Основанная в 1890 году, компания Chas. A. Blatchford & Sons Ltd создала себе репутацию разработчика, новатора и поставщика услуг протезирования и ортезирования, а также изготовителя инновационных протезных изделий. Компания Chas. A. Blatchford & Sons Ltd откликнулась на потребности молодых активных инвалидов Второй мировой войны, и сконцентрировала свои усилия на разработке протезов с использованием коленных модулей, которые включали в себя идею замковой функции под воздействием веса пользователя при ходьбе. Подкосоустойчивый коленный модуль стал очень популярным и широко распространенным, а сама компания стала лидером отрасли в области протезных инноваций.

Компания Chas. A. Blatchford & Sons Ltd продолжает постоянно развиваться и создавать все более и более сложное протезные системы, включая и модульные компоненты для протезов нижних конечностей. Компания имеет многочисленные награды, в том числе и Королевские за инновационные решения и технологии в отрасли протезостроения, которые становятся международными стандартами в протезировании. Компания Chas. A. Blatchford & Sons Ltd остается преданной созданию новейших протезных систем с использованием микропроцессоров, для достижения плавной, красивой и безопасной походки. Трехкратный победитель Премий Куинса за Технологические Достижение, Премия Принца Уэльского за Инновационные решения и Премия Продукта Тысячелетия, все это достижения компании, кроме того компания имеет патенты на многие протезные компоненты и продолжает концентрироваться на улучшении качества жизни для людей с ограниченными возможностями.

Время не стоит на месте, а вместе с ним развиваемся и мы.

Настоящее время

Ошеломляющий успех применения стопы Эшелон позволил разработчикам состредоточиться на разработкам биометрических проектов, которые могу очень точно подражать функциональности человеческих конечностей. Последняя разработка, отмеченная наградой, это стопа Элан , которая имеет микропроцессорное управление, и способствует безопасной ходьбе по наклонным опорным поверхностям. Кроме того нами создана инновационная протезная система Linx - первая протезная система, у которой имеется единое микропроцесорное согласованное управление коленным модулем и стопой, которые постоянно обмениваются данными между собой для повышения производительности и степени безопасности.

Компания постепенно открывает новые представительства - Германия в 2011 и Норвегия с Турцией в 2015. Штат компании насчитывает более чем 800 человек. Большинство из них - это специализированные клинические врачи, технический персонал и инженеры проектировщики и разработчики, которые входят в глобальную команду поддержки пользователей. Головной офис компании находится в Базингстоке (Великобритания), но наши сотрудники распределены по всему миру и имеют огромное количество экспертных знаний и опыта. Высшее руководство эффективно управляют организацией и таким образом мы сосредоточили всю нашу энергию на помощи людям, делая их жизнь счастливой и активной.

2000-е годы

2000-е годы стали бурным периодом развития инновационных стоп, щиколоток и коленных модулей. Вышли в свет коленные модули KX06, системы с пневмо-гидравлическим гибридным управлением, которые позволили получить у пользователей очень плавную и уверенную походку.

Разработки стоп дали возможность появления и развития стопы Эшелон, и обеспечили плавное перетекающее движение щиколотки, за счет применения гидравлической системы щиколотка/стопа в сочетании с независимыми в работе пружинами стопы из композиционного углеволокна.

1990-е годы

В 1990 году компания начала разработку первого в мире серийного коленного модуля с микропроцессорным управлением. Коленный модуль назывался Интеллектуальный Протех (Intelligent Prosthesis - IP), и индивидуально программировался протезистом для пользователя, с целью получить плавную энергосберегающую походку, за счет применения уникального управляемого микропроцессором гибридного пневмо-гидравлического цилиндра, датчики которого могли опознать ходьбу под уклон, по лестнице, и отслеживть скорость ходьбы, изменяя соответствующим образом характеристики протеза. Другими инновационным решение этого года явился влагозащищенный модуль голени Аквалимб.

1980-е годы

Большое количество наград компания получила вследствие применения новейших композиционных материалов, используя для изготовления коленных модулей композиционное углеволокно, использовавшееся ранее только в авиастроении. Эта технология позволяла создавать новые высокопрочные и легкие протезные системы соответствующие стандартам ISO. Инновации проложили путь к будущему развитию гибких стоп с пружинами из углеволокна в и компонентов голени, которые улучшали рекуперацию энергии в протезной системе и позволили в дальнейшем создать спортивные стопы.

1970-е годы

Впервые в мире Брайаном Блэчфордом была разработана протезная модульная система (Modular Assembly Prosthesis - MAP). Это позволило изготавливать протез из нескольких взаимозаменяемых компонентом. Это позволило значительно расширить контингент пользователей и выполнять их протезирование качественно и в разумных временных интервалах. За это компания была удостоена Королевской премии за инновационные решения в области протезирования.

1950-е и 1960-е годы

The need for better limb controls became more apparent after World War II with the huge increase in young active amputees. Blatchford development resources concentrated on a new knee that would stablise during weight bearing but swing freely during walking, thereby allowing a natural walking pattern. Called the Blatchford Stabilised Knee, this device was to become popular worldwide.

Blatchford was also outgrowing it’s London offices and needed space to grow and more room to increase production to meet demands. In early 1960, the Board started the process of looking for locations outside London and by the late-60s the new company head office and factory was open on Lister Road in Basingstoke – a site that Blatchford still owns and operates today, although the headquarters have since moved a few miles down the road!

Вторая Мировая Война и протезирование

Во время Второй мировой войны В. А. Блэчфорд был консультантом в Министерстве пенсионного обеспечения, с целью улучшения и обеспечения качественной реабилитации жертв войны и воздушных налетов вражеской авиации, а также раненных бойцов возвращающихся с фронта с домой. После основания Государственной службы здравоохранения (NHS) в 1948 компания сконцентрировалась на протезировании нижних конечностей, и компания Chas. A. Blatchford & Sons Ltd стала ведущим поставщиком протезных услуг в Британской Государственной службе здравоохранения начиная с момента ее образования.

Первая Мировая Война

Начало войны в 1914 и ознаменовало собой огромное число жертв, возвращающихся в Великобританию, означала, что была увеличенная потребность в верхней и нижней конечности протезные компоненты. Война действовала, чтобы стимулировать развитие протезов включая улучшения дизайна, качества и производства.

Ранние годы, начало становления компании с 1890 года.

Протез нижней конечности Англси, называемый также еще и Трещеткой был разработан для Первого Маркиза Англси в 1816 после того, как он потерял конечность во время великого Сражения при Ватерлоо в 1889 году. Прозвище "Трещетка" было дано протезу за издаваемый им шум при разгибании в колене!

Данный протез был разработан компанией Chas. A. Blatchford & Sons Ltd сразу после ее основания Часом А. Блэчфордом в Лондоне в 1890 году.

Когда человек теряет конечность, то самая главная его мечта - снова ощутить руку или ногу. И не просто ощутить, а выполнять конечностью все движения, доступные до травмы или болезни: взять чашку, зашнуровать ботинки, идти с опорой на обе ноги. Вернуть утраченные возможности позволяет бионический протез, или сложное устройство, улавливающее нервные импульсы.

Как появились «умные» протезы?

Прототип «живых» протезов придумали и описали фантасты. Это в их произведениях на смену утраченным в сражениях рукам, ногам, глазам и сердцам приходили механические помощники, работающие лучше живых органов. Самый известный пример - Терминатор Камерона, взявший от человека только внешний облик.

Мало кто знает, что прообраз современных протезов относится еще к 19-му веку, когда в деревянную ногу вставляли металлический шар, чтобы сделать нижнюю часть подвижной. Но в 20-м веке эти примитивные устройства заменил бионический протез, созданный на стыке нескольких наук: медицины, инженерии, бионики и электроники.

Ученые разных стран оспаривают первенство в этом вопросе, но факты таковы, что первый действующий бионический протез руки был представлен на ортопедической выставке в немецком городе Лейпциге в 2010 году. За несколько лет, прошедших с этого события, в мире было разработано огромное количество протезов стоп, ног и даже собачьих лап.

Что такое бионика?

Это целая наука, изучающая живую природу и возможность перенесения принципов работы живых существ в промышленные аналоги. Инженеры подсматривают идеи у природы и воплощают их в своих устройствах и сооружениях. В этом смысле бионические протезы - только капля в море. Так, известные всем застежки-липучки всего лишь копируют способ передвижения семян репейника. Присоски заимствованы у пиявок. При конструировании подводных лодок взяли за образец дождевого червя - у него все «отсеки» автономные. Невероятно выносливый металлический ажур Останкинской и Эйфелевой башен - это многократно увеличенная копия трубчатой кости человека. Переплетения металла, которые всех так восхищают - копия строения костной ткани, сочетающей прочность и гибкость.

Даже многоэтажный дом, в котором одновременно живут такие разные семьи, списан с пчелиных сот. Идея жизни разных людей в «ячейках» под одной крышей с общими коммуникациями копирует уклад жизни пчелиной семьи.

Бионические воплощения есть во многих предметах, окружающих нас: автомобильных шинах, самолетах, камерах наблюдения, водных судах и самых обычных

Как работает простейший бионический протез?

После травмы или в ходе болезни Оставшаяся культя состоит из множества тканей: кожи, мышц, костей, сосудов и нервов. Хирург во время операции выводит сохранившийся двигательный нерв на остающуюся крупную мышцу. После заживления операционной раны нерв может передавать двигательный сигнал. Этот сигнал воспринимает датчик, установленный на протезе. В процессе восприятия нервного импульса участвует сложная компьютерная программа.

Поэтому бионический протез может выполнять только те действия, которые в этой программе прописаны: взять ложку, вилку или шарик, нажать клавишу и тому подобное. По сравнению с отсутствием конечности возможность даже ограниченного числа движения - огромный прогресс. Однако даже самые лучшие и совершенные бионические протезы пока не могут выполнить всех тех мелких и точных движений, на которые способна живая конечность.

Как проходит от мозга к протезу?

Чтобы понять, как работают бионические протезы, нужно вспомнить нормальную физиологию человека.

Движения, которые мы совершаем многократно в течение дня, называются автоматическими. Подъем, поход в туалет, умывание, чистка зубов, одевание - все это никаких мыслей у нас не вызывает. Тело делает все что нужно как бы само собой. Но на самом деле начало любого движения - мысль. То есть вначале мы думаем: нужно почистить зубы, сварить кофе, одеться. Мозг посылает сигналы тем мышцам, которые в данном движении задействованы. Мышца может сокращаться или расслабляться только по сигналу мозга. Но процесс проходит настолько быстро и слаженно, что мы не успеваем осознать происходящее. В случае с протезом все сложнее: вначале сигнал о движении считывается электродом, расположенным рядом с выведенным на мышцу нервом, а затем отправляется на процессор внутри протеза. Этот процесс тоже достаточно быстрый, но скорость совершения действий все равно уступает живой конечности.

Искусственные человеческие «запчасти»

С тех пор как был представлен первый бионический протез, наука ушла далеко вперед. Если первые модели были громоздкими, требовали переключателей и могли выполнять только самые простые движения, то современные образцы трудно назвать протезами. Это элегантные инженерные изделия, словно сошедшие с экрана футуристических фильмов.

Протез абсолютно похож на здоровую руку, им можно писать, держать столовые приборы, руль автомобиля или куриное яйцо. Для совершенства движений иногда используются собственные ткани человека с других участков тела - с ног, например.

Идеи из будущего

Инженеры и ученые в своих фантазиях неудержимы. Так, ученые даже смогли «обойти» поврежденную сетчатку глаза, транслируя изображение окружающего прямиком на зрительный нерв. Человек, ослепший вследствие травмы, при сохранности зрительного нерва может рассчитывать на то, что снова увидит родные лица или прекрасный рассвет.

Уже появились устройства, улучшающие работу мозга. Так, с дрожательным параличом или болезнью Паркинсона можно справиться при помощи вживленного электрода.

Людям, ставшими неподвижными вследствие паралича, вживляют электроды прямо в мозг, чтобы они могли управлять искусственными руками и ногами. Для человека, полностью зависящего от окружающих, возможность самообслуживания - несказанная радость.

Обсуждается вопрос о вживляемых под кожу чипах, способных заменить ключи, банковскую карточку и одновременно.

А что у нас?

Наиболее известное предприятие, выпускающее бионические протезы в России, - это Московский протезно-реабилитационный центр. Здесь собирают протезы из модулей, используется продукция Германии, Исландии и России.

Протез каждого человека имеет индивидуальные особенности. Это и уровень ампутации, и вес, и рост, и род занятий, особенности походки и мелких движений, возраст. Используется много самообучающихся модулей. Приспосабливается не только человек к протезу, но и протез к человеку. Самообучающийся модуль, оснащенный встроенным искусственным интеллектом, запоминает особенности походки и маршрута движения. Модуль «учит» не только ширину шага и нагрузку на конечность, но и запоминает количество и высоту ступеней, выбоин и ямок на пути. Модули копируют действия мозга, подготавливающего шаг или другое движение.

Сколько стоит «живой» протез?

Стоимость бионического протезирования пока высока и может достигать в сложных случаях миллионов рублей. Однако возврат к полноценной жизни трудно оценить в материальном исчислении. По сути, установка бионических протезов - единственная возможность для инвалида вернуться к нормальной жизни: строить и осуществлять планы, содержать семью, добиваться карьерных вершин.

Самое главное - это вернуться в сообщество здоровых, надеющихся на себя людей. Люди с «живыми» протезами продолжают вести привычный образ жизни, танцуют и даже получают спортивные награды. То есть протез становится частью человека настолько, что трудно отличить действия живых мышц от их бионических аналогов.

Протезирование: этапы развития

По сравнению с обычным бионический протез кисти - настоящий прорыв. Совсем недавно человек, потерявший кисть, мог рассчитывать только на две возможности: между локтевой и лучевой костью формировался кожный лоскут, чтобы человек мог захватывать крупные предметы, или к культе присоединялся крюк. И то, и другое было неудобно и малоэстетично. Сегодня даже формирование культи под будущий протез начинается еще в операционной. С первых дней послеоперационного периода с пострадавшим работает протезист, помогая подобрать наилучшее сочетание деталей. Культю формируют и тренируют, а части будущего протеза максимально приспосабливают к оставшимся возможностям. С кожей соприкасается нежная манжета из силикона со встроенными чипами. Потертостей от современных протезов не бывает. Программа для каждого изделия разрабатывается индивидуально, в зависимости от того, чем человек занимается. Задача - максимальное восстановление функции.

Помощь инвалидам

Человек, утративший конечность, в обязательном порядке проходит медико-социальную экспертизу. Одновременно с установлением для каждого разрабатывается программа социальной реабилитации. Реабилитация предполагает использование в первую очередь технических средств, способствующих возвращению человека к труду. Все бионические протезы конечностей входят в обязательный перечень таких технических средств. У человека есть выбор: в рамках программы реабилитации получить готовое изделие или приобрести его самостоятельно с последующим получением денежной компенсации. Размер компенсации рассчитывается по средней стоимости аналогичных протезных изделий.

Над чем трудятся разработчики?

Современные бионические протезы рук отлично выполняют тонкие движения, но человек не получает от них тех ощущений, к которым привык. Так, протезом можно погладить человека по волосам, но нельзя ощутить тепло кожи головы и мягкость волос. Устранением именно этого недостатка занимаются сейчас ученые. Специалисты уже научились сращивать кости с титаном, а датчики движений и чувств соединять непосредственно с живым нервом. Так, бионическая рука полностью заменяет живую, и человек получает которых был лишен много лет. Непосредственное соединение нервов и мышц с техническим приспособлением намного увеличивает скорость движений, приближая ее к природной.

Из каких частей состоит бионическая нога?

Современный бионический протез ноги включает несколько обязательных элементов, таких как:

  • силиконовая манжета со встроенными датчиками;
  • опора - титановый стержень, формой напоминающий голень;
  • шарнирный модуль с микродвижками и процессором;
  • блок искусственного интеллекта, обрабатывающий все поступающие сигналы.

Последние модели протезов ведущих немецких компаний имеют особое покрытие, очень похожее на кожу. Синтетическая кожа имеет двойное назначение: защищает детали протеза от влаги и выполняет косметическую функцию. Протез с покрытием можно не снимать, принимать с ним душ и ходить по лужам.

Немного фантазии

Сегодня живут на одной с нами планете несколько человек, имеющих 2 и даже 3 бионических протеза одновременно. Изобретена синтетическая кожа, меняющая жесткость. Придуманы экзоскелеты, помогающие ходить парализованным людям. Разрабатываются изделия, управляемые силой мысли. Проводятся эксперименты по выращиванию нервов в микроканалах. Теоретически недалек тот день, когда можно будет вырастить нерв нужной длины. Ученые пытаются стереть грань между живой природой и техническим устройством. Количество движений, совершаемых бионическими протезами, постоянно увеличивается, возрастает и их сложность.

Все это дает большие надежды на то, что человек станет сильнее болезни.

Протезирование конечностей становится рутинной процедурой, возвращающей человека в привычное русло. Возможно, наступит тот день, когда любую часть человеческого тела можно будет заменить искусственной. По крайней мере, очень хочется в это верить.

За последние несколько лет хирургия и, в частности, протезирование достигли невероятных высот. В Австралии, например, разрабатывают нейрокомпьютерный интерфейс, который позволит парализованным пациентам контролировать роботизированные протезы, а в Великобритании придумали искусственную руку, которая видит предметы перед собой.

Такие разработки, безусловно, облегчают жизнь людям, вынужденным носить искусственные конечности. Но когда же были изобретены первые протезы — 200 лет назад? В эпоху средневековья? На самом деле, намного раньше: история ампутации конечностей и последующего протезирования восходит к античности.

Первые пробы

Войны в Древней Греции не щадили солдат: около 80% раненых погибали в день сражения, а из оставшихся 20% - каждый третий умирал от полученных травм, уже вернувшись домой.

Конечно, замена потерянных конечностей становилась одной из самых важных задач медицины. В Древней Греции начали применять ампутацию еще в конце V — начале IV века до нашей эры. Судя по Гиппократовскому корпусу «О вправлении суставов», это были самые простые ампутации кистей рук, стоп и пальцев. Кроме того, в своем труде Гиппократ предостерегает от удаления всей руки или ноги.

Примерно в это же время начала развиваться ортопедическая хирургия, и у древних греков появились первые протезы, которые стали альтернативой костылям и палкам для опоры. Например, Геродот — древнегреческий «отец истории» — в своем труде рассказывает, как во время греко-персидской войны (499−449 гг. до н.э.) персидский гадатель Гегесистрат, заключенный спартанцами в тюрьму, ампутировал себе часть ноги и смастерил взамен деревянный аналог.

Древние египтяне использовали похожую технологию. Археологам удалось обнаружить в гробницах искусственные пальцы ног из дерева. Как говорят исследователи, признаки износа демонстрируют их жизненную необходимость, а не эстетическую функцию.

Хирургия как область медицины значительно продвинулась в эпоху Эллинизма (323−31 гг. до н.э.). Успехи были в значительной мере достигнуты благодаря практикующим врачам из Александрии, которые глубоко изучали анатомию человека и даже проводили вивисекцию преступников, приговоренных к смертной казни.

Это помогло древнегреческим медикам понять систему кровообращения, в частности — как остановить кровотечение. Они обнаружили, что ампутацию можно проводить медленнее и осторожнее, чем раньше. И это понижало риск смерти пациента на операционном столе.

Детали из железа и бронзы

На юге Италии, в городе Капуя, археологи нашли в гробнице искусственную ногу, датированную концом IV — началом III века до нашей эры. Она имела деревянную сердцевину, покрытую бронзой. Протез крепился на место при помощи кожаного пояса, который, как полагают исследователи, позволял легче двигаться.

Еще один пример — римский генерал Марк Сергий Сил. Он потерял правую руку во время Второй Пунической войны (218−201 гг. до н.э.). Вместо того, чтобы уйти в отставку генерал смог достать железную руку, которую впоследствии использовал, чтобы держать щит, научившись управлять мечом левой рукой.

Протезы, обнаруженные и изученные археологами, показывают, что, скорее всего, они были спроектированы и изготовлены с учетом индивидуальных особенностей и предпочтений человека. Вполне возможно, что их создавали те же ремесленники, которые делали для воинов оружие и доспехи.

Темные пятна истории

В истории протезирования есть еще загадки: в частности, исследователи до сих пор не знают, как искусственные конечности вживлялись солдатам — в медицинских трактатах нет упоминания об этих процедурах.

Кстати, после окончания эпохи и вплоть до XVI века протезы практически никак не модифицировались, пока французский королевский хирург Амбруаз Паре не придумал механическую версию искусственных конечностей, которые могли сгибаться как настоящие.

Здоровые зубы и белоснежная улыбка всегда были неотъемлемым атрибутом красоты. К сожалению, сохранить их хотя бы до зрелого возраста удается не всем. Заболевания полости рта и травмы нередко приводят к потере одного или нескольких зубов. Спасти улыбку и восстановить функцию зубного ряда можно с помощью съемного или несъемного протеза.

Степанов Андрей Васильевич - стоматолог-ортопед клиники «Дентокласс».

История ортопедической стоматологии - от истоков к современности

Ортопедическая стоматология зародилась не в прошлом и даже не в позапрошлом веке. Попытки восстановить утраченные зубы предпринимались людьми с глубокой древности. К примеру, достоверно известно, что самый старый съемный протез был изготовлен более 4000 лет назад. Его обнаружили археологи при обследовании гробницы фараона Хефреса. По свидетельству ученых, выполнявших вскрытие пирамиды, изделие было выполнено из дерева.

Прототипом сегодняшнего мостовидного протеза можно считать другую археологическую находку. Во время раскопок Сидона в захоронении женщины, жившей в III-IV вв. до нашей эры, ученые обнаружили искусственные зубы, скрепленные между собой золотой проволокой. Широкую популярность протезирование приобрело и в Римской империи. При этом нужно сказать, что изготовлением протезов занимались не врачи, а ювелиры, ремесленники, резчики по кости и металлу. И только в XI веке арабский хирург Абулькасим признал зубопротезирование отдельной отраслью медицины.

Зубные протезы, изготовленные мастерами этрусков.

Что касается научного подхода, то его основоположником многие считают Пьера Фошара, которые не только разработал несколько новых методик протезирования, но и опубликовал многочисленные труды по данной теме. К примеру, в руководстве по зубоврачеванию, которое было написано в 1728 году, подробно рассматривается методика крепления протезов с помощью пружин. Кроме того, именно ему принадлежит идея объединения зубного протеза и небного обтуратора.

Следующий знаковый этап в развитии протезирования пришелся на начало XIX века. С этого момента стоматологи-ортопеды начинают восстанавливать утраченные зубы протезами, изготовленными из фарфора. С середины этого же века в зубопротезировании применяют вулканизированный каучук. При этом нужно сказать, что использовали его более ста лет - до того момента, когда появились акриловые пластмассы. Будучи более удобными в использовании, гигиеничными и дешевыми, они быстро вытеснили каучук из стоматологии.

Современное протезирование

На действующем этапе развития зубопротезирования врачи используют несколько методик восстановления зубов. К примеру, съемные протезы могут быть бюгельными, частичными или полными. Несъемные также делят на несколько групп - металлокерамические конструкции, фарфоровые и композитные виниры, имплантаты. Все они изготавливаются индивидуально и в обязательном порядке учитывают особенности строения челюсти конкретного человека.

Преимущество современных зубных протезов состоит в удачном сочетании функциональности и эстетичности. Искусственные зубы внешне не отличаются от настоящих и позволяют полностью восстановить жевательную функцию зубного ряда.

Понравилось? Расскажите друзьям!