома в кислотах или при восстановлении Сr 3+ в кислом растворе цинком. Гидрат закиси Сr(ОН) 2 при обезвоживании переходит в Сr 2 О 3 . Соединения Сr 3+ устойчивы на воздухе. Могут быть и восстановителями и окислителями. Сr 3+ можно восстановить в кислом растворе цинком до Сr 2+ или окислить в щелочном растворе до СrО 4 2- бромом и других окислителями. Гидрооксид Сr(ОН) 3 (вернее Сr 2 О 3 ·nН 2 О) - амфотерное соединение, образующее соли с катионом Сr 3+ или соли хромистой кислоты НСrО 2 - хромиты (например, КСrО 2 , NaCrO 2). Соединения Сr 6+ : хромовый ангидрид СrО 3 , хромовые кислоты и их соли, среди которых наиболее важны хроматы и дихроматы - сильные окислители. Хром образует большое число солей с кислородсодержащими кислотами. Известны комплексные соединения Хрома; особенно многочисленны комплексные соединения Сr 3+ , в которых Хром имеет координационное число 6. Существует значительное число переоксидных соединений Хрома

Получение Хрома. В зависимости от цели использования получают Хром различной степени чистоты. Сырьем обычно служат хромшпинелиды, которые подвергают обогащению, а затем сплавляют с поташом (или содой) в присутствии кислорода воздуха. Применительно к основному компоненту руд, содержащему Сr 3 +, реакция следующая:

2FeCr 2 О 4 + 4K 2 CO 3 + 3,5О 2 = 4К 2 СrО 4 + Fе 2 О 3 + 4СО 2 .

Образующийся хромат калия К 2 СrО 4 выщелачивают горячей водой и действием H 2 SO 4 превращают его в дихромат К 2 Сr 2 О 7 . Далее действием концентрированного раствора H 2 SО 4 на К 2 Сr 2 О 7 получают хромовый ангидрид С 2 О 3 или нагреванием К 2 Сr 2 О 7 с серой - оксид Хрома (III) С 2 О 3 .

Наиболее чистый Хром в промышленного условиях получают либо электролизом концентрированных водных растворов СrО 3 или Сr 2 О 3 , содержащих H 2 SO 4 , либо электролизом сульфата Хрома Cr 2 (SO 4) 3 . При этом Хром выделяется на катоде из алюминия или нержавеющей стали. Полная очистка от примесей достигается обработкой Хрома особо чистым водородом при высокой температуре (1500-1700 °С).

Возможно также получение чистого Хрома электролизом расплавов CrF 3 или СrCl 3 в смеси с фторидами натрия, калия, кальция при температуре около 900 °С в атмосфере аргона.

В небольших количествах Хром получают восстановлением Сr 2 О 3 алюминием или кремнием. При алюминотермическом способе предварительно подогретую шихту из Сr 2 О 3 и порошка или стружек Аl с добавками окислителя загружают в тигель, где реакцию возбуждают поджиганием смеси Na 2 O 2 и Аl до тех пор, пока тигель заполнится Хромом и шлаком. Силикотермически Хром выплавляют в дуговых печах. Чистота получаемого Хрома определяется содержанием примесей в Сr 2 О 3 и в Аl или Si, используемых для восстановления.

В промышленности в больших масштабах производятся сплавы Хрома - феррохром и силикохром.

Применение Хрома. Использование Хрома основано на его жаропрочности, твердости и устойчивости против коррозии. Больше всего Хрома применяют для выплавки хромистых сталей. Алюмино- и силикотермический Хром используют для выплавки нихрома, нимоника, других никелевых сплавов и стеллита.

Значительное количество Хрома идет на декоративные коррозионно-стойкие покрытия. Широкое применение получил порошковый Хром в производстве металлокерамических изделий и материалов для сварочных электродов. Хром в виде иона Cr 3+ - примесь в рубине, который используется как драгоценный камень и лазерный материал. Соединениями Хрома протравливают ткани при крашении. Некоторые соли Хрома используются как составная часть дубильных растворов в кожевенной промышленности; PbCrO 4 , ZnCrO 4 , SrCrO 4 - как художественные краски. Из смеси хромита и магнезита изготовляют хромомагнезитовые огнеупорные изделия.

Соединения Хром (особенно производные Cr 6 +) токсичны.

Хром в организме. Хром - один из биогенных элементов, постоянно входит в состав тканей растений и животных. Среднее содержание Хрома в растениях - 0,0005% (92-95% Хрома накапливается в корнях), у животных - от десятитысячных до десятимиллионных долей процента. В планктонных организмах коэффициент накопления Хрома огромен - 10 000-26 000. Высшие растения не переносят концентрации Хрома выше 3-10 -4 моль/л. В листьях он присутствует в виде низкомолекулярного комплекса, не связанного с субклеточными структурами. У животных Хром участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов (структурный компонент глюкозоустойчивого фактора). Основной источник поступления Хрома в организм животных и человека - пища. Снижение содержания Хрома в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови и снижению чувствительности периферийных тканей к инсулину.

Отравления Хромом, и его соединениями встречаются при их производстве; в машиностроении (гальванические покрытия); металлургии (легирующие добавки, сплавы, огнеупоры); при изготовлении кож, красок и т. д. Токсичность соединений Хрома зависит от их химические структуры: дихроматы токсичнее хроматов, соединения Cr (VI) токсичнее соединений Cr(II), Cr(III). Начальные формы заболевания проявляются ощущением сухости и болью в носу, першением в горле, затруднением дыхания, кашлем и т. д.; они могут проходить при прекращении контакта с Хромом. При длительном контакте с соединениями Хрома развиваются признаки хронические отравления: головная боль, слабость, диспепсия, потеря в весе и других. Нарушаются функции желудка, печени и поджелудочной железы. Возможны бронхит, бронхиальная астма, диффузный пневмосклероз. При воздействии Хрома на кожу могут развиться дерматит, экзема. По некоторым данным, соединения Хрома, преимущественно Cr(III), обладают канцерогенным действием.

Хром, переходный метал, который широко используется в промышленности благодаря своей прочности и устойчивости к нагреву и коррозии. Эта статья даст вам понимание некоторых важных свойств и возможностей использования этого переходного металла.

Хром относится к категории переходных металлов. Это твердый, но хрупкий металл серо-стального цвета с атомным номером 24. Этот блестящий металл помещают в группы 6 периодической таблицы, и обозначают символом «Cr».

Имя хромий является производным от греческого слова хрома, что означает цвет.

Верный своему имени, хром образует несколько интенсивно окрашенных соединений. Сегодня практически весь коммерчески используемый хром извлекается из руды хромита железа или окиси хрома (FeCr2O4).

Свойства хрома

  • Хром является наиболее распространенным элементом на земной коре, но он никогда не происходит в чистом виде. В основном добывается из шахт, таких как хромитовые рудники.
  • Расплавляют хром при температуре 2180 K или 3465°F, а температура кипения составляет 2944 K или 4840°F. его атомный вес 51.996 г/моль, и по шкале Мооса составляет 5,5.
  • Хром встречается во многих окислительных состояниях, таких как +1, +2, +3, +4, +5, и +6, из которых +2, +3 и +6 являются наиболее распространенными, а +1, +4, А +5-это редкое окисление. В +3 степени окисления является наиболее стабильным состоянием хрома. Хром (III) может быть получен растворением элементарного хрома в соляной или серной кислоте.
  • Этот металлический элемент известен своими уникальными магнитными свойствами. При комнатной температуре, он обладает антиферромагнитным упорядочением, которое показано на других металлах при относительно низких температурах.
  • Антиферромагнетизм - это где соседние ионы, которые ведут себя как магниты присоединяются к противоположным или антипараллельным механизмам через материал. В результате, магнитное поле, создаваемое магнитными атомами или ионами, ориентируются в одном направлении отменяя магнитные атомы или ионы, выстроенные в противоположном направлении, так, что материал не проявляет никаких грубых внешних магнитных полей.
  • При температуре выше 38°C, хром становится парамагнетиком, т. е. его привлекает внешне приложенное магнитное поле. Другими словами, хром привлекает внешнее магнитное поле при температуре выше 38°С.
  • Хром не подвергается водородному охрупчиванию, т. е. не становятся хрупкими при воздействии атомарного водорода. Но при воздействии азота, он теряет свою пластичность и становится хрупким.
  • Хром обладает высокой устойчивостью к коррозии. Тонкая защитная оксидная пленка образуется на поверхности металла, когда он вступает в контакт с кислородом в воздухе. Этот слой препятствует диффузии кислорода в основной материал и таким образом, защищает его от дальнейшей коррозии. Этот процесс называется пассивация, пассивация хромом дает устойчивость к воздействию кислот.
  • Существует три основных изотопа хрома, которые называются 52Cr, 53Cr, 54Cr и, из которых 52 CR является наиболее распространенным изотопом. Хром реагирует с большинством кислот, но не взаимодействует с водой. При комнатной температуре он реагирует с кислородом, образуя оксид хрома.

Применение

Производство нержавеющей стали

Хром нашел широкий спектр применения благодаря своей твердости и устойчивости к коррозии. Он используется в основном в трех отраслях промышленности ― металлургической, химической и огнеупорной. Он широко используется для производства нержавеющей стали, так как это предотвращает коррозию. Сегодня это очень важный легирующий материал для сталей. Он также используется для изготовления нихрена, что используется в нагревательных элементах сопротивления из-за его способности выдерживать высокие температуры.

Покрытие поверхностей

Кислый хромат или дихромат используется также для покрытия поверхностей. Обычно это делается с помощью метода гальваники, в котором тонкий слой хрома наносится на металлическую поверхность. Другой способ - это хромирование деталей , через который хроматы используются для нанесения защитного слоя на определенные металлы, такие как алюминий (Al), кадмий (CD), цинк (Zn), серебро, а также магний (MG).

Сохранение древесины и дубление кож

Соли хрома (VI) являются токсичными, поэтому они используются для сохранения древесины от повреждения и разрушения грибком, насекомыми и термитами. Хром (III), особенно хромовые квасцы или сульфат калия используется в кожевенной промышленности, так как он помогает стабилизировать кожу.

Красители и пигменты

Хром также используется для изготовления пигментов или красителей. Желтый хром и хромат свинца, широко использовались в качестве пигмента в прошлом. Из-за экологических проблем, его использование существенно снизилось, а затем, наконец, его заменили свинец и хромовые пигменты. Другие пигменты на основе хрома, красного хрома, оксида зеленого хрома, которые является смесью желтой и Берлинской лазури. Окись хрома используется для придания зеленоватого цвета стекла.

Синтез искусственных рубинов

Изумруды обязаны своим зеленым оттенком хрому. Окись хрома применяется также для производства синтетических рубинов. Естественные рубины корунды или кристаллы оксида алюминия, которые обретают красный оттенок из-за присутствия хрома. Синтетические или искусственные рубины сделаны легированием хрома (III) на синтетических кристаллах корунда.

Биологические функции

Хрома (III) или трехвалентный хром, необходим в организме человека, но в очень небольших количествах. Это, как полагают, играет важную роль в липиде и метаболизме сахара. В настоящее время он используется во многих диетических добавках, которые как утверждают, имеют несколько преимуществ для здоровья, однако, это является спорным вопросом. Биологическая роль хрома не была должным образом проверена, и многие эксперты считают, что это не важно для млекопитающих, в то время как другие рассматривают его как важнейший микроэлемент для человека.

Другое использование

Высокая температура плавления и теплостойкость сделать хром идеальным огнеупорным материалом. Он нашел себе применение в доменных печах, цементных печах, и металлических. Многие соединения хрома применяются в качестве катализаторов для переработки углеводородов. Хром (IV) используется, чтобы произвести магнитные ленты, используемые в аудио и видеокассетах.

Шестивалентный хром или хром (VI) называется токсическим и мутагенным веществом, а хром (IV) является известным своими канцерогенными свойствами. Хромат соли также вызывает аллергические реакции у некоторых людей. Благодаря заботе о здравоохранении и экологическим проблемам, некоторые ограничения были наложены на использование соединений хрома в различных частях мира.

Хром – тугоплавкий, очень твердый металл, обладающий необыкновенной стойкостью к коррозии. Эти уникальные качества и обеспечили ему столь высокую востребованность в промышленности и строительстве.

Потребитель чаще всего знаком не с изделиями из хрома, а с предметами, покрытыми тонким слоем металла. Ослепительный зеркальный блеск такого покрытия привлекателен сам по себе, однако имеет и чисто практическое значение. Хром устойчив к коррозии и способен защитить сплавы и металлы от ржавчины.

И сегодня мы ответим на вопросы о том, хром — это металл или неметалл, и если металл, то какой: черный или цветной, тяжелый или легкий. Также мы расскажем в каком виде хром встречается в природе, и каковы отличия хрома от и других подобных металлов.

Для начала поговорим о том, как выглядит хром, каковы металлы его содержащие, и в чем особенность такого вещества. Хром — это типичный металл серебристо-голубоватого цвета, тяжелый, по плотности превосходит , к тому же относится к категории тугоплавких – температура его плавления и кипения очень велики.

Элемент хром размещается в побочной подгруппе 6 группы в 4 периоде. Близок по свойствам к молибдену и вольфраму, хотя имеет и заметные отличия. Последние чаще всего проявляют лишь высшую степень окисления, в то время как хром проявляет валентность и два, и три, и шесть. Это означает, что элемент образует множество разнообразных соединений.

Именно соединения и дали название самому элементу – от греческого краска, цвет. Дело в том, что его соли и оксиды окрашены в самые разнообразные яркие цвета.

Данное видео расскажет о том, что такое хром:

Особенности и отличия по сравнению с другими металлами

При изучении металла наибольший интерес вызывали 2 свойства вещества: твердость и тугоплавкость. Хром относится к наиболее твердым металлам – занимает пятое место и уступает урану, иридию, вольфраму и бериллию. Однако качество это оказалось невостребованным, поскольку у металла были обнаружены более важные для промышленности свойства.

Хром плавится при 1907 С. Вольфраму или молибдену по этому показателю он уступает, но все равно относится к тугоплавким веществам. Правда, на температуру его плавления сильно влияют примеси.

  • Как многие из металлов, устойчивых к коррозии, хром образует на воздухе тонкую и очень плотную оксидную пленку. Последняя прикрывает доступ кислорода, азота и влаги к веществу, что и делает его неуязвимым. Особенность в том, что это качество он передает своему сплаву с : в присутствии элемента увеличивается потенциал а-фазы железа и в итоге сталь на воздухе тоже покрывается плотной оксидной пленкой. Это и есть секрет стойкости нержавеющей .
  • Являясь тугоплавким веществом, металл повышает и температуру плавления сплава. Жаропрочные и жаростойкие стали обязательно включают долю хрома, причем порой очень большую – до 60%. Еще более сильный эффект оказывает добавка и , и хрома.
  • Хром образует сплавы и со своими собратьями по группе – молибденом и вольфрамом. Их используют для покрытия деталей, где требуется особенно высокая износостойкость в условиях высокой температуры.

Достоинства и недостатки хрома описаны ниже.

Хром как металл (фото)

Достоинства

Как и всякое другое вещество, металл обладает своими достоинствами и недостатками, а их совокупность определяет его использование.

  • Безусловный плюс вещества – коррозийная стойкость и возможность передавать это свойство своим сплавам. Хромовые нержавеющие стали имеют огромное значение, поскольку разом решили целый ряд проблем при строительстве судов, подводных лодок, каркасов зданий и так далее.
  • Устойчивость к коррозии обеспечивают другим способом – покрывают предмет тонким слоем металла. Популярность этого метода очень велика, на сегодня существует не меньше десятка способов хромирования в разных условиях и для получения разного результата.
  • Хромовый слой создает яркий зеркальный блеск, так что к хромированию прибегают не только для целей защиты сплава от коррозии, но и для получения эстетичного внешнего вида. Причем современные методы хромирования позволяют создать покрытие на любом материале – не только на металле, но и на пластике, и на керамике.
  • Получение жаропрочной стали при добавке хрома тоже стоит отнести к достоинствам вещества. Есть множество областей, где металлические детали должны работать при высоких температурах, а железо само по себе такой стойкостью к нагрузкам при температуре не обладает.
  • Из всех тугоплавких веществ он наиболее устойчив к кислотам и основаниям.
  • Плюсом вещества можно считать и его распространенность – 0,02% в земной коре, и относительно простой способ добычи и получения. Конечно, он требует энергозатрат, но не сравнить со сложной , например.

Недостатки

К недостаткам стоит отнести качества, не позволяющие в полной мере использовать все свойства хрома.

  • В первую очередь, это сильная зависимость физических, а не только химических свойств от примесей. Даже температуру плавления металла было сложно установить, так как при наличии ничтожной доли азота или углерода показатель заметно менялся.
  • Несмотря на более высокую электропроводность по сравнению с , хром гораздо меньше используется в электротехнике и стоимость его довольно высока. Изготовить из него что-либо намного труднее: высокая температура плавления и твердость заметно ограничивают применение.
  • Чистый хром является ковким металлом, содержащий примеси становится очень твердым. Чтобы получить хотя бы относительно пластичный металл, его приходится подвергать дополнительной обработке, что, конечно, увеличивает расходы на изготовление.

Структура металла

Кристалл хрома имеет объемно-центрированную кубическую решетку, а=0,28845 нм. Выше температуры в 1830 С можно получить модификацию с гранецентрированной кубической решеткой.

При температуре в +38 С фиксируется фазовый переход второго рода с увеличением объема. При этом кристаллическая решетка вещества не изменяется, а вот его магнитные свойства становятся совершенно другими. До этой температуры – точки Нееля, хром проявляет свойства антиферромагнетика, то есть, является веществом, которое намагнитить практически невозможно. Выше точки Нееля металл становится типичным парамагнетиком, то есть, проявляет магнитные свойства в присутствии магнитного поля.

Свойства и характеристики

В нормальных условиях металл довольно инертен – и благодаря оксидной пленке и просто по природе своей. Однако при повышении температуры вступает в реакцию и с простыми веществами, и с кислотами, и с основаниями. Его соединения очень разнообразны и применяются очень широко. Физические характеристики металла, как упоминалось, сильно зависят от количества примесей. На практике дело имеют с хромом с чистотой до 99,5%. таковы:

  • температура плавления – 1907 С. Эта величина служит границей между тугоплавкими и обычными веществами;
  • температура кипения – 2671 С;
  • твердость по шкале Мооса – 5;
  • электропроводность – 9 · 106 1/(Ом м). По этому показателю хром уступает только серебру, и золоту;
  • удельное сопротивление –127 (Ом мм2)/м;
  • теплопроводность вещества составляет 93,7 Вт/(м K);
  • удельная теплоемкость –45 Дж/(г K).

Теплофизические характеристики вещества несколько аномальны. В точке Нееля, где изменяется объем металла, коэффициент его теплового расширения резко увеличивается и продолжает расти с увлечением температуры. Также аномально ведет себя и теплопроводность – падает в точке Нееля и уменьшается при нагреве.

Элемент относится к числу необходимых: в человеческом организме ионы хрома являются участниками углеводного обмена и процесса регулировки выделения инсулина. Суточная доза составляет 50–200 мкг.

Хром нетоксичен, хотя в виде металлического порошка может вызвать раздражение слизистой. Трехвалентные его соединения тоже относительно безопасны и даже применяются в пищевой и спортивной промышленности. А вот шестивалентные для человека являются ядом, вызывают тяжелые поражения дыхательных путей и ЖКТ.

О производстве и цене на металл хром за кг сегодня мы поговорим далее.

В этом видеоролике будет показано, является ли покрытие хромовым:

Производство

В большом количестве разных минералов – часто сопровождает и . Однако его содержание недостаточное, чтобы иметь промышленное значение. Перспективными являются лишь породы, включающие не менее 40% элемента, поэтому пригодных для добычи минералов немного, в основном это хромовый железняк или хромит.

Добывают минерал шахтным и карьерным методом в зависимости от глубины залегания. А так как руда изначально содержит большую долю металла, то практически никогда не обогащается, что, соответственно, упрощает и удешевляет процесс производства.

Для легирования стали используется около 70% добытого металла. Причем применяют его зачастую не в чистом виде, а в виде феррохрома. Последний можно получить прямо в шахтной электропечи или доменной – так получают углеродистый феррохром. Если требуется соединение с низким содержанием углерода, прибегают к алюминотермическому методу.

  • Этим способом получают и чистый хром, и феррохром. Для этого в плавильную шахту загружают шихту, включающую хромистый железняк, оксид хрома, натриевую селитру и . Первую порцию – запальная смесь, поджигают, а остальную часть шихты загружают в расплав. В конце добавляют флюс – известь, чтоб облегчить извлечение хрома. Плавка занимает около 20 минут. После некоторого охлаждения шахту наклоняют, выпускают шлак, снова возвращают в исходное положение и вновь наклоняют, теперь уже в изложницу выводится и хром, и шлак. После охлаждения полученный блок разделяют.
  • Применяют и другой метод – металлотермической плавки. Проводится она в электропечи в поворачивающейся шахте. Шихту здесь разделяют на 3 части, каждая отличается составом. Этот метод позволяет извлечь большее количество хрома, но, главное – сокращает расход .
  • Если же требуется получить химически чистый металл, прибегают к лабораторному методу: высаживают кристаллы путем электролиза растворов хроматов.

Стоимость металла хром за 1 кг заметно колеблется, поскольку зависит от объема выпускаемого металлопроката – главного потребителя элемента. В январе 2017 года 1 тонна металла оценивалась в 7655 $.

Применение

Категории

Итак, . Основной потребитель хрома – черная металлургия. Связано это со способностью металла передавать такие свои свойства, как стойкость к коррозии и твердость своим сплавам. Причем влияние он оказывает при добавлении в очень небольших количествах.

Все сплавы хрома и железа разделяют на 2 категории:

  • низколегированные – с долей хрома до 1,6%. В этом случае хром добавляет стали прочности и твердости. Если у обычной стали предел прочности составит 400–580 МПа, то та же марка стали с добавкой 1% вещества продемонстрирует предел равный 1000 МПа;
  • высоколегированные – содержат более 12% хрома. Здесь металл обеспечивает сплаву такую же стойкость к коррозии, какой обладает сам. Все нержавеющие стали называют хромовыми, поскольку именно этот элемент обеспечивает это качество.

Низколегированные стали относятся к конструкционным: из них изготавливают многочисленные детали машин – валы, зубчатые колеса, толкатели и так далее. Сфера использования нержавеющей стали огромна: металлические части турбин, корпуса корабля и подводных лодок, камеры сгорания, крепеж любого рода, трубы, швеллеры, уголки, листовая сталь и так далее.

Кроме того, хром увеличивает стойкость сплава к температуре: при содержании вещества от 30 до 66%, изделия из жаропрочной стали может выполнять свои функции при нагреве до 1200 С. Это материал для клапанов поршневых двигателей, для крепежа, для деталей турбин и прочего.

Если 70% хрома уходит на нужды металлургии, то остальные почти 30% используются для хромирования. Суть процесса сводится к нанесению на поверхность предмета из металла тонкого слоя хрома. Используются для этого самые разные методы, многие доступны домашним мастерам.

Хромирование

Хромирование можно разделить на 2 категории:

  • функциональное – его целью является предупредить коррозию изделия. Толщина слоя здесь больше, так что процесс хромирования занимает больше времени – порой до 24 часов. Кроме того, что хромовый слой предупредит ржавление, он заметно увеличивает износостойкость детали;
  • декоративное – хром создает зеркально-блестящую поверхность. Автолюбители и мотогонщики редко когда отказываются от возможности украсить свою машину хромированными деталями. Слой декоративности покрытия намного тоньше – до 0,0005 мм.

Хромирование активно используется в современном строительстве и при изготовлении мебели. Фурнитура с зеркальным покрытием, аксессуары ванной и кухни, кухонная утварь, детали мебели – изделия с хромовым покрытием на редкость популярны. А так как благодаря современным методом хромирования, покрытие можно создать буквально на любом предмете, появились и несколько нетипичные методы применения. Так, например, хромированную сантехнику к тривиальным решениям отнести нельзя.

Хром – металл с очень необычными свойствами, причем его качества востребованы в промышленности. В большинстве своем интерес представляют его сплавы и соединения, что лишь повышает значение металла для народного хозяйства.

Про снятие хрома с металла расскажет видео ниже:

Инструкция

Хром образует вкрапленные массивные руды в ультраосновных горных породах, этот химический элемент более характерен для мантии Земли. Это металл глубинных зон нашей планеты, им также обогащены каменные метеориты.

Известно более 20 минералов хрома, однако промышленное значение имеют только хромшпинелиды. Помимо этого, хром содержится в ряде минералов, сопровождающих хромовые руды, но сами они не представляют практической ценности.

Хром входит в состав тканей растений и животных, в листьях он присутствует в виде низкомолекулярного комплекса, а в участвует в обмене белков, липидов и углеводов. Пониженное содержание хрома в пище ведет к уменьшению скорости роста и снижению чувствительности периферийных тканей.

Хром кристаллизуется в объемноцентрированной решетке. При температуре около 1830°С возможно его превращение в модификацию с гранецентрированной решеткой. Этот элемент химически малоактивен, хром устойчив к кислороду и влаге при обычных условиях.

Взаимодействие хрома с кислородом вначале протекает активно, затем резко замедляется из-за образования окисной пленки на поверхности металла. Пленка разрушается при 1200°С, после чего окисление начинает проходить быстро. При температуре около 2000°С хром , образуя темно-зеленую окись.

Хром легко вступает в реакцию с разбавленными растворами серной и соляной кислот, так получают сульфат и хлорид хрома, при этом выделяется водород. Этот металл образует множество солей с кислородсодержащими кислотами. Хромовые кислоты и их соли являются сильными окислителями.

Сырьем для получения хрома служат хромшпинелиды, их подвергают обогащению, после чего сплавляют с карбонатом калия в присутствии кислорода воздуха. Образующийся при этом хромат калия выщелачивают горячей водой под действием серной кислоты, превращая его в дихромат. Под действием концентрированного раствора серной кислоты из дихромата получают хромовый ангидрид.

В промышленных условиях чистый хром получают электролизом сульфата хрома или концентрированных водных растворов его оксида. Хром при этом выделяется на катоде из алюминия или нержавеющей стали. После чего металл очищают от примесей обработкой чистым водородом при температуре 1500-1700°С. В небольших количествах хром может быть получен восстановлением оксида хрома кремнием или алюминием.

Применение хрома основано на его устойчивости к коррозии и жаропрочности. Его значительное количество идет на декоративные покрытия, порошковый хром используют для производства металлокерамических изделий, а также материалов для сварочных электродов.

Открытие хрома относится к периоду бурного развития химико-аналитических исследований солей и минералов. В России химики проявляли особый интерес к анализу минералов, найденных в Сибири и почти неизвестных в Западной Европе. Одним из таких минералов была сибирская красная свинцовая руда (крокоит), описанная еще Ломоносовым. Минерал исследовался, но ничего, кроме окислов свинца, железа и алюминия в нем не было найдено. Однако в 1797 году Вокелен, прокипятив тонко измельченный образец минерала с поташом и осадив карбонат свинца, получил раствор, окрашенный в оранжево – красный цвет. Из этого раствора он выкристаллизовал рубиново-красную соль, из которой выделили окисел и свободный металл, отличный от всех известных металлов. Вокелен назвал его Хром (Chrome ) от греческого слова - окраска, цвет; правда здесь имелось в виду свойство не металла, а его ярко окрашенных солей .

Нахождение в природе.

Важнейшей рудой хрома, имеющей практическое значение, является хромит, приблизительный состав которого отвечает формуле FeCrO 4.

Он встречается в Малой Азии, на Урале, в Северной Америке, на юге Африки. Техническое значение имеет также вышеназванный минерал крокоит – PbCrO 4 . В природе встречаются также оксид хрома (3) и некоторые другие его соединения. В земной коре содержание хрома в пересчете на металл составляет 0,03%. Хром обнаружен на Солнце, звездах, метеоритах.

Физические свойства .

Хром – белый, твердый и хрупкий металл, исключительно химически стойкий к воздействию кислот и щелочей. На воздухе он окисляется, имеет на поверхности тонкую прозрачную пленку оксида. Хром имеет плотность 7,1 г/см 3 , его температура плавления составляет +1875 0 С.

Получение.

При сильном нагреве хромистого железняка с углем происходит восстановление хрома и железа:

FeO * Cr 2 O 3 + 4C = 2Cr + Fe + 4CO

В результате этой реакции образуется сплав хрома с железом, отличающийся высокой прочностью. Для получения чистого хрома, его восстанавливают из оксида хрома(3) алюминием:

Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr

В данном процессе обычно используют два оксида – Cr 2 O 3 и CrO 3

Химические свойства.

Благодаря тонкой защитной пленке оксида, покрывающей поверхность хрома, он весьма устойчив к воздействию агрессивных кислот и щелочей. Хром не реагирует с концентрированными азотной и серной кислотами, а также с фосфорной кислотой. Со щелочами хром вступает во взаимодействие при t = 600-700 о C. Однако хром взаимодействует с разбавленными серной и соляной кислотами, вытесняя водород:

2Cr + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 3H 2
2Cr + 6HCl = 2CrCl 3 + 3H 2

При высокой температуре хром горит в кислороде, образуя оксид(III).

Раскаленный хром реагирует с парами воды:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

Хром при высокой температуре реагирует также с галогенами, галоген - водородами, серой, азотом, фосфором, углем, кремнием, бором, например:

Cr + 2HF = CrF 2 + H 2
2Cr + N2 = 2CrN
2Cr + 3S = Cr 2 S 3
Cr + Si = CrSi

Вышеуказанные физические и химические свойства хрома нашли свое применение в различных областях науки и техники. Так, например, хром и его сплавы используются для получения высокопрочных, коррозионно-стойких покрытий в машиностроении. Сплавы в виде феррохрома используются в качестве металлорежущих инструментов. Хромированные сплавы нашли применение в медицинской технике, при изготовлении химического технологического оборудования.

Положение хрома в периодической системе химических элементов:

Хром возглавляет побочную подгруппу VI группы периодической системы элементов. Его электронная формула следующая:

24 Cr IS 2 2S 2 2P 6 3S 2 3P 6 3d 5 4S 1

В заполнении орбиталей электронами у атома хрома нарушается закономерность, согласно которой сначала должна была бы заполнятся 4S – орбиталь до состояния 4S 2 . Однако, вследствие того, что 3d – орбиталь занимает в атоме хрома более выгодное энергетическое положение, происходит ее заполнение до значения 4d 5 . Такое явление наблюдается у атомов некоторых других элементов побочных подгрупп. Хром может проявлять степени окисления от +1 до +6. Наиболее устойчивыми являются cоединения хрома со степенями окисления +2, +3, +6.

Соединения двухвалентного хрома.

Оксид хрома (II) CrO – пирофорный черный порошок (пирофорность – способность в тонкораздробленном состоянии воспламенятся на воздухе). CrO растворяется в разбавленной соляной кислоте:

CrO + 2HCl = CrCl 2 + H 2 O

На воздухе при нагревании свыше 100 0 С CrO превращается в Cr 2 O 3 .

Соли двухвалентного хрома образуются при растворении металлического хрома в кислотах. Эти реакции проходят в атмосфере малоактивного газа (например H 2), т.к. в присутствии воздуха легко происходит окисление Cr(II) до Cr(III).

Гидроксид хрома получают в виде желтого осадка при действии раствора щелочи на хлорид хрома (II):

CrCl 2 + 2NaOH = Cr(OH) 2 + 2NaCl

Cr(OH) 2 обладает основными свойствами, является восстановителем. Гидратированный ион Cr2+ окрашен в бледно – голубой цвет. Водный раствор CrCl 2 имеет синюю окраску. На воздухе в водных растворах соединения Cr(II) переходят в соединения Cr(III). Особенно это ярко выражается у гидроксида Cr(II):

4Cr(OH) 2 + 2H 2 O + O 2 = 4Cr(OH) 3

Соединения трехвалентного хрома.

Оксид хрома (III) Cr 2 O 3 – тугоплавкий порошок зеленого цвета. По твердости близок к корунду. В лаборатории его можно получить нагреванием дихромата аммония:

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2

Cr 2 O 3 – амфотерный оксид, при сплавлении со щелочами образует хромиты: Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O

Гидроксид хрома также является амфотерным соединением:

Cr(OH) 3 + HCl = CrCl 3 + 3H 2 O
Cr(OH) 3 + NaOH = NaCrO 2 + 2H 2 O

Безводный CrCl 3 имеет вид листочков темно-фиолетового цвета, совершенно нерастворим в холодной воде, при кипячении он растворяется очень медленно. Безводный сульфат хрома (III) Cr 2 (SO 4) 3 розового цвета, также плохо растворим в воде. В присутствии восстановителей образует фиолетовый сульфат хрома Cr 2 (SO 4) 3 *18H 2 O. Известны также зеленые гидраты сульфата хрома, содержащие меньшее количество воды. Хромовые квасцы KCr(SO 4) 2 *12H 2 O выкристаллизовываются из растворов, содержащих фиолетовый сульфат хрома и сульфат калия. Раствор хромовых квасцов при нагревании становится зеленым благодаря образованию сульфатов.

Реакции с хромом и его соединениями

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома.

  1. Сильно нагреем в пламени горелки на фарфоровой чашке такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 400 0 С с образование темной жидкости. Погреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок. Часть его растворим в воде (она приобретает желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия K 2 CrO 4 и зеленый Cr 2 O 3 .
  2. Растворим 3г порошкообразного бихромата калия в 50мл воды. К одной части добавим немного карбоната калия. Он растворится с выделением CO 2 , а окраска раствора станет светло – желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50% раствор серной кислоты, то снова появится красно – желтая окраска бихромата.
  3. Нальем в пробирку 5мл. раствора бихромата калия, прокипятим с 3мл концентрированной соляной кислоты под тягой. Из раствора выделяется желто-зеленый ядовитый газообразный хлор, потому, что хромат окислит HCl до Cl 2 и H 2 O. Сам хромат превратится в зеленый хлорид трехвалентного хрома. Его можно выделить выпариванием раствора, а потом, сплавив с содой и селитрой, перевести в хромат.
  4. При добавлении раствора нитрата свинца выпадает желтый хромат свинца; при взаимодействии с раствором нитрата серебра образуется красно – коричневый осадок хромата серебра.
  5. Добавим пероксид водорода к раствору бихромата калия и подкислим раствор серной кислотой. Раствор приобретает глубокий синий цвет благодаря образованию пероксида хрома. Пероксид при взбалтывании с некоторым количеством эфира перейдет в органический растворитель и окрасит его в голубой цвет. Данная реакция специфична для хрома и очень чувствительна. С ее помощью можно обнаружить хром в металлах и сплавах. Прежде всего необходимо растворить металл. При длительном кипячении с 30% - ной серной кислотой (можно добавить и соляную кислоту) хром и многие стали частично растворяются. Полученный раствор содержит сульфат хрома (III). Чтобы можно было провести реакцию обнаружения, сначала нейтрализуем его едким натром. В осадок выпадает серо-зеленый гидроксид хрома (III), который растворится в избытке NaOH и образует зеленый хромит натрия. Профильтруем раствор и добавим 30% -ый пероксид водорода. При нагревании раствор окрасится в желтый цвет, так как хромит окислится до хромата. Подкисление приведет к появлению голубой окраски раствора. Окрашенное соединение можно экстрагировать, встряхивая с эфиром.

Аналитические реакции на ионы хрома.

  1. К 3-4 каплям раствора хлорида хрома CrCl 3 прибавьте 2М раствор NaOH до растворения первоначально выпавшего осадка. Обратите внимание на цвет образовавшегося хромита натрия. Нагрейте полученный раствор на водяно бане. Что при этом происходит?
  2. К 2-3 каплям р-ра CrCl 3 прибавьте равный объем 8М раствора NaOH и 3-4 капли 3% р-ра H 2 O 2 . Нагрейте реакционную смесь на водяной бане. Что при этом происходит? Какой осадок образуется, если полученный окрашеный раствор нейтрализовать, добавить к нему CH 3 COOH, а затем Pb(NO 3) 2 ?
  3. Налейте в пробирку по 4-5 капель растворов сульфата хрома Cr 2 (SO 4) 3 , IMH 2 SO 4 и KMnO 4 . Нагрейте реакционную смест в течение нескольких минут на водяной бане. Обратите внимание на изменение окраски раствора. Чем оно вызвано?
  4. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 2-3 капли раствора H 2 O 2 и перемешайте. Появляющиеся синее окрашивание раствора обусловлено возникновением надхромовой кислоты H 2 CrO 6:

Cr 2 O 7 2- + 4H 2 O 2 + 2H + = 2H 2 CrO 6 + 3H 2 O

Обратите внимание на на быстрое разложение H 2 CrO 6:

2H 2 CrO 6 + 8H+ = 2Cr 3+ + 3O 2 + 6H 2 O
синий цвет зеленый цвет

Надхромовая кислота значительно более устойчива в органических растворителях.

  1. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 5 капель изоамилового спирта, 2-3 капли раствора H 2 O 2 и взболтайте реакционную смесь. Всплывающий на верх слой органического растворителя окрашен в ярко-синий цвет. Окраска исчезает очень медленно. Сравните устойчивость H 2 CrO 6 в органической и водных фазах.
  2. При взаимодействии CrO 4 2- и ионами Ba 2+ выпадает желтый осадок хромата бария BaCrO 4 .
  3. Нитрат серебра образует с ионами CrO 4 2- осадок хромата серебра кирпично-красного цвета.
  4. Возьмите три пробирки. В одну из них поместите 5- 6 капель раствора K 2 Cr 2 O 7 , во вторую – такой же объем раствора K 2 CrO 4 , а в третью – по три капли обоих растворов. Затем добавте в каждую пробирку по три капли раствора иодида калия. Объясните полученный результат. Подкислите раствор во второй пробирке. Что при этом происходит? Почему?

Занимательные опыты с соединениями хрома

  1. Смесь CuSO 4 и K 2 Cr 2 O 7 при добавлении щелочи становится зеленой, а в присутствии кислоты становится желтой. Нагревая 2мг глицерина с небольшим количеством (NH 4) 2 Cr 2 O 7 с последующим добавлением спирта, после фильтрования получается ярко-зеленый раствор, который при добавлении кислоты становится желтым, а в нейтральной или щелочной среде становится зеленым.
  2. Поместить в центр консервной банки с термитом «рубиновую смесь» - тщательно растертый и помещенный в алюминиевую фольгу Al 2 O 3 (4,75г) с добавкой Cr 2 O 3 (0,25г). Чтобы банка подольше не остывала, необходимо закопать под верхний обрез в песок, а после поджигания термита и начала реакции, накрыть ее железным листом и засыпать песком. Банку выкопать через сутки. В итоге образуется красно – рубиновый порошок.
  3. 10г бихромата калия растирают с 5г нитрата натрия или калия и 10г сахара. Смесь увлажняют и смешивают с коллодием. Если порошок спрессовать в стеклянной трубке, а затем вытолкнуть палочку и поджечь ее с торца, то начнет выползать «змея», сначала черная, а после охлаждения - зеленая. Палочка диаметром 4 мм горит со скоростью около 2мм в секунду и удлиняется в 10 раз.
  4. Если смешать растворы сульфата меди и дихромата калия и добавить немного раствора аммиака, то выпадет аморфный коричневый осадок состава 4СuCrO 4 * 3NH 3 * 5H 2 O, который растворяется в соляной кислоте с образованием желтого раствора, а в избытке аммиака получается зеленый раствор. Если далее к этому раствору добавить спирт, то выпадет зеленый осадок, который после фильтрации становится синим, а после высушивания – сине-фиолетовым с красными блестками, хорошо видимыми при сильном освещении.
  5. Оставшийся после опытов «вулкан» или «фараоновы змеи» оксид хрома можно регенерировать. Для этого надо сплавить 8г Cr 2 O 3 и 2г Na 2 CO 3 и 2,5г KNO 3 и обработать остывший сплав кипятком. Получается растворимый хромат, который можно превратить и в другие соединения Cr(II) и Cr(VI), в том числе и исходный дихромат аммония.

Примеры окислительно – восстановительных переходов с участием хрома и его соединений

1. Cr 2 O 7 2- -- Cr 2 O 3 -- CrO 2 - -- CrO 4 2- -- Cr 2 O 7 2-

a) (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 Oб) Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
в) 2NaCrO 2 + 3Br 2 + 8NaOH = 6NaBr +2Na 2 CrO 4 + 4H 2 O
г) 2Na 2 CrO 4 + 2HCl = Na 2 Cr 2 O 7 + 2NaCl + H 2 O

2. Cr(OH) 2 -- Cr(OH) 3 -- CrCl 3 -- Cr 2 O 7 2- -- CrO 4 2-

а) 2Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
б) Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O
в) 2CrCl 3 + 2KMnO 4 + 3H 2 O = K 2 Cr 2 O 7 + 2Mn(OH) 2 + 6HCl
г) K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O

3. CrO -- Cr(OH) 2 -- Cr(OH) 3 -- Cr(NO 3) 3 -- Cr 2 O 3 -- CrO - 2
Cr 2+

а) CrO + 2HCl = CrCl 2 + H 2 O
б) CrO + H 2 O = Cr(OH) 2
в) Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
г) Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O
д) 4Сr(NO 3) 3 = 2Cr 2 O 3 + 12NO 2 + O 2
е) Cr 2 O 3 + 2 NaOH = 2NaCrO 2 + H 2 O

Элемент хром в роли художника

Химики довольно часто обращались к проблеме создания искусственных пигментов для живописи. В XVIII-XIXвв была разработана технология получения многих живописных материалов. Луи Никола Воклен в 1797г., обнаруживший в сибирской красной руде ранее неизвестный элемент хром, приготовил новую, замечательно устойчивую краску – хромовую зелень. Хромофором ее является водный оксид хрома (III). Под названием « изумрудная зеленая» ее начали выпускать в 1837 году. Позже Л.Вокелен предложил несколько новых красок: баритовую, цинковую и хромовые желтые. Со временем они были вытеснены более стойкими желтыми, оранжевыми пигментами на основе кадмия.

Зеленая хромовая – самая прочная и светостойкая краска, не поддающаяся воздействию атмосферных газов. Растертая на масле хромовая зелень обладает большой кроющей силой и способна к быстрому высыханию, поэтому с XIX в. ее широко применяют в живописи. Огромное значение она имеет в росписи фарфора. Дело в том, что фарфоровые изделия могут декорироваться как подглазурной, так и надглазурной росписью. В первом случае краски наносят на поверхность лишь слегка обожженного изделия, которое затем покрывают слоем глазури. Далее следует основной, высокотемпературный обжиг: для спекания фарфоровой массы и оплавления глазури изделия нагревают до 1350 – 1450 0 С. Столь высокую температуру без химических изменений выдерживают очень немногие краски, а в старину таких вообще было только две – кобальтовая и хромовая. Черный оксид кобальта, нанесенный на поверхность фарфорового изделия, при обжиге сплавляется с глазурью, химически взаимодействуя с ней. В результате образуются ярко-синие силикаты кобальта. Такую декарированную кобальтом синюю фарфоровую посуду все хорошо знают. Оксид хрома (III) не взаимодействует химически с компонентами глазури и просто залегает между фарфоровыми черепками и прозрачной глазурью «глухим» слоем.

Помимо хромовой зелени художники применяют краски, полученные из волконскоита. Этот минерал из группы монтмориллонитов (глинистый минерал подкласса сложных силикатов Na(Mo,Al), Si 4 O 10 (OH) 2 был обнаружен в 1830г. русским минералогом Кеммерером и назван в честь М.Н Волконской – дочери героя битвы при Бородино генерала Н.Н. Раевского, жены декабриста С.Г.Волконского. Волконскоит представляет собой глину, содержащую до 24% оксида хрома, а так же оксиды аллюминея и железа (III). Непостоянство состава минерала, встечающегося на Урале, в Пермской и Кировской областях, обусловливает его разнообразную окраску – от цвета зимней потемневшей пихты до ярко-зеленого цвета болотной лягушки.

Пабло Пикассо обращался к геологам нашей страны с просьбой изучить запасы волконскоита, дающего краску неповторимо свежего тона. В настоящее время разработан способ получения искусственного волконскоита. Интересно отметить, что по данным современных исследований, русские иконописцы использовали краски из этого материала еще в средние века, задолго до его «официального» открытия. Известной популярностью пользовалась у художников и зелень Гинье (создана в 1837г.), хромоформ которой является гидрат окиси хрома Cr 2 O 3 * (2-3) H 2 O, где часть воды химически связана, а часть адсорбирована. Этот пигмент придает краске изумрудный оттенок.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.