Предметы живой природы имеют клеточное строение схожее для всех видов. Однако каждое царство имеет свои особенности. Узнать подробнее какое строение животной клетки, поможет данная статья, в которой мы расскажем не только об особенностях, но и познакомим с функциями органоидов.

Сложноорганизованный животный организм состоит из большого количества тканей. Форма и назначение клетки зависит от вида ткани, в состав которой она входит. Несмотря на их разнообразие, можно обозначить общие свойства в клеточном строении:

  • мембрана состоит из двух слоёв, которые отделяют содержимое от внешней среды. По своей структуре она эластична, поэтому клетки могут иметь разнообразную форму;
  • цитоплазма находится внутри клеточной мембраны. Это вязкая жидкость, которая постоянно двигается;

За счёт движения цитоплазмы внутри клетки протекают различные химические процессы и обмен веществ.

  • ядро - имеет большие размеры, по сравнению с растениями. Располагается в центре, внутри него находится ядерный сок, ядрышко и хромосомы;
  • митохондрии состоят из множества складок – крист;
  • эндоплазматическая сеть имеет множество каналов, по ним питательные вещества поступают в аппарат Гольджи;
  • комплекс трубочек, именуемый аппаратом Гольджи , накапливает питательные вещества;
  • лизосомы регулируют количество углеродов и других питательных веществ;
  • рибосомы расположены вокруг эндоплазматической сети. Их наличие делает сеть шероховатой, гладкая поверхность ЭПС свидетельствует об отсутствии рибосом;
  • центриоли - особые микротрубочки, которые отсутствуют у растений.

Рис. 1. Строение животной клетки.

Учёные открыли наличие центриолей недавно. Так как увидеть и изучить их можно только с помощью электронного микроскопа.

Функции органоидов клетки

Каждый органоид выполняет определённые функции, совместная их работа составляет единый сплочённый организм. Так, например:

  • клеточная мембрана обеспечивает транспортирование веществ внутрь клетки и из неё;
  • внутри ядра находится генетический код, который передаётся из поколения в поколение. Именно ядро регулирует работу других органелл клетки;
  • энергетическими станциями организма являются митохондрии . Именно здесь образуется вещество АТФ, при расщеплении которого выделяется большое количество энергии.

Рис. 2. Строение митохондрий

  • на стенках аппарата Гольджи синтезируются жиры и углеводы, которые необходимы для построения мембран других органоидов;
  • лизосомы расщепляют ненужные жиры и углеводы, а также вредные вещества;
  • рибосомы синтезируют белок;
  • клеточный центр (центриоли) играют важную роль в образовании веретена деления во время митоза клетки.

Рис. 3. Центриоли.

В отличие от растительной клетки у животной отсутствуют вакуоли. Однако могут образовываться временные маленькие вакуоли, которые содержат вещества для удаления из организма.

ТОП-4 статьи которые читают вместе с этой

Что мы узнали?

Строение животной клетки, которое изучается на уроках биологии в 7-9 классе, ничем не отличается от строения других клеток живой природы. Особенностью животной клетки является наличие клеточного центра, так называемых центриолей, которые участвуют в образовании веретена деления при митозе. В отличие от растительного организма здесь нет вакуолей, пластид и целлюлозной клеточной стенки. Клеточная мембрана достаточно эластичная, что даёт возможность приобретать клеткам различные формы и размеры.

Факультет ветеринарной медицины и технологии животноводства

Кафедра общей зоотехнии

Методические указания

для выполнения лабораторных работ по дисциплине «Общая генетика»

для студентов факультета ветеринарной медицины и технологии животноводства заочной формы обучения, обучающихся по направлению

111900 (36.03.01) – Ветеринарно-санитарная экспертиза

Воронеж – 2015

Составители: Аристов А.В., Кудинова Н.А., Якушева Т.Н.

Рецензент: Саврасов Д.А., доцент кафедры терапии и фармакологии

Раздел 1

Цитологические основы наследственности

Цитология – наука о структуре и функциях клетки, об организации живого на клеточном уровне.

Цитогенетика – раздел генетики, изучающий строение клетки и ее органоидов и изменение их при возникновении мутаций.

Тема 1

Строение и функции животной клетки

Задание 1.1 Изучить строение животной клетки и функции отдельных ее структурных элементов.

Клетка (Cellula ) представляет собой наименьшую элементарную структурно-функциональную единицу живых организмов, обладающую всеми основными свойствами живого и способную к самообновлению, саморегуляции и самовоспроизведению.

Клетка – это система взаимосвязанных, специализированных биополимеров, ограниченная билипидной клеточной мембраной, обладающей избирательной проницаемостью. У эукариот биополимеры образуют ядро и цитоплазму, последние обеспечивают совокупность метаболических процессов и осуществляют поддержание структуры и функции отдельных ее частей и воспроизведение всей системы в целом.

Основными частями эукариотической клетки являются ее поверхностный аппарат, цитоплазма (cytoplasma ) и ядро (nucleus ).

Кроме того, клетка состоит из различных по составу и выполняемой функции отделенных друг от друга мембранами компартментов. К ним относятся гиалоплазма, кариоплазма, перинуклеарное пространство, гранулярная и гладкая эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы, митохондрии, включения, в том числе транспортные и секреторные пузырьки (рис. 1).

Клеточная мембрана (цитолемма, плазмалемма) образована двумя слоями липидов со встроенными в них белками. Выполняет барьерную функцию (отделяет внутреннюю среду клетки от межклеточного вещества или окружающей среды); транспортную функцию (непрерывный обмен с внешней средой, трансмембранный перенос веществ); рецепторную функцию (восприятие специфических – гормонов, мембран соседних клеток, адгезивных молекул межклеточного вещества) и адгезивную функцию (адгезия и агрегация – прилипание клеток к себе подобным и межклеточным структурам и взаимодействие клеток).

Ядро состоит из ядерной оболочки (кариолеммы) и содержимого (кариоплазмы). В кариоплазме выделяют ядрышко, матрикс, хроматин. Кариолемма представлена двумя мембранами, пронизанными ядерными порами. Ядро является хранилищем наследственной информации на хромосомах; в нем проходит репликация и репарация ДНК, синтез РНК на матрице ДНК (транскрипция), в ядрышке синтез рРНК и субъединиц рибосом.

Гранулярная (шероховатая) эндоплазматическая сеть (ЭПС) – это система уплощенных цистерн, канальцев, транспортных пузырьков. Они образованы мембраной, на поверхности которой прикреплены рибосомы. Гранулярная эндоплазматическая сеть осуществляет транспорт белка, синтезированного на рибосомах.

Гладкая (агранулярная) эндоплазматическая сеть (ЭПС) состоит из сложной сети канальцев, плоских и расширенных (вакуолей) цистерн и транспортных пузырьков. Гладкая эндоплазматическая сеть участвует в синтезе липидов и метаболизме гликогена и стероидных гормонов.

Рибосомы , плотные частицы, сформированные рибонуклеопротеидным комплексом, состоящие из двух субчастиц – большой и малой.

Различают цитоплазматические и митохондриальные рибосомы. Основной их функцией является синтез белка (трансляция с мРНК на белок).

Митохондрии состоят из матрикса, внутренней мембраны, образующей кристы (впячивания в матрикс), перимитохондриального пространства и наружной мембраны.

В матриксе митохондрий содержаться ферменты, одноцепочечная цикличная ДНК, митохондриальная РНК, митохондриальные рибосомы. В кристах происходит окислительное фосфорилирование (клеточное дыхание) и перенос электронов, в матриксе работают ферменты, участвующие в цикле Кребса и в окислении жирных кислот.

Комплекс Гольджи (пластинчатый комплекс), стопка уплощенных мембранных мешочков – цистерн. На одном конце стопки мешочки непрерывно образуются, а с другого – отшнуровываются в виде пузырьков. Комплекс Гольджи участвует в транспорте веществ в цитоплазму и внеклеточную среду, синтезе жиров и углеводов, в росте и обновлении плазматической мембраны и в формировании лизосом.

Лизосома, простой сферический мембранный мешочек (мембрана одинарная), заполненный гидролитическими (пищеварительными) ферментами. Лизосомы участвуют во внутриклеточном переваривании (разрушение старых, измененных структур клетки).

Для изучения строения клетки используют постоянные или временные препараты при наблюдении в световом микроскопе. При этом клетки или их структуры окрашивают специальными красителями или изучают неокрашенными.

Задание 1.2 Изучить строение хромосом, основные их формы и типы спутников хромосом.

Хромосома – постоянный компонент ядра, отличающийся особой структурой, функцией и способностью к самовоспроизведению, что обеспечивает их преемственность, а тем самым и передачу наследственной информации от одного поколения растительных и животных организмов к другому.

Хромосомы животных и растений представляют собой палочковидные структуры разной длины с довольно постоянной толщиной. Снаружи хромосомы покрыты белковой оболочкой из гистонов.

Хромосома делящейся клетки состоит из двух хроматид соединенных между собой перетяжкой, которая делит хромосому на два плеча. Каждая из хроматид, в свою очередь, состоит из двух половинок – полухроматид или хромонем .

Первичная перетяжка представляет собой неспирализованный участок ДНК. В области первичной перетяжки находится центромера . Некоторые хромосомы имеют вторичную перетяжку . Вторичные перетяжки могут быть у одних хромосом на длинном плече, у других – на коротком.

Концевые участки хромосомы называют теломерами. Особенность их состоит в том, что они не способны к соединению с другими участками хромосом.

У некоторых хромосом есть спутники – это хромосомные сегменты, чаще всего гетерохроматические, расположенные дистально от вторичной перетяжки.

По классическим определениям спутник – сферическое тельце с диаметром, равным диаметру хромосомы или меньше его, которое связано с хромосомой тонкой нитью.

Вторичная перетяжка, соединяющая спутник с телом хромосомы, способна к участию в процессе формирования и сборки ядрышек. Такая вторичная перетяжка, поэтому называется еще ядрышковым организатором.

Спутник вместе с вторичной перетяжкой составляют спутничный район.

Рисунок 2. Схема строения хромосомы

Хроматин, основной компонент клеточного ядра – комплекс дезоксирибонуклеиновых кислот с белками, где ДНК находится в различной степени конденсации. В среднем в хроматине 40% приходится на ДНК и около 60% на белки.

По электронной и светооптической плотности выделяют плотный, грубо окрашенный гетерохроматин и более нежно окрашенный, менее плотный эухроматин.

Гетерохроматин – генетически неактивные участки хромосом, постоянно находящиеся в конденсированном состоянии. При электронной микроскопии формирует темные глыбки неправильной формы. Гетерохроматин в зависимости от локализации подразделяется на пристеночный, матричный и перинуклеарный.

Эухроматин – это весь генетический материал интерфазного ядра – область слабо конденсированной ДНК. С нуклеиновыми кислотами в эухроматине связаны в основном негистоновые белки.

Морфология хромосомы определяется в первую очередь положением центромеры. В соответствии с местом расположения центромеры выделяют основные формы хромосом (рис. 3):

· метацентрические,

· субметацентрические,

· акроцентрические.

Рисунок 3. Типы хромосом:

1 – метацентрические; 2 – субметацентрические; 3 – акроцентрические.

Метацентрические хромосомы отличаются тем, что плечи у них одинаковой или почти одинаковой длины.

Субметацентрические хромосомы имеют плечи разной длины. У акроцентрических хромосом центромера расположена к близко к одной из теломер.

При характеристике морфологии хромосом принимают во внимание следующие признаки: длину плеч, положение центромеры, наличие вторичной перетяжки или спутника.

Спутники разных хромосом отличаются по форме, величине и длине нити, соединяющей их с основным телом. Выделяют следующие пять типов спутников (рис. 4):

1. микроспутники – сфероидальной формы, маленькие спутники с диаметром вдвое или еще меньше диаметра хромосомы;

2. макроспутники – довольно крупные формы спутников с диаметром, превышающим половину диаметра хромосомы;

3. линейные спутники – спутники, имеющие форму длинного хромосомного сегмента. Вторичная перетяжка значительно удалена от терминального конца;

4. терминальные спутники – спутники, локализованные на конце хромосомы;

5. интеркалярные спутники – спутники, локализованные между двумя вторичными перетяжками.

Рисунок 4. Типы спутников хромосом:

1 – микроспутник; 2 – макроспутник; 3 – линейный спутник; 4 – интеркалярный спутник; 5 – терминальный спутник.

Размеры хромосом у разных организмов варьируют в широких пределах. Длина хромосом может колебаться от 0,2 до 50 мкм. Нормальная длина каждой хромосомы и суммарная длина всех хромосом кариотипа постоянна.

В настоящее время для каждой группы хромосом рекомендуют определять два параметра: общий размер, плечевой и центрометный индекс.

Общий размер вычисляют путем суммирования длины двух плеч. Абсолютную длину хромосомы выражают в мкм.

Плечевой индекс – это отношение длины длинного плеча хромосомы к длине короткого плеча, выраженное в процентах.

Центрометный индекс – это отношение длины одного из плеч к длине всей хромосомы, выражается в процентах.

Эта особенность была утеряна в далеком прошлом одноклеточными организмами, которые породили . Большинство клеток, как животных, так и растений, имеют размер от 1 до 100 мкм (микрометров) и поэтому видны только с помощью микроскопа.

Самые ранние ископаемые свидетельства животных датируются Вендским периодом (650-454 миллионов лет назад). Первое закончилось этим периодом, но в течение последующего , взрыв новых форм жизни привел к появлению многих основных групп фауны, известных сегодня. Есть свидетельства, что животные появились до раннего (505-438 миллионов лет назад).

Строение животных клеток

Схема строения клетки животных

  • - самовоспроизводящиеся органеллы, состоящие из девяти пучков микротрубочек и встречающиеся только в клетках животных. Они помогают в организации деления клеток, но не являются существенными для этого процесса.
  • - необходимы для передвижения клеток. В многоклеточных организмах реснички функционируют для перемещения жидкости или веществ вокруг неподвижной клетки, а также для или группы клеток.
  • - сеть мешочков, которая производит, обрабатывает и переносит химические соединения внутри и снаружи клетки. Он связан с двуслойной ядерной оболочкой, обеспечивающей трубопровод между ядром и .
  • Эндосомы - мембранно-связанные везикулы, образованные совокупностью сложных процессов, известных как , и обнаружены в цитоплазме практически любой клетки животных. Основным механизмом эндоцитоза является обратное тому, что происходит во время или клеточной секреции.
  • - отдел распределения и доставки химических веществ клетки. Он модифицирует белки и жиры, встроенные в эндоплазматический ретикулум, а также подготавливает их к экспорту за пределы клетки.
  • Промежуточные филаменты - широкий класс волокнистых белков, которые играют важную роль как структурных, так и функциональных элементов . Они функционируют как элементы, которые помогают поддерживать форму и жесткость клетки.
  • - осуществляют пищеварительные функции, перерабатывая клеточные отходы.
  • Микрофиламенты - нити из глобулярных белков, называемые актином. Эти филаменты являются преимущественно структурными по своей функции и важным компонентом цитоскелета.
  • Микротрубочки - прямые, полые цилиндры, присутствующие в цитоплазме всех эукариотических клеток (у прокариот их нет) и выполняющие различные функции, от транспортировки до структурной поддержки.
  • - продолговатые органеллы, которые находятся в цитоплазме каждой эукариотической клетки. В клетке животных они являются основными генераторами энергии, превращая кислород и питательные вещества в энергию.

Ученые позиционируют животную клетку как основную часть организма представителя царства животных — как одноклеточных так и многоклеточных.

Они являются эукариотическими, с наличием истинного ядра и специализированных структур — органелл, выполняющих дифференцированные функции.

Растения, грибы и протисты имеют эукариотические клетки, у бактерий и архей определяются более простые прокариотические клетки.

Строение животной клетки отличается от растительной . Животная клетка не имеет стенок или хлоропластов (органелл, выполняющих ).

Рисунок животной клетки с подписями

Клетка состоит из множества специализированных органелл, выполняющих различные функции.

Чаще всего, в ней содержится большинство, иногда все существующие типы органелл.

Основные органеллы и органоиды животной клетки

Органеллы и органоиды являются «органами», ответственными за функционирование микроорганизма.

Ядро

Ядро является источником дезоксирибонуклеиновой кислоты (ДНК) — генетического материала. ДНК является источником создания белков, контролирующих состояние организма. В ядре, нити ДНК плотно обматываются вокруг узкоспециализированных белков (гистонов), формируя хромосомы.

Ядро выбирает гены, контролируя активность и функционирование единицы ткани. В зависимости от типа клетки, в ней представлен различный набор генов. ДНК находится в нуклеоидной области ядра, где образуются рибосомы . Ядро окружено ядерной мембраной (кариолеммой), двойным липидным бислоем, отгораживающим его от остальных компонентов.

Ядро регулирует рост и деление клетки. При в ядре образуются хромосомы, которые дублируются в процессе размножения, образуя две дочерние единицы. Органеллы, называемые центросомами, помогают организовать ДНК во время деления. Ядро обычно представлено в единственном числе.

Рибосомы

Рибосомы — место синтеза белка. Они обнаружены во всех единицах ткани, у растений и у животных. В ядре, последовательность ДНК, которая кодирует определенный белок, копируется в свободную мессенджерную РНК (мРНК) цепь.

Цепочка мРНК перемещается к рибосоме через передающую РНК (тРНК), и ее последовательность используется для определения системы расположения аминокислот в цепи, составляющей белок. В животной ткани рибосомы расположены свободно в цитоплазме или прикреплены к мембранам эндоплазматического ретикулума.

Эндоплазматический ретикулум

Эндоплазматический ретикулум (ER) представляет собой сеть мембранных мешочков (цистерн), отходящих от внешней ядерной мембраны. Он модифицирует и транспортирует белки, созданные рибосомами.

Существует два вида эндоплазматического ретикулума:

  • гранулярный;
  • агранулярный.

Гранулярный ЭР содержит прикрепленные рибосомы. Агранулярный ЭР свободен от прикрепленных рибосом, участвует в создании липидов и стероидных гормонов, удалении токсичных веществ.

Везикулы

Везикулы представляют собой небольшие сферы липидного бислоя, входящие в состав наружной мембраны. Они используются для транспортировки молекул по клетке от одной органеллы к другой, участвуют в метаболизме.

Специализированные везикулы, называемые лизосомами, содержат ферменты, переваривающие большие молекулы (углеводы, липиды и белки) в более мелкие, для облегчения их использования тканью.

Аппарат Гольджи

Аппарат Гольджи (комплекс Гольджи, тело Гольджи) также состоит из не соединенных между собой цистерн (в отличие от эндоплазматического ретикулума).

Аппарат Гольджи получает белки, сортирует и упаковывает их в везикулы.

Митохондрии

В митохондриях осуществляется процесс клеточного дыхания. Сахара и жиры разрушаются, выделяется энергия в виде аденозинтрифосфата (АТФ). АТФ управляет всеми клеточными процессами, митохондрии продуцируют АТФ клетки. Митохондрии иногда называют «генераторами».

Цитоплазма клетки

Цитоплазма – жидкостная среда клетки. Она может функционировать даже без ядра, однако, короткое время.

Цитозоль

Цитозолью называют клеточную жидкость. Цитозоль и все органеллы внутри нее, за исключением ядра, в совокупности называются цитоплазмой. Цитозоль в основном состоит из воды, а также содержит ионы (калий, белки и малые молекулы).

Цитоскелет

Цитоскелет представляет собой сеть нитей и трубочек, распространенных по всей цитоплазме.

Он выполняет следующие функции:

  • придает форму;
  • обеспечивает прочность;
  • стабилизирует ткани;
  • закрепляет органеллы на определенных местах;
  • играет важную роль в передаче сигналов.

Существует три типа цитоскелетных нитей: микрофиламенты, микротрубочки и промежуточные филаменты. Микрофиламенты являются самыми маленькими элементами цитоскелета, а микротрубочки – самыми большими.

Клеточная мембрана

Клеточная мембрана полностью окружает животную клетку, не имеющую клеточной стенки, в отличие от растений. Клеточная мембрана представляет собой двойной слой, состоящий из фосфолипидов.

Фосфолипиды являются молекулами, содержащими фосфаты, прикрепленные к глицерину и радикалам жирных кислот. Они спонтанно образуют двойные мембраны в воде из-за своих одновременно гидрофильных и гидрофобных свойств.

Клеточная мембрана избирательно проницаема — она способна пропускать определенные молекулы. Кислород и диоксид углерода проходят легко, в то время как большие или заряженные молекулы должны проходить через специальный канал в мембране, что поддерживает гомеостаз.

Лизосомы

Лизосомы представляют собой органеллы, осуществляющие деградацию веществ. В состав лизосомы входит около 40 расщепляющих ферментов. Интересно, что сам клеточный организм защищен от деградации в случае прорыва лизосомных ферментов в цитоплазму, разложению подвергаются закончившие выполнять свои функции митохондрии. После расщепления образуются остаточные тела, первичные лизосомы превращаются во вторичные.

Центриоль

Центриоли являются плотными телами, расположенными около ядра. Количество центриолей меняется, чаще всего их две. Центриоли соединены эндоплазматической перемычкой.

Как выглядит животная клетка под микроскопом

Под стандартным оптическим микроскопом видны основные компоненты. За счет того, что они соединены в непрерывно меняющийся организм, находящийся в движении, определить отдельные органеллы бывает сложно.

Не вызывают сомнений следующие части:

  • ядро;
  • цитоплазма;
  • клеточная мембрана.

Подробнее изучить клетку поможет большая разрешающая способность микроскопа, тщательно подготовленный препарат и наличие некоторой практики.

Функции центриоли

Точные функции центриоли остаются неизвестными. Распространена гипотеза, что центриоли участвуют в процессе деления, образуя веретено деления и определяя его направленность, однако определенность в научном мире отсутствует.

Строение клетки человека - рисунок с подписями

Единица клеточной ткани человека имеет сложное строение. На рисунке отмечены основные структуры.

Каждый компонент имеет свое назначение, лишь в конгломерате они обеспечивают функционирование важной части живого организма.

Признаки живой клетки

Живая клетка по своим признакам схожа с живым существом в целом. Она дышит, питается, развивается, делится, в ее структуре происходят различные процессы. Понятно, что замирание естественных для организма процессов означает гибель.

Отличительные признаки растительной и животной клетки в таблице

Растительная и животная клетки имеют как сходства, так и различия, которые кратко описаны в таблице:

Признак Растительная Животная
Получение питания Автотрофный.

Фотосинтезирует питательные вещества

Гетеротрофный. Не производит органику.
Хранение питания В вакуоли В цитоплазме
Запасной углевод крахмал гликоген
Репродуктивная система Образование перегородки в материнской единице Образование перетяжки в материнской единице
Клеточный центр и центриоли У низших растений У всех типов
Клеточная стенка Плотная, сохраняет форму Гибкая, позволяет изменяться

Основные компоненты являются сходными как для частиц растительного, так и животного мира.

Заключение

Животная клетка является сложным действующим организмом, обладающим отличительными признаками, функциями, целью существования. Все органеллы и органоиды вносят свою лепту в процесс жизнедеятельности этого микроорганизма.

Некоторые компоненты изучены учеными, функции же и особенности других еще только предстоит открыть.

Наука, изучающая строение и функции клеток, называется цитология .

Клетка - элементарная структурная и функциональная единица живого.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Внутреннее полужидкое содержимое клетки получило название цитоплазмы .

Цитоплазма является внутренней средой клетки, где проходят различные процессы и расположены компоненты клетки - органеллы (органоиды).

Клеточное ядро

Клеточное ядро - это важнейшая часть клетки.
От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. В оболочке ядра имеются многочисленные поры для того, чтобы различные вещества могли попадать из цитоплазмы в ядро, и наоборот.
Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока . В ядерном соке расположены хроматин и ядрышко .
Хроматин представляет собой нити ДНК. Если клетка начинает делиться, то нити хроматина плотно накручиваются спиралью на особые белки, как нитки на катушку. Такие плотные образования хорошо видны в микроскоп и называются хромосомами .

Ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.

Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления - разрушаются.

Функция ядрышек - синтез РНК и белков, из которых формируются особые органоиды - рибосомы .
Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети . Реже они свободно взвешены в цитоплазме клетки.

Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.

Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, “цистернами”, и отграниченные от цитоплазмы мембраной. Эти полости получили название аппарат (комплекс) Гольджи . Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.
Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы - пищеварительные органеллы клетки.
Лизосомы представляют собой пищеварительные ферменты, “упаковываются” в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.
В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу.

Митохондрии - энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки.

Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы - кристы.

Плазматическая мембрана

Чтобы клетка представляла собой единую систему, необходимо, чтобы все ее части (цитоплазма, ядро, органоиды) удерживались вместе. Для этого в процессе эволюции развилась плазматическая мембрана , которая, окружая каждую клетку, отделяет ее от внешней среды. Наружная мембрана защищает внутреннее содержимое клетки - цитоплазму и ядро - от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

Строение мембраны одинаково у всех клеток. Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие - пронизывают оба слоя липидов насквозь.

Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из нее могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы (молекулы пищевых веществ - белки, углеводы, липиды) через мембранные каналы пройти не могут и попадают в клетку при помощи фагоцитоза или пиноцитоза:

  • В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. Этот процесс называется фагоцитозом (клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки (клеточной оболочкой) и не могут захватывать вещества при помощи фагоцитоза).
  • Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твердые частицы, а капельки жидкости с растворенными в ней веществами. Это один из основных механизмов проникновения веществ в клетку.