«Центры взрослого мозга представляют собой нечто установленное, законченное и неизменное. Все может умереть, ничто не может быть восстановлено», – писал в 1913 году гистолог Рамон-и-Кахаль, изучав­­ший клетки мозга.

«Эта идея стала одной из главных догм нейробиологии, – рассказывает нейропсихолог, ведущий научный сотрудник Научного центра психического здоровья Маргарита Алфимова. – Она казалась логичной, ведь в мозге действуют устоявшиеся цепи нейронов, и образование новых клеток могло бы эту систему дестабилизировать.

В неизменность клеток мозга многие верили настолько, что проигнорировали в 1965 году открытие Джозефа Альтмана и Гопала Д. Даса – нейрогенез, то есть процесс образования новых нейронов, в гиппокампе крыс. Только в 1998 году Петер Эриксон убедительно доказал существование нейрогенеза в мозге человека».

Что мы знаем сегодня? Рождение новых нейронов в мозге человека происходит в течение всей жизни, немного замедляясь после 40 лет. Причем нейроны рождаются не во всем мозге, а только в двух участках – в зубчатой извилине гиппокампа и в обонятельной системе.

«Особый интерес ученых вызывает гиппокамп, поскольку эта область мозга связана с памятью, с эмоциями, – уточняет Маргарита Алфимова. – Считается, что каждый день обновляется около 700 нейронов зубчатой извилины. Часть старых отмирает, а новые встраиваются в устоявшиеся сети».

Депрессия, алкоголизм и сильный стресс замедляют образование новых нейронов

Какую пользу можно извлечь из этих процессов?

«Прежде всего, – объясняет Маргарита Алфимова, – биологи исследуют возможность трансплантации новых нейронов в поврежденные зоны мозга, что может быть актуально для лечения болезни Альцгеймера и других болезней, связанных с дегенерацией и травмами мозга. То, что нервная ткань после трансплантации приживается и стимулирует регенерацию мозга, например, после инсультов, уже доказано на животных».

Кроме того, сейчас активно изучается влияние нейрогенеза на память и познавательные процессы, на распознавание паттернов, на возможность ориентироваться в пространстве и действовать с учетом контекста.

Исследования показывают, что умеренная физическая нагрузка усиливает нейрогенез и улучшает когнитивные функции. Такой же эффект оказывает увеличение интервалов между приемами пищи. А вот депрессия, алкоголизм и сильный стресс замедляют образование новых нейронов.

Так что смысл, который мы вкладываем в призыв сохранять самообладание – «Успокойся, нервные клетки не восстанавливаются», – остается прежним. Но, исходя из современных научных данных, корректно будет выразиться иначе: «Успокойся, ты замедляешь нейрогенез».

Десятилетия дискуссий, давно вошедшие в обиход поговорки, эксперименты на мышах и овцах - но все-таки может ли мозг взрослого человека образовывать новые нейроны взамен утраченных? И если может, то как? А если не может - почему?

Порезанный палец заживет за несколько дней, сломанная кость срастется. Мириады эритроцитов сменяют друг друга короткоживущими поколениями, растут под нагрузкой мышцы: наш организм обновляется постоянно. Долгое время считалось, что на этом празднике перерождения остается один аутсайдер - головной мозг. Его важнейшие клетки, нейроны, слишком высокоспециализированны, чтобы делиться. Количество нейронов падает год от года, и хотя они так многочисленны, что потеря нескольких тысяч штук не оказывает заметного влияния, способность восстанавливаться после повреждений не помешала бы и мозгу. Однако ученым долго не удавалось обнаружить присутствия новых нейронов в зрелом мозге. Впрочем, не было и достаточно тонких инструментов, позволяющих найти такие клетки и их «родителей».

Ситуация поменялась, когда в 1977 году Майкл Каплан и Джеймс Хиндс использовали радиоактивный [ 3 H]-тимидин, способный встраиваться в новую ДНК. Ее цепочки активно синтезируют делящиеся клетки, удваивая свой генетический материал и заодно накапливая радиоактивные метки. Месяц спустя после введения препарата взрослым крысам ученые получали срезы их головного мозга. Авторадиография показала, что метки находятся в клетках зубчатой извилины гиппокампа. Все-таки они размножаются, и «взрослый нейрогенез» существует.

О людях и мышах

В ходе этого процесса зрелые нейроны не делятся, как не делятся и клетки мышечных волокон, и эритроциты: за их образование отвечают различные стволовые клетки, сохраняющие «наивную» способность размножаться. Один из потомков разделившейся клетки-предшественника становится молодой специализированной клеткой и дозревает до полнофункционального взрослого состояния. Другая дочерняя клетка остается стволовой: это позволяет поддерживать популяцию клеток-предшественников на постоянном уровне, не жертвуя обновлением окружающей их ткани.

Клетки-предшественницы нейронов нашлись в зубчатой извилине гиппокампа. Позже их обнаружили и в других частях головного мозга грызунов, в обонятельной луковице и подкорковой структуре стриатума. Отсюда молодые нейроны могут мигрировать в нужную область мозга, уже на месте дозревать и встраиваться в существующие системы связей. Для этого новая клетка доказывает соседям свою полезность: ее способность к возбуждению повышена, так что даже слабое воздействие заставляет нейрон выдавать целый залп электрических импульсов. Чем активнее клетка, тем больше связей она образует с соседями и тем быстрее стабилизируются эти связи.

Взрослый нейрогенез у людей удалось подтвердить лишь пару десятилетий спустя с помощью сходных радиоактивных нуклеотидов - в той же зубчатой извилине гиппокампа, а затем и в стриатуме. Обонятельная луковица у нас, по всей видимости, не обновляется. Однако насколько активно проходит этот процесс и как он меняется во времени, точно не ясно и сегодня.

Например, исследование 2013 года показало, что до глубокой старости каждый год обновляется примерно 1,75% клеток зубчатой извилины гиппокампа. А в 2018-м появились результаты, согласно которым образование нейронов здесь прекращается уже в подростковом возрасте. В первом случае измерялось накопление радиоактивных меток, а во втором использовались красители, избирательно связывающиеся с молодыми нейронами. Сложно сказать, какие выводы ближе к истине: трудно сопоставить редкие результаты, полученные совершенно разными методами, а тем более экстраполировать на человека работы, выполненные на мышах.

Проблемы моделей

Большинство исследований взрослого нейрогенеза проводят на лабораторных животных, которые быстро размножаются и просты в содержании. Такое сочетание признаков встречается у тех, кто имеет небольшие размеры и живет совсем недолго, - у мышей и крыс. Но в нашем мозге, который лишь заканчивает созревание к 20 годам, все может происходить совершенно иначе.

Зубчатая извилина гиппокампа - это часть коры головного мозга, хотя и примитивная. У нашего вида, как и у других долгоживущих млекопитающих, кора развита заметно сильнее, чем у грызунов. Возможно, нейрогенез охватывает весь ее объем, реализуясь по какому-нибудь собственному механизму. Прямых подтверждений этому пока нет: исследования взрослого нейрогенеза в коре больших полушарий не выполнялись ни на людях, ни на других приматах.

Зато проведены такие работы с копытными. Изучение срезов мозга новорожденных ягнят, а также овец чуть постарше и половозрелых особей не нашло делящихся клеток - предшественников нейронов в коре больших полушарий и подкорковых структурах их мозга. С другой стороны, в коре животных даже старшего возраста обнаружились уже родившиеся, но недозревшие молодые нейроны. Скорее всего, они готовы в нужный момент завершить специализацию, образовав полноценные нервные клетки и заняв место погибших. Конечно, это не совсем нейрогенез, ведь новых клеток при таком процессе не образуется. Однако интересно, что такие молодые нейроны присутствуют в тех областях мозга овец, которые у человека отвечают за мышление (кора больших полушарий), интеграцию сенсорных сигналов и сознание (клауструм), эмоции (миндалевидное тело). Велика вероятность, что и у нас в аналогичных структурах найдутся незрелые нервные клетки. Но зачем они могут понадобиться взрослому, уже обученному и опытному мозгу?

Гипотеза о памяти

Число нейронов так велико, что частью из них можно безболезненно пожертвовать. Однако, если клетка выключилась из рабочих процессов, это еще не значит, что она умерла. Нейрон может перестать генерировать сигналы и реагировать на внешние стимулы. Накопленная им информация не пропадает, а «консервируется». Этот феномен позволил Кэрол Барнс, нейрофизиологу из Аризонского университета, выдвинуть экстравагантное предположение о том, что именно так мозг накапливает и разделяет воспоминания о различных периодах жизни. По мнению профессора Барнс, время от времени в зубчатой извилине гиппокампа появляется группа молодых нейронов для записи нового опыта. Через некоторое время - недели, месяцы, а может, и годы - все они переходят в состояние покоя и сигналов больше не подают. Именно поэтому память (за редчайшими исключениями) не сохраняет ничего, что происходило с нами до третьего года жизни: доступ к этим данным в какой-то момент оказывается заблокирован.

Учитывая, что зубчатая извилина, как и гиппокамп в целом, отвечает за перенос информации из кратковременной памяти в долговременную, такая гипотеза выглядит даже логичной. Однако требуется еще доказать, что гиппокамп взрослых людей действительно образует новые нейроны, причем в достаточно большом количестве. Для проведения экспериментов имеется лишь весьма ограниченный набор возможностей.

История со стрессом

Обычно препараты человеческого мозга получают во время вскрытия или нейрохирургических операций, как при височной эпилепсии, припадки которой не поддаются медикаментозному лечению. Оба варианта не позволяют проследить, как интенсивность взрослого нейрогенеза влияет на работу мозга и поведение.

Такие эксперименты проводились на грызунах: образование новых нейронов подавлялось направленным гамма-излучением или выключением соответствующих генов. Это воздействие повышало склонность животных к депрессии. Неспособные к нейрогенезу мыши почти не радовались подслащенной воде и быстро оставляли попытки держаться на плаву в заполненной водой емкости. Содержание в их крови кортизола - гормона стресса - оказывалось даже выше, чем у мышей, стрессированных обычными методами. Они были более склонны впадать в зависимость от кокаина и хуже восстанавливались после инсульта.

К этим результатам стоит сделать одно важное замечание: возможно, что показанная связь «меньше новых нейронов - острее реакция на стресс» замыкается сама на себя. Неприятные события жизни снижают интенсивность взрослого нейрогенеза, из-за чего животное становится чувствительнее к стрессам, поэтому скорость образования нейронов в мозге падает - и так далее по кругу.

Бизнес на нервах

Несмотря на отсутствие точных сведений о взрослом нейрогенезе, уже появились бизнесмены, готовые построить на нем доходное дело. Еще с начала 2010-х компания, продающая воду из родников Канадских Скалистых гор, выпускает бутылки Neurogenesis Happy Water . Утверждается, что напиток стимулирует образование нейронов за счет содержащихся в нем солей лития. Литий в самом деле считается полезным для мозга препаратом, хотя в таблетках его куда больше, нежели в «счастливой воде». Действие чудо-напитка проверили нейробиологи из Университета Британской Колумбии. 16 дней они поили крыс «счастливой водой», а контрольную группу - простой, из-под крана, а потом рассмотрели срезы зубчатых извилин их гиппокампа. И хотя у грызунов, пивших Neurogenesis Happy Water , новых нейронов появилось на целых 12% больше, их общее число оказалось невелико и говорить о статистически достоверном преимуществе нельзя.

Пока мы можем лишь констатировать, что взрослый нейрогенез в головном мозге представителей нашего вида однозначно существует. Возможно, он продолжается до глубокой старости, а может, только до подросткового возраста. На самом деле это не так важно. Интереснее то, что рождение нервных клеток в зрелом мозге человека вообще происходит: от кожи или от кишечника, обновление которых идет постоянно и интенсивно, главный орган нашего тела отличается количественно, но не качественно. И когда сведения о взрослом нейрогенезе сложатся в цельную детальную картину, мы поймем, как перевести это количество в качество, заставив мозг «ремонтироваться», восстанавливать работу памяти, эмоций - всего того, что мы зовем своей жизнью.

В научном сообществе довольно долго господствовала теория о статичности и невозобновляемости нервной системы. Было принято считать, что на протяжении всей жизни мозг человека оперирует тем количеством нейронов (нервных клеток), которые ему достались при рождении. Широкое распространение получил миф о том, что нервные клетки не восстанавливаются, который подогревался информацией о закономерной гибели нейронов с первых дней жизни.

Дело в том, что новые нервные клетки не появляются в ходе деления, как это происходит в других органах и тканях организма, а образуются в ходе нейрогенеза. Этот процесс начинается с деления клеток-предшественников нейронов (или нейронных стволовых клеток). Далее они мигрируют, дифференцируются и образуют полностью функционирующий нейрон. Нейрогенез наиболее активен во время внутриутробного развития.

Впервые сообщение об образовании новых нервных клеток во взрослом организме млекопитающих появилось ещё в 1962 году. Но тогда результаты работы Джозефа Олтмана (Joseph Altman), опубликованные в журнале Science, не были восприняты всерьёз, и признание нейрогенеза отложилось почти на двадцать лет.

С тех пор неоспоримые доказательства существования этого процесса во взрослом организме были получены для певчих птиц, грызунов, амфибий и некоторых других животных. И только в 1998 году нейробиологам во главе с Питером Эрикссоном (Peter Eriksson) и Фредом Гейгом (Fred Gage) удалось продемонстрировать образование новых нейронов в гиппокампе человека, чем было доказано существование нейрогенеза в головном мозге взрослых людей.

Сейчас исследование нейрогенеза является одним из самых приоритетных направлений в нейробиологии. В частности, учёные и медики видят в нём большой потенциал для лечения дегенеративных заболеваний нервной системы, таких как болезнь Альцгеймера или болезнь Паркинсона.

Вплоть до настоящего момента считалось, что нейрогенез в головном мозге взрослых млекопитающих локализован в двух областях, которые связанны с памятью (гиппокамп) и обонянием (обонятельные луковицы).

Но в последние несколько лет нейробиологи из Университета Мичигана (MSU) впервые показали, что мозг млекопитающих на протяжении периода полового созревания наращивает количество клеток в миндалевидном теле (миндалине) и взаимосвязанных с ним областях. Причём происходит как увеличение числа нейронов, так и клеток нейроглии – вспомогательных клеток нервной ткани.

Миндалины реагируют на зрительные, слуховые, обонятельные и кожные раздражения, а также на сигналы внутренних органов. На основе полученной информации они участвуют в формировании эмоциональных и двигательных реакций, оборонительного и полового поведения, и многого другого. Миндалевидное тело играет важную роль в восприятии неких социальных ориентиров. Например, хомяки с его помощью анализируют запах феромонов, что обеспечивает общение между животными, а люди воспринимают мимику и язык тела друг друга на основе зрительной информации.

«Мы предположили, что новые нейроны, которые добавляются в эти области головного мозга в период полового созревания, могут оказывать непосредственное влияние на репродуктивную функцию взрослых особей», ‒ рассказывает ведущий автор исследования Мэгги Мор (Maggie Mohr).



Для проверки своей гипотезы Мор в сотрудничестве с профессором психологии Шерил Сиск (Cheryl Sisk) вводили юным самцам сирийских хомячков (Mesocricetus auratus) химический маркер, с помощью которого можно отслеживать появление и дальнейшие перемещения новых нейронов. Инъекции делали с 28 по 49 день после рождения. Через четыре недели после последнего введения препарата, при достижении половой зрелости грызунам дали возможность спариться, после чего проанализировали их мозг.

Согласно данным, опубликованным в журнале PNAS, новые нервные клетки, появившиеся в период полового созревания, были доставлены прямиком в миндалины и смежные области мозга хомячков. А некоторые из них были включены в нейронные сети, которые обеспечивают социальное и сексуальное поведение.

В официальном пресс-релизе исследователи подчёркивают, что им не только удалось доказать выживание новых клеток в зрелом возрасте, но и показать, что они включаются в работу мозга и предназначены для адаптации к «взрослой» жизни.

Авторы работы настроены весьма оптимистично и надеются, что их работа прольёт свет и на человеческий мозг. Ведь, несмотря на более сложные взаимоотношения между людьми, функции миндалин у нас и хомячков весьма схожи. Вполне вероятно, что именно процесс образования новых нейронов в период полового созревания оказывается решающим в способности людей социализироваться во взрослом человеческом обществе.

У человека насчитывается больше ста миллиардов нейронов. Каждый из них состоит из отростков и тела - как правило, из нескольких дендритов, коротких и разветвленных, и одного аксона. Посредством отростков осуществляется контакт нейронов друг с другом. При этом формируются круги и сети, по которым происходит циркуляция импульсов. С давних времен ученых волнует вопрос, восстанавливаются ли нервные клетки.

В течение всей жизни в мозг теряет нейроны. Эта гибель запрограммирована генетически. Однако в отличие от прочих клеток, они не имеют способности делиться. В таких случаях начинает действовать другой механизм. Функции потерянных клеток начинают выполнять близлежащие, которые, увеличиваясь в размерах, начинают формировать новые связи. Таким образом, компенсируется бездействие погибших нейронов.

Ранее было принято считать, что не восстанавливаются. Однако это утверждение опровергается современной медициной. Несмотря на отсутствие способности к делению, нервные клетки восстанавливаются и развиваются в мозге даже взрослого человека. Кроме того, нейроны могут регенерировать потерянные отростки и связь с прочими клетками.

Самое значительное скопление нервных клеток располагается в головном мозге. За счет отходящих многочисленных отростков формируются контакты с соседними нейронами.

Черепные, вегетативные и спинномозговые окончания и нервы, обеспечивающие проведение импульсов к тканям, внутренним органам и конечностям, образуют периферическую часть

В здоровом организме является системой слаженной. Однако если в сложной цепи одно из звеньев перестает выполнять свои функции, может страдать все тело. Тяжелые мозговые поражения, сопровождающие болезнь Паркинсона, инсульт, приводят к ускоренной потере нейронов. В течение многих десятилетий ученые пытаются ответить на вопрос, как нервные клетки восстанавливаются.

Сегодня известно, что зарождение нейронов в мозге взрослых млекопитающих может осуществляться при помощи особых стволовых клеток (так называемых нейрональных). На данный момент установлено, что нервные клетки восстанавливаются в субвентрикулярной области, гиппокампе (зубчатой извилине) и коре мозжечка. В последнем участке отмечается наиболее интенсивный нейрогенез. Мозжечок участвует в приобретении и сохранении информации о навыках автоматизированных и бессознательных. Например, разучивая движения танца, человек постепенно перестает задумываться о них, совершая их автоматически.

Наиболее интригующим ученые считают регенерацию нейронов в зубчатой извилине. В этой области происходит рождение эмоций, хранение и обработка пространственной информации. Ученым пока не удалось до конца разобраться, как образованные вновь нейроны воздействуют на воспоминания уже сформированные, и каким образом происходит их взаимодействие со зрелыми нейронами в этом отделе мозга.

Ученые отмечают, что нервные клетки восстанавливаются в тех зонах, которые отвечают непосредственно за выживание в физическом плане: ориентацию в пространстве, по запаху, образование двигательной памяти. Формирование проходит активно в молодом возрасте, во время роста мозга. При этом нейрогенез связан со всеми зонами. По достижению зрелого возраста развитие мыслительных функций осуществляется за счет перестройки между нейронами контактов, но не вследствие образования новых клеток.

Следует отметить, что ученые продолжают поиски ранее неизвестных очагов нейрогенеза, даже несмотря на несколько довольно неудачных попыток. Данное направление имеет актуальность не только в фундаментальной науке, но и прикладных исследованиях.

Несмотря на тот факт, что нейрогенез продолжительное время считался фантастикой, а биологи в один голос утверждали, будто восстановить потерянные нейроны невозможно, все же на деле это оказалось вовсе не так. Человеку необходимо просто придерживаться здоровых привычек в своей жизни.

Нейрогенез – это сложный процесс, в котором мозг человека создает новые нейроны и их соединения.

Обычному человеку, на первый взгляд, вышеописанный процесс может показаться слишком сложным для восприятия. Еще буквально вчера, ученые со всего мира выдвигали тезис о том, что к преклонному возрасту мозг человека теряет свои нейроны: они расщепляются и процесс этот необратим.

Более того, предполагалось, что травма или злоупотребление алкоголем обрекали человека на неизбежную потерю гибкости сознания (маневренность и активность мозга), которая характеризует здорового человека, придерживающегося здоровых же привычек.

Но сегодня уже сделан шаг по направлению к слову, которое вселяет в нас надежду: и слово это - нейропластичность.

Да, это абсолютная правда, что с возрастом наш мозг меняется, что повреждения и вредные привычки (алкоголь, табак) наносят ему вред. Но мозг обладает способностью к регенерации, он может вновь создавать нервные ткани и мостики-связи между ними.


Но для того чтобы это удивительное действие случилось, нужно, чтобы человек действовал, чтобы он был активным и всячески стимулировал природные способности своего мозга.

  • все, что вы делаете и о чем вы думаете, реорганизует ваш мозг
  • человеческий мозг весит всего килограмм-полтора, и при этом потребляет почти 20% всей имеющейся в организме энергии
  • все, что мы делаем - читаем, изучаем или даже просто разговариваем с кем-то, - вызывает удивительные изменения в структуре мозга. То есть абсолютно все, что мы делаем и что думаем, идет на пользу
  • если наша повседневная жизнь наполнена стрессом или тревогами, которые буквально захватывают нас, то, как правило, такие регионы, как гиппокамп (связанный с памятью) неизбежно поражаются
  • мозг подобен скульптуре, которая формируется из наших эмоций, мыслей, действий и ежедневных привычек
  • такая внутренняя карта требует огромного количества «ссылок», связей, «мостов» и «магистралей», а также сильных импульсов, которые позволяют нам оставаться на связи с реальностью

5 принципов для стимулирования нейрогенеза


1. Физические упражнения

Физическая активность и нейрогенез напрямую связаны.

Всякий раз, как мы заставляем работать свое тело (будь то прогулка, плавание или тренировка в тренажерном зале), мы способствуем оксигенации своего мозга, то есть насыщаем его кислородом.

В дополнение к тому, что к мозгу приливает более чистая и более насыщенная кислородом кровь, стимулируется еще и выработка эндорфинов.

Эндорфины улучшают наше настроение, и, таким образом, позволяют бороться со стрессом, позволяя укреплять многие нервные структуры.

Другими словами, любая деятельность, которая снижает уровень стресса, способствует нейрогенезу. Вам остается лишь найти подходящий вид занятий (танцы, ходьба, езда на велосипеде и т.д.).

2. Гибкий ум - сильный мозг

Существует множество способов поддержания гибкости ума. Для этого его нужно стараться поддерживать в режиме бодрствования, тогда он будет способен быстро «обрабатывать» все входящие данные (которые поступают из окружающей среды).

Добиться этого можно при помощи различных занятий. Оставляя в стороне вышеупомянутые физические нагрузки, отметим следующие:

  • чтение - читайте каждый день, это поддерживает ваш интерес и любознательность ко всему происходящему вокруг (и к новым дисциплинам, в частности).
  • изучение иностранного языка.
  • игра на музыкальном инструменте.
  • критическое восприятие вещей, поиски правды.
  • открытость ума, восприимчивость ко всему окружающему, социализация, путешествия, открытия, увлечения.


3. Рацион питания

Одним из главных врагов для здоровья мозга является пища, богатая насыщенными жирами. Потребление полуфабрикатов и ненатуральных продуктов питания замедляет нейрогенез.

  • Очень важно стараться придерживаться низкокалорийной диеты. Но при этом питание должно быть разнообразным и сбалансированным, чтобы не было дефицита питательных веществ.
  • Всегда помните, что наш мозг нуждается в энергии, и по утрам, к примеру, он будет нам очень благодарен за что-нибудь сладенькое.
  • Тем не менее, эту глюкозу желательно предоставить ему посредством кусочка фрукта или темного шоколада, ложечкой меда или чашкой овсянки…
  • А продукты, богатые жирными кислотами Омега-3, несомненно, являются наиболее подходящими для поддержания и активизации нейрогенеза.

4. Секс тоже помогает

Секс - еще один великий архитектор нашего мозга, естественный двигатель нейрогенеза. Не можете угадать причину такой связи? А дело вот в чем:

  • Секс не только снимает напряжение и регулирует стресс, но и обеспечивает нас мощным энергетическим зарядом, который стимулирует отделы мозга, отвечающие за память.
  • А такие гормоны, как серотонин, дофамин или окситоцин, вырабатываемые в моменты половой близости с партнером идут на пользу для создания новых нервных клеток.


5. Медитация

Польза медитации для нашего мозга неоспорима. Эффект настолько же удивителен, насколько и прекрасен:

  • Медитация способствует развитию определенных познавательных способностей, а именно вниманию, памяти, концентрации.
  • Она позволяет нам лучше понимать реальность и правильно направлять свои тревоги, управлять стрессом.
  • Во время медитации наш мозг работает в другом ритме: он производит более высокие альфа-волны, которые постепенно генерируют гамма-волны.
  • Данный тип волн способствует расслаблению, одновременно стимулируя нейрогенез и нейронную связь.

Несмотря на то что медитировать нужно научиться (это займет какое-то время), обязательно сделайте это, так как это прекрасный подарок для вашего ума и общего благополучия.

В заключение отметим, что все эти 5 принципов, о которых мы говорили на самом деле вовсе не так сложны, как можно было предположить. Попробуйте реализовать их на практике и позаботьтесь о здоровье своего мозга.

Будьте спокойными вместе с