Компьютерная томография

Компьютерный томограф

Компью́терная томогра́фия - метод неразрушающего послойного исследования внутренней структуры объекта, был предложен в 1972 году Годфри Хаунсфилдом и Алланом Кормаком , удостоенными за эту разработку Нобелевской премии . Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями.

Компьютерная томография (КТ) - в широком смысле, синоним термина томография (так как все современные томографические методы реализуются с помощью компьютерной техники); в узком смысле (в котором употребляется значительно чаще), синоним термина рентгеновская компьютерная томография , так как именно этот метод положил начало современной томографии.

Рентгеновская компьютерная томография - томографический метод исследования внутренних органов человека с использованием рентгеновского излучения.

Появление компьютерных томографов

Первые математические алгоритмы для КТ были разработаны в 1917 году австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения , который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

Предпосылки метода в истории медицины

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии . В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии . Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования. Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая проводить прижизненную диагностику заболеваний; возможность аппаратной реконструкции однократно полученных «сырых» КТ-данных в различных анатомических плоскостях (проекциях), а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

С математической точки зрения построение изображения сводится к решению системы линейных уравнений . Так, например, для получения томограммы размером 200×200 пикселей система включает 40000 уравнений. Для решения подобных систем разработаны специализированные методы, ориентированные на параллельные вычисления .

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 г. КТ аппараты первого поколения были пошаговыми. Была одна трубка, направленная на один детектор. Сканирование производилось шаг за шагом, делая по одному обороту на слой. Один слой изображения обрабатывался около 4 минут.

Во 2-м поколении КТ аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-е поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Трубка и детекторы за один шаг стола синхронно осуществляли полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-е поколение имеет 1088 люминесцентных датчиков, расположенных по всему кольцу гентри . Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ аппаратами 3-го поколения не имеет.

Спиральная компьютерная томография

Спиральная КТ используется в клинической практике с 1988 года , когда компания Siemens Medical Solutions представила первый спиральный компьютерный томограф. Спиральное сканирование заключается в одновременном выполнении двух действий: непрерывного вращения источника - рентгеновской трубки , генерирующей излучение, вокруг тела пациента , и непрерывного поступательного движения стола с пациентом вдоль продольной оси сканирования z через апертуру гентри. В этом случае траектория движения рентгеновской трубки, относительно оси z - направления движения стола с телом пациента, примет форму спирали.

В отличие от последовательной КТ скорость движения стола с телом пациента может принимать произвольные значения, определяемые целями исследования. Чем выше скорость движения стола, тем больше протяженность области сканирования. Важно то, что длина пути стола за один оборот рентгеновской трубки может быть в 1,5–2 раза больше толщины томографического слоя без ухудшения пространственного разрешения изображения.

Технология спирального сканирования позволила значительно сократить время, затрачиваемое на КТ-исследование и существенно уменьшить лучевую нагрузку на пациента.

Многослойная компьютерная томография (МСКТ)

Многослойная («мультиспиральная») компьютерная томография с внутривенным контрастным усилением и трёхмерной реконструкцией изображения.

Многослойная («мультиспиральная», «мультисрезовая» компьютерная томография - МСКТ) была впервые представлена компанией Elscint Co. в 1992 году . Принципиальное отличие мсКТ томографов от спиральных томографов предыдущих поколений в том, что по окружности гентри расположены не один, а два и более ряда детекторов. Для того, чтобы рентгеновское излучение могло одновременно приниматься детекторами, расположенными на разных рядах, была разработана новая - объёмная геометрическая форма пучка. В 1992 году появились первые двухсрезовые (двухспиральные) МСКТ томографы с двумя рядами детекторов, а в 1998 году - четырёхсрезовые (четырёхспиральные), с четырьмя рядами детекторов соответственно. Кроме вышеотмеченных особенностей, было увеличено количество оборотов рентгеновской трубки с одного до двух в секунду. Таким образом, четырёхспиральные мсКТ томографы пятого поколения на сегодняшний день в восемь раз быстрее, чем обычные спиральные КТ томографы четвертого поколения. В -2005 годах были представлены 32-, 64- и 128-срезовые МСКТ томографы, в том числе - с двумя рентгеновскими трубками. Сегодня же в некоторых клиниках уже имеются 320-срезовые компьютерные томографы. Эти томографы, впервые представленные в 2007 году компанией Toshiba, являются новым витком эволюции рентгеновской компьютерной томографии. Они позволяют не только получать изображения, но и дают возможность наблюдать почти что «в реальном» времени физиологические процессы, происходящие в головном мозге и в сердце ! Особенностью подобной системы является возможность сканирования целого органа (сердце, суставы, головной мозг и т.д.) за один оборот рентгеновской трубки, что значительно сокращает время обследования, а также возможность сканировать сердце даже у пациентов, страдающих аритмиями. Несколько 320-срезовых сканеров уже установлены и функционируют в России.

Преимущества МСКТ перед обычной спиральной КТ

  • улучшение временного разрешения
  • улучшение пространственного разрешения вдоль продольной оси z
  • увеличение скорости сканирования
  • улучшение контрастного разрешения
  • увеличение отношения сигнал/шум
  • эффективное использование рентгеновской трубки
  • большая зона анатомического покрытия
  • уменьшение лучевой нагрузки на пациента

Все эти факторы значительно повышают скорость и информативность исследований.

Основным недостатком метода остается высокая лучевая нагрузка на пациента, несмотря на то, что за время существования КТ её удалось значительно снизить.

  • Улучшение временного разрешения достигается за счёт уменьшения времени исследования и количества артефактов из-за непроизвольного движения внутренних органов и пульсации крупных сосудов .
  • Улучшение пространственного разрешения вдоль продольной оси z, связано с использованием тонких (1–1,5 мм) срезов и очень тонких, субмиллиметровых (0,5 мм) срезов. Чтобы реализовать эту возможность, разработаны два типа расположения массива детекторов в МСК томографах:
    • матричные детекторы (matrix detectors), имеющие одинаковую ширину вдоль продольной оси z;
    • адаптивные детекторы (adaptive detectors), имеющие неодинаковую ширину вдоль продольной оси z.
Преимущество матричного массива детекторов заключается в том, что количество детекторов в ряду можно легко увеличить для получения большего количества срезов за один оборот рентгеновской трубки. Так как в адаптивном массиве детекторов меньше количество самих элементов, то меньше и число зазоров между ними, что дает снижение лучевой нагрузки на пациента и уменьшение электронного шума. Поэтому три из четырёх мировых производителей МСК томографов выбрали именно этот тип.

Все вышеотмеченные нововведения не только повышают пространственное разрешение, но благодаря специально разработанным алгоритмам реконструкции позволяют значительно уменьшить количество и размеры артефактов (посторонних элементов) КТ-изображений. Основным преимуществом МСКТ по сравнению с односрезовой СКТ является возможность получения изотропного изображения при сканировании с субмиллиметровой толщиной среза (0,5 мм). Изотропное изображение возможно получить, если грани вокселя матрицы изображения равны, то есть воксель принимает форму куба . В этом случае пространственное разрешение в поперечной плоскости x-y и вдоль продольной оси z становится одинаковым.

  • Увеличение скорости сканирования достигается уменьшением времени оборота рентгеновской трубки, по сравнению с обычной спиральной КТ, в два раза - до 0,45–0,50 с.
  • Улучшение контрастного разрешения достигается вследствие увеличения дозы и скорости введения контрастных средств при проведении ангиографии или стандартных КТ-исследований, требующих контрастного усиления. Различие между артериальной и венозной фазой введения контрастного средства прослеживается более чётко.
  • Увеличение отношения сигнал/шум достигнуто благодаря конструктивным особенностям исполнения новых детекторов и используемых при этом материалов; улучшения качества исполнения электронных компонентов и плат ; увеличению тока накала рентгеновской трубки до 400 мА при стандартных исследованиях или исследованиях тучных пациентов.
  • Эффективное использование рентгеновской трубки достигается за счёт меньшего времени работы трубки при стандартном исследовании. Конструкция рентгеновских трубок претерпела изменения для обеспечения лучшей устойчивости при больших центробежных силах, возникающих при вращении за время, равное или менее 0,5 с. Использование генераторов большей мощности (до 100 кВт), конструктивные особенности исполнения рентгеновских трубок, лучшее охлаждение анода и повышение его теплоёмкости до 8 000 000 единиц также позволяют продлить срок службы трубок.
  • Зона анатомического покрытия увеличена благодаря одновременной реконструкции нескольких срезов полученных за время одного оборота рентгеновской трубки. Для МСКТ установки зона анатомического покрытия зависит от количества каналов данных, шага спирали, толщины томографического слоя, времени сканирования и времени вращения рентгеновской трубки. Зона анатомического покрытия может быть в несколько раз больше за одно и то же время сканирования по сравнению с обычным спиральным компьютерным томографом.
  • Лучевая нагрузка при многослойном спиральном КТ-исследовании при сопоставимых объёмах диагностической информации меньше на 30 % по сравнению с обычным спиральным КТ-исследованием. Для этого улучшается фильтрация спектра рентгеновского излучения и производится оптимизация массива детекторов. Разработаны алгоритмы , позволяющие в реальном масштабе времени автоматически уменьшать ток и напряжение на рентгеновской трубке в зависимости от исследуемого органа , размеров и возраста каждого пациента.

Компьютерная томография с двумя источниками излучения

DSCT - Dual Source Computed Tomography. Русскоязычной аббревиатуры в настоящее время нет.

Контрастное усиление

Для улучшения дифференцировки органов друг от друга, а также нормальных и патологических структур, используются различные методики контрастного усиления (чаще всего, с применением йодсодержащих контрастных препаратов).

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определенным режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь, внутривенное контрастирование можно проводить двумя способами: «ручное» внутривенное контрастирование и болюсное контрастирование .

При первом способе контраст вводится вручную рентгенлаборантом или процедурной медсестрой, время и скорость введения не регулируются, исследование начинается после введения контрастного вещества. Этот способ применяется на «медленных» аппаратах первых поколений, при МСКТ «ручное» введение контрастного препарата уже не соответствует значительно возросшим возможностям метода.

При болюсном контрастном усилении контрастный препарат вводится внутривенно шприцем-инжектором с установленными скоростью и временем подачи вещества. Цель болюсного контрастного усиления - разграничение фаз контрастирования. Время сканирования различается на разных аппаратах, при разных скоростях введения контрастного препарата и у разных пациентов; в среднем при скорости введения препарата 4–5 мл/сек сканирование начинается примерно через 20–30 секунд после начала введения инжектором контраста, при этом визуализируется наполнение артерий (артериальная фаза контрастирования). Через 40–60 секунд аппарат повторно сканирует эту же зону для выделения портально-венозной фазы, в которую визуализируется контрастирование вен. Также выделяют отсроченную фазу (180 секунд после начала введения), при которой наблюдается выведение контрастного препарата через мочевыделительную систему.

КТ-ангиография

КТ-ангиография позволяет получить послойную серию изображений кровеносных сосудов; на основе полученных данных посредством компьютерной постобработки с 3D-реконструкцией строится трёхмерная модель кровеносной системы.

Спиральная КТ-ангиография - одно из последних достижений рентгеновской компьютерной томографии. Исследование проводится в амбулаторных условиях. В локтевую вену вводится йодсодержащий контрастный препарат в объеме ~100 мл. В момент введения контрастного вещества делают серию сканирований исследуемого участка.

КТ-перфузия

Метод, позволяющий оценить прохождение крови через ткани организма, в частности.

Правильно поставленный диагноз – наполовину вылеченная болезнь. Лекари древности определяли заболевания необычными методами: по глазам, ногтям, цвету кожи и другим признакам. Да и сегодня опытный врач многое скажет о пациенте, впервые его увидев. Многое, но не все. Возможности современной медицины значительно выросли, появились новые методы диагностики, позволяющие заглянуть внутрь человеческого организма и визуально оценить степень поражения того или иного органа. Компьютерная томография − один из таких методов.

Что это такое?

Как только были открыты рентгеновские лучи, люди научились получать изображения органов человека. Нельзя сказать, что эти снимки идеальны. Рентгенография не позволяет разглядеть небольшие очаги нарушений, так как происходит накладывание тканей одна на другую. Метод линейной томографии, с помощью которого получают изображение определенного слоя органа, также далек от совершенства.

И только с изобретением метода КТ начался прорыв в диагностике. За это открытие ученые Кормак и Хаунсфилд были удостоены Нобелевской премии. В арсенале медицинских работников появилась возможность увидеть множество срезов органа в разных местах. Точность и скорость исследования повысилась благодаря внедрению спиральной технологии. А современная многосрезовая методика позволяет сделать до 64 изображений различных слоев органа (уже есть сведения о появлении 320-срезового томографа).

Как проходит?

Установка КТ довольно массивная. Представляет собой кольцо, которое может вращаться с испусканием рентгеновских лучей. Человека, лежащего на специальном столе, помещают внутрь кольца. Сканер, вращаясь вокруг него, слой за слоем изучает исследуемый орган. При спиральной томографии стол с пациентом также движется. В этом есть что-то из мира космической фантастики, не так ли?

Все изображения можно распечатать. Процедура КТ проходит с контрастированием. Контрастное вещество (йодсодержащее) используется для лучшей визуализации изображения. Дело в том, что рентгеновские лучи определенных характеристик почти не видят мягкие ткани. Контрастное вещество вводят в вену, а в отдельных случаях пациент его просто выпивает.

С помощью метода компьютерной томографии исследуются практически все органы человеческого тела: сердце, сосуды, почки, легкие, головной и спинной мозг, мочевой пузырь, брюшная полость, кости. Что-то забыли упомнить? И это тоже исследуется!

Почему КТ?

  • Компьютерная томография сосудов, используя рентгеновское излучение, позволяет увидеть артерии и вены в любой части человеческого тела.
  • Получают изображение патологического участка сосуда, находящегося в самом неудобном для других методов исследования месте.
  • Возможно предоставление подробного трехмерного изображения всего сосудистого бассейна.
  • Есть возможность увидеть не только сосуды, но и прилегающие ткани, что является существенным плюсом в диагностике.
  • КТ сосудов сердца и других органов безопасна для большинства пациентов.
  • Процедура КТ отличается небольшой инвазивностью.

Кому противопоказана процедура КТ?

  1. Аллергическим больным.
  2. Пациентам с тяжелой почечной недостаточностью.
  3. Людям, у которых есть патология щитовидной железы. Дело в том, что йод, содержащийся в контрастном веществе, усиливает выработку тиреоидных гормонов, а это может привести к осложнениям.
  4. Запрещена КТ беременным женщинам. Во-первых, контрастное вещество может оказать токсическое действие на плод. Во-вторых, влияние рентгеновских лучей также небезопасно для ребенка.

Видео: процесс проведения компьютерной томографии

КТ сосудов

Причина заболевания органов может заключаться в заболевании сосудов. Ведь по ним движется кровь, обеспечивающая кислородом клетки всего организма. Закупорка тромбами, атеросклеротическими бляшками, – все это приводит к нарушению кровотока и, как следствие, повреждению соответствующего органа. С помощью метода компьютерной томографии можно исследовать сосуды любой части тела. К примеру, изучить состояние коронарных вен и артерий можно с помощью КТ коронарных сосудов. А КТ сосудов головы и шеи исследует мозговое кровообращение.

Томография сосудов показана, если у пациента наблюдаются:

  • Признаки хронических и острых нарушений и (в том числе головы): боли, отеки, онемение и другие;
  • Эмболии, ;
  • Ангиопатии разного происхождения;
  • Патологии в развитии сосудов;
  • и другие.

Большинство пациентов могут пройти исследование без вреда для здоровья. Но все-таки некоторым процедура не показана. В основном людям, для которых может стать опасным контрастное вещество (в частности, йод) или рентгеновское излучение.

КТ головного мозга

Если обычная рентгенография предоставляет обзорный снимок мозга, то КТ «фотографирует» мозг послойно. Расстояние между слоями около 1 мм. В результате доктор получает необходимое количество изображений, позволяющих заглянуть в любую точку органа. С помощью КТ головного мозга можно рассмотреть его структуру, увидеть , оценить состояние венозных и артериальных сосудов.

Чтобы изображение слоев мозга было более четким, как и в случае с периферическими сосудами, вводится контрастное вещество. Что касается противопоказаний, они такие же, как и при томографии сосудов. Единственное отличие: беременным иногда все-таки проводят исследование, но предварительно область матки прикрывают фартуком из свинца. Детям томографию сосудов головного мозга проводят по очень серьезным показаниям. Если женщина кормит грудью, то перерыв в кормлении должен быть не менее 48 часов. За это время контрастное вещество выведется из организма полностью.

Исследование назначают, если у человека наблюдаются:

  • Обмороки;
  • Потеря памяти;
  • Невнятная речь;
  • Судороги;
  • Ухудшение зрения;
  • Признаки, указывающие на повреждение мозга;
  • Подозрение на опухоли или метастазы;
  • Предоперационное определение локализации и размеров образований;
  • Черепно-мозговые травмы;
  • Инсульт (оба вида – и );
  • Подозрение на ;
  • Менингит;

Подготовка к исследованию также минимальная. Рекомендуется в течение 6 часов перед процедурой не есть. Из напитков разрешается только чистая вода.

Важно! При выполнении компьютерной томографии голова пациента должна находиться в абсолютно неподвижном состоянии. Малейшее движение сильно искажает показания.

Что «расскажет» КТ о мозге?

С помощью компьютерной томографии можно обнаружить:

  1. Кровоизлияния;
  2. Опухоли;
  3. Гематомы любой локализации;
  4. Отек и степень его выраженности;
  5. Смещение структур мозга;
  6. Кисты;
  7. Воспалительные заболевания;
  8. Присутствие гнойных выделений между оболочками.

КТ таза и брюшной полости

Процедура помогает диагностировать причину болевых ощущений в брюшной полости, тазе, определить патологии внутренних органов.

Основные показания:

  • Камни в почках и мочевом пузыре;
  • Панкреатит;
  • Пиелонефрит;
  • Язвенный колит;
  • Тромбозы сосудов брюшной полости ( , ).
  • Цирроз печени;
  • Аппендицит;
  • Абсцессы;
  • Опухоли внутренних органов, ;
  • , стенозы.

КТ брюшной полости нужна для:

  1. Оценки состояния внутренних органов после травмы;
  2. Правильного управления радиотерапией при опухолях и мониторинге состояния после химиотерапии;
  3. Оценки послеоперационных последствий при трансплантации органов и желудочном шунтировании;
  4. Руководства малоинвазивными методами лечения опухолевидных заболеваний.

Подготовка к процедуре

  • Одежда должна быть удобной. В некоторых клиниках предлагают на время обследования халат.
  • Так как металлические предметы способны исказить данные исследования, рекомендуется их устранить. Это могут быть ювелирные украшения, заколки, зубные протезы, слуховой аппарат, очки, пирсинг, бюстгальтер с металлическими косточками. Необходимо сообщить специалисту об имеющемся кардиостимуляторе. При выполнении некоторых условий это может не препятствовать обследованию.
  • Рекомендуется несколько часов не есть перед исследованием.
  • Необходимо предупредить врача об аллергических реакциях и принимаемых лекарственных препаратах.
  • Заболевания почек, диабет, проблемы со щитовидной железой также увеличивают возможность возникновения побочных эффектов.
  • Еще очень важно предупредить доктора о беременности или о подозрении на беременность. Почти для всех видов КТ беременность является абсолютным противопоказанием.

Томография сердца

Сердце сравнивают с мотором. Из-за неустанной работоспособности или в связи с его важностью для организма. Нарушения в работе сердца приводят к перебоям в кровоснабжении всех органов и тканей. Поэтому диагностика заболеваний «мотора» особенно важна.

Что можно определить?

  • Причину ;
  • Состояние сосудистых стенок;
  • Проблемы с клапанами;
  • Опухоли сердца ( и др.);
  • Кальцификацию коронарных артерий;
  • Причины болей;
  • Начало изменений миокарда и коронарных сосудов.

Что особенного в проведении КТ сердца?

Фотографы знают, что получить качественный снимок движущегося объекта практически невозможно. Поэтому всегда просят «замереть». А ведь сердце не остановишь. В связи с этим придумали гениальную методику: камера, которая снимает срезы сердца, перемещается синхронно с движением органа . Важно, чтобы пульс пациента не был ускоренным. Но как бы больной не успокаивал себя, волнение все равно присутствует во время любой процедуры, даже такой безболезненной. Поэтому томография сердца и сосудов предполагает прием бета-адреноблокаторов для снятия . Иногда лекарства вводят непосредственно в сосуд перед процедурой. Чтобы получить максимально правдивые результаты, пациента просят задержать дыхание.

Томография грудной клетки

С помощью КТ грудной клетки определяют на ранних стадиях ряд легочных патологий. Обычно КТ легких проводится после рентгенографического исследования.

Возможности КТ при исследовании легких

  • Выявляются ранняя пневмония, рак, туберкулез, эмфизема, ;
  • Измеряется дыхательный объем;
  • Можно провести анализ плотности легких;
  • Возможна диагностика профессиональных заболеваний, связанных с поступлением в легкие кремния, кварца, асбеста;
  • Выявляются заболевания внутригрудных лимфатических узлов, трахей, бронхов.

При томографии легких также применяются контрастные вещества. Особой подготовки исследование не требует.

Видео: компьютерная томография в сюжете “1 канала”

Так что же − КТ или МРТ?

Многие пациенты теряются: какому методу исследования отдать предпочтение? Сравним две наиболее популярные методики: КТ и .
МРТ и КТ отличаются технологически. Компьютерная томография основана на использовании рентгеновского излучения. Поэтому для нее характерен тот же недостаток, что и для других рентгеновских методик – лучевая нагрузка. Хотя в томографах нового поколения ее удалось максимально снизить, КТ все-таки противопоказана определенной категории пациентов. Да и большой участок (например, весь позвоночник) обследовать невозможно из-за передозировки излучения.

В основе МРТ – магнитные волны. Этот метод более безопасный. Его рекомендуют даже детям и беременным.

«Видят» методы тоже по-разному. МРТ прекрасно справляется с диагностикой патологий головного и спинного мозга, но слабо различает полые органы : мочевой пузырь, легкие, желчный пузырь. С помощью этого метода можно исследовать почки, суставы, селезенку, печень. МРТ неплохо «берет» связки, мышцы, глазное яблоко.

Компьютерная томография применяется для диагностики заболеваний внутренних органов. С ее помощью на 100% можно выявить нарушение мозгового кровообращения, раннюю стадию инсульта. Высокая информативность у исследования поджелудочной железы. Хорошо распознаются опухоли, внутренние кровотечения. Любой рентген прекрасно видит кости. Поэтому метод незаменим при костных травмах.

аппарат для проведения МРТ внешне очень похож на установку для рентгеновской КТ, но имеет более длинный “тоннель” и совершенно другой принцип действия

Процедура МРТ более комфортна для пациентов, при ее проведении даже не нужно раздеваться. Аппараты нового поколения (открытого типа) не вызывают приступы клаустрофобии для отдельных категорий больных.

На результаты исследования МРТ влияет металл, находящийся в любом месте организма: зубные протезы, брекеты, кардиостимулятор, штифты, скобы, электронные приспособления во внутреннем ухе, импланты. Все эти «штучки» могут стать абсолютным противопоказанием для проведения исследования.

Средняя стоимость КТ одного участка в Москве 2 500 – 3 500 рублей, а МРТ – от 4 500 до 5 000 в той же валюте. Цена зависит от оборудования клиники. Более дорогая процедура, скорее всего, проводится на аппарате большей мощности. Пациентам, имеющим полис ОМС, можно пройти эти исследования бесплатно, но очередь такая, что при некоторых заболеваниях ее можно просто не дождаться.

Важно! Какими бы не были отличия КТ от МРТ и цены на процедуры, врач индивидуально для каждого пациента подбирает наиболее подходящий метод исследования.

Видео: сравнение КТ и МРТ

На ваш вопрос ответит один из ведущих .

В данный момент на вопросы отвечает: А. Олеся Валерьевна, к.м.н., преподаватель медицинского вуза

Компьютерная томография - метод был предложен в 1972 г Годфри Хаунсфилдом и Алланом Кормаком , удостоенными за эту разработку Нобелевской премии. Метод основан на измерении и сложной компьютерной обработке разности ослабления рентгеновского излучения различными по плотности тканями.

Компьютерная томография (КТ) - в широком смысле, синоним термина томография (так как все современные томографические методы реализуются с помощью компьютерной техники); в узком смысле (в котором употребляется значительно чаще), синоним термина рентгеновская компьютерная томография , так как именно этот метод положил начало современной томографии.

Рентгеновская компьютерная томография - томографический метод исследования внутренних органов человека с использованием рентгеновского излучения.

Появление компьютерных томографов

Первые математические алгоритмы для КТ были разработаны в г. австрийским математиком И. Радоном (см. преобразование Радона). Физической основой метода является экспоненциальный закон ослабления излучения , который справедлив для чисто поглощающих сред. В рентгеновском диапазоне излучения экспоненциальный закон выполняется с высокой степенью точности, поэтому разработанные математические алгоритмы были впервые применены именно для рентгеновской компьютерной томографии.

Предпосылки метода в истории медицины

Изображения, полученные методом рентгеновской компьютерной томографии, имеют свои аналоги в истории изучения анатомии . В частности, Николай Иванович Пирогов разработал новый метод изучения взаиморасположения органов оперирующими хирургами, получивший название топографической анатомии . Сутью метода было изучение замороженных трупов, послойно разрезанных в различных анатомических плоскостях («анатомическая томография»). Пироговым был издан атлас под названием «Топографическая анатомия, иллюстрированная разрезами, проведёнными через замороженное тело человека в трёх направлениях». Фактически, изображения в атласе предвосхищали появление подобных изображений, полученных лучевыми томографическими методами исследования.

Разумеется, современные способы получения послойных изображений имеют несравнимые преимущества: нетравматичность, позволяющая прижизненную диагностику заболеваний; возможность аппаратной реконструкции однократно полученных изображений в различных анатомических плоскостях (проекциях), а также трёхмерной реконструкции; возможность не только оценивать размеры и взаиморасположение органов, но и детально изучать их структурные особенности и даже некоторые физиологические характеристики, основываясь на показателях рентгеновской плотности и их изменении при внутривенном контрастном усилении.

Шкала Хаунсфилда

Для визуальной и количественной оценки плотности визуализируемых методом компьютерной томографии структур используется шкала ослабления рентгеновского излучения, получившая название шкалы Хаунсфилда (её визуальным отражением на мониторе аппарата является чёрно-белый спектр изображения). Диапазон единиц шкалы («денситометрических показателей , англ. Hounsfield units »), соответствующих степени ослабления рентгеновского излучения анатомическими структурами организма, составляет в среднем от - 1024 до + 1024 (в практическом применении эти величины могут несколько отличаться на разных аппаратах). Средний показатель в шкале Хаунсфилда (0 HU) соответствует плотности воды, отрицательные величины шкалы соответствуют воздуху и жировой ткани, положительные - мягким тканям, костной ткани и более плотному веществу (металл).

Следует отметить, что «рентгеновская плотность» - усредненное значение поглощения тканью излучения; при оценке сложной анатомо-гистологической структуры измерение её «рентгеновской плотности» не всегда позволяет с точностью утверждать, какая ткань визуализируется (например, насыщенные жиром мягкие ткани имеют плотность, соответствующую плотности воды).

Изменение окна изображения

Обычный компьютерный монитор способен отображать до 256 градаций серого цвета, некоторые специализированные медицинские аппараты способны показывать до 1024 градаций. В связи со значительной шириной шкалы Хаунсфилда и неспособностью существующих мониторов отразить весь её диапазон в черно-белом спектре, используется программный перерасчет серого градиента в зависимости от интересуемого интервала шкалы. Черно-белый спектр изображения можно применять как в широком диапазоне («окне») денситометрических показателей (визуализируются структуры всех плотностей, однако невозможно различить структуры, близкие по плотности), так и в более-менее узком с заданным уровнем его центра и ширины («легочное окно», «мягкотканное окно» и т. д.; в этом случае теряется информация о структурах, плотность которых выходит за пределы диапазона, однако хорошо различимы структуры, близкие по плотности). Проще говоря, изменение центра окна и его ширины можно сравнить с изменением яркости и контрастности изображения соответственно.

Средние денситометрические показатели

КТ-скан грудной клетки в легочном и мягкотканном окнах (на изображениях указаны параметры центра и ширины окна)

Вещество HU
Воздух −1000
Жир −120
Вода 0
Мягкие ткани +40
Кости +400 и выше

Развитие современного компьютерного томографа

Современный компьютерный томограф фирмы Siemens Medical Solutions

Современный компьютерный томограф представляет собой сложный программно -технический комплекс. Механические узлы и детали выполнены с высочайшей точностью. Для регистрации прошедшего через среду рентгеновского излучения используются сверхчувствительные детекторы , конструкция и материалы, применяемые при изготовлении которых постоянно совершенствуются. При изготовлении КТ томографов предъявляются самые жесткие требования к рентгеновским излучателям. Неотъемлемой частью аппарата является обширный пакет программного обеспечения , позволяющий проводить весь спектр компьютерно-томографических исследований (КТ-исследований) с оптимальными параметрами, проводить последующую обработку и анализ КТ-изображений. Как правило, стандартный пакет программного обеспечения может быть значительно расширен с помощью узкоспециализированных программ, учитывающих особенности сферы применения каждого конкретного аппарата .

Поколения компьютерных томографов: от первого до четвёртого

Прогресс КТ томографов напрямую связан с увеличением количества детекторов, то есть с увеличением числа одновременно собираемых проекций.

Аппарат 1-го поколения появился в 1973 г. КТ аппараты первого поколения были пошаговыми. Была одна трубка направленная на один детектор. Сканирование производилось шаг за шагом делая по одному обороту на слой. Один слой изображения обрабатывлся около 4 минут.

Во 2-ом поколении КТ аппаратов использовался веерный тип конструкции. На кольце вращения напротив рентгеновской трубки устанавливалось несколько детекторов. Время обработки изображения составило 20 секунд.

3-ее поколение компьютерных томографов ввело понятие спиральной компьютерной томографии. Движение трубки и детекторов, за один шаг стола синхронно осуществляла полное вращение по часовой стрелке, что значительно уменьшило время исследования. Увеличилось и количество детекторов. Время обработки и реконструкций заметно уменьшилось.

4-ое поколение имеет 1088 люминисцентных датчика расположенных по всему кольцу гантри. Вращается лишь рентгеновская трубка. Благодаря этому методу время вращения сократилось до 0,7 секунд. Но существенного отличия в качестве изображений с КТ аппаратами 3-го поколения не имеет.

Двумя основными разновидностями введения контрастного препарата являются пероральное (пациент с определенным режимом выпивает раствор препарата) и внутривенное (производится медицинским персоналом). Главной целью первого метода является контрастирование полых органов желудочно-кишечного тракта; второй метод позволяет оценить характер накопления контрастного препарата тканями и органами через кровеносную систему. Методики внутривенного контрастного усиления во многих случаях позволяют уточнить характер выявленных патологических изменений (в том числе достаточно точно указать наличие опухолей, вплоть до предположения их гистологической структуры) на фоне окружающих их мягких тканей, а также визуализировать изменения, не выявляемые при обычном («нативном») исследовании.

В свою очередь внутривенное контрастирование делится на два метода: обычное внутривенное контрастирование и болюсное контрастирование.

При первом методе контраст вводится от руки рентген-лаборантом, время и скорость введения не регулируются, после введения контрастного вещества начинается само исследование.

При втором методе контраст так же вводится внутривенно, но вводит в вену контраст уже специальный аппарат, разграничивающий время подачи. Метод заключается в том, чтобы разграничить фазы контрастирования. Примерно через 20 секунд после начала введения аппаратом контраста, начинается сканирование, при котором визуализируется наполнение артерий. Затем аппарат через определенное время сканирует этот же участок второй раз для выделения венозной фазы, в которой визуализируется наполнение вен. В венозной фазе различают множество подфаз, в зависимости от изучаемого органа. Так же различают паренхиматозную фазу, при которой наблюдается равномерное повышение показателей плотности паренхиматозных органов.

Компьютерная томография с двумя источниками

DSCT - Dual Source Computed Tomography. Русскоязычной аббревиатуры в настоящее время нет.

В 2005 году компанией 1979 году, но технически его реализация в тот момент была невозможно.

По сути он является одним из логичных продолжений технологии МСКТ. Дело в том, что при исследовании сердца (КТ-коронарография) необходимо получение изображений объектов находящихся в постоянном и быстром движении, что требует очень короткого периода сканирования. В МСКТ это достигалось синхронизацией ЭКГ и обычного исследования при быстром вращении трубки. Но минимальный промежуток времени, требуемый для регистрации относительно неподвижного среза для МСКТ при времени обращения трубки, равном 0,33 с (≈3 оборота в секунду), равен 173 мс, то есть время полуоборота трубки. Такое временное разрешение вполне достаточно для нормальной частоты сердечных сокращений (в исследованиях показана эффективность при частотах менее 65 ударов в минуту и около 80, с промежутком малой эффективности между этими показателями и при больших значениях). Некоторое время пытались увеличить скорость вращения трубки в гентри томографа. В настоящее время достигнут предел технических возможностей для ее увеличения, так как при обороте трубки в 0,33 с ее вес возрастает в 28 раз (перегрузки 28 ). Чтобы получить временное разрешение менее 100 мс, требуется преодоление перегрузок более чем 75 g.

Использование же двух рентгеновских трубок, расположенных под углом 90°, дает временное разрешение, равное четверти периода обращения трубки (83 мс при обороте за 0,33 с). Это позволило получать изображения сердца независимо от частоты сокращений.

Также такой аппарат имеет еще одно значительное преимущество: каждая трубка может работать в своем режиме (при различных значениях напряжения и тока, кВ и мА соответственно). Это позволяет лучше дифференцировать на изображении близкорасположенные объекты различных плотностей. Особенно это важно при контрастировании сосудов и образований, находящихся близко от костей или металлоконструкций. Данный эффект основан на различном поглощении излучения при изменении его параметров у смеси кровь + йодсодержащее контрастное вещество при неизменности этого параметра у гидроксиапатита (основа кости) или металлов.

В остальном аппараты являются обычными МСКТ аппаратами и обладают всеми их преимуществами.

Массовое внедрение новых технологий и компьютерных вычислений позволили внедрить в практику такие методы, как виртуальная эндоскопия, в основе которых лежит РКТ и МРТ.

Литература

  • Cormack A.M. Early two-dimensional reconstruction and recent topics stemming from it // Nobel Lectures in Physiology or Medicine 1971-1980. - World Scientific Publishing Co., 1992. - p. 551-563

Компьютерная томография, сокращенно КТ - это способ получения послойных срезов тела человека или другого объека с помощью рентгеновских лучей. Этот метод для диагностических целей был предложен к использованию в 1972 году, его основателями принято считать Годфри Хаунсфилда и Алана Кормака, получившими за свои разработки Нобелевскую премию. В основе компьютерной томографии лежит измерение разницы ослабления рентгеновского излучения различными тканями, обработка полученных данных компьютером с помощью математических алгоритмов и формирование графического отображения (срезов) органов человека на экране с последующей их интерпретацией врачом-радиологом.

В момент своего появления компьютерная томография произвела революцию в медицинской диагностике, так как впервые появилась возможность рассмотреть послойное изображение тела человека без вмешательства скальпеля хирурга или эндоскопа. Сегодня метод КТ прочно занял свою нишу в диагностике самых разных болезней — прежде всего, онкологических заболеваний, болезней легких, костей, органов живота, внутреннего уха и т.д.

ПРИНЦИП РАБОТЫ КОМПЬЮТЕРНОГО ТОМОГРАФА

Данные, которые могут быть получены при компьютерной томографии, это:

  • характеристики излучения, полученные на выходе рентгеновской трубки
  • характеристики излучения, достигнувшего детектора
  • месторасположение трубки и детектора в каждый момент времени.

Все остальные данные получаются посредством обработки полученной информации. Большая часть сечений при компьютерной томографии имеет ориентацию перпендикулярно по отношению к продольной оси тела.

Для получения среза трубка оборачивается вокруг пациента на 360 градусов, толщина среза при этом задается заранее. В обычном КТ-сканере трубка вращается постоянно, излучение расходится веерообразно. Рентгеновская трубка и принимающее устройство (детектор) спарены, их вращение вокруг сканируемой зоны происходит синхронно: рентгеновское излучение испускается и улавливается детекторами, расположенными на противоположной стороне, практически одновременно. Веерообразное расхождение происходит под углом от 40 до 60 градусов, в зависимости от конкретного аппарата.

Принцип действия компьютерного томографа : вокруг тела пациента вращается рентгеновская трубка. Расположенные на противоположной стороне детекторы улавливают рентгеновское излучение.

Одно изображение формируется обычно при повороте трубки на 360 градусов: измеряются коэффициенты ослабления излучения во множестве точек (современные аппараты имеют возможность собирать информацию с 1400 точек и больше).

МУЛЬТИСПИРАЛЬНАЯ (МНОГОСРЕЗОВАЯ) КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ — ЧТО ЭТО?

Наиболее современными являются томографы с множественными рядами детекторов: с трубкой спарен не один, а несколько рядов детекторов, что способствует укорочению времени исследования, повышает разрешающую способность, позволяет более четко визуализировать мелкие структуры (например, небольшие кровеносные сосуды). В зависимости от количества ряда детекторов компьютерные томографы бывают 16-, 32-, 64-, 128-срезовыми и т.д. Чем больше количество детекторов, тем быстрее можно получить качественные изображения органа.

ОТЛИЧИЕ СПИРАЛЬНОЙ И ОБЫЧНОЙ (ПОШАГОВОЙ) КТ

В чем отличие обычного компьютерного томографа от мультиспирального? При пошаговой (традиционной) томографии срезы получаются следующим образом: происходит один оборот (или несколько оборотов) трубки вокруг заданного участка тела, в результате чего формируется изображение одного среза определенной толщины; затем стол (и пациент) сдвигается в заданном направлении на определенное расстояние, величина которого выбирается заранее. Также выбирается величина, на которую срезы будут перекрывать друг друга — это необходимо, чтобы не упустить мелкие детали изображения. Исследование, таким образом, занимает несколько минут (в зависимости от размеров пациента), требует более точного расчета времени при введении контрастного средства.

В отличие от пошаговой томографии, при спиральной КТ получение данных происходит при продвижении пациента внутри аппарата постоянно, а трубка при этом совершает непрерывное движение по кругу. Скорость движения стола привязана ко времени, необходимому для одного оборота трубки, в результате чего получается массив данных, более пригодных для создания качественных реконструкций и коррекции неточностей изображений.

Устройство мультиспирального (многосрезового) компьютерного томографа: одновременно с движением пациента происходит вращение рентгеновской трубки, испускающей широкий пучок рентгеновских лучей. Траектория сканирования приобретает спиральную форму.

Спиральная компьютерная томография обладает следующими преимуществами перед пошаговой: возможность создания более качественных трехмерных и мультипланарных реконструкций; более высокая скорость проведения исследования; возможность выявления образований, размеры которых меньше толщины среза: если при пошаговой КТ, когда образование попадает между срезами, его не видно, то при спиральной визуализация возможна.

ВТОРОЕ МНЕНИЕ ПО КТ

Несмотря на высокую точность компьютерной томографии, иногда результаты диагностики могут быть неоднозначными или сомнительными. В таких случаях помогает пересмотр данных КТ опытным радиологом, который специализируется на определенном виде обследования. Такая высококвалифицированная и независимая расшифровка снимков КТ позволяет уточнить диагноз и предоставляет лечащему врачу точную информацию для выбора правильного лечения. Получить экспертную расшифровку результатов компьютерной томографии можно с помощью системы консультаций Национальной телерадиологической сети. Достаточно загрузить КТ-снимки с диска и получить точное заключение, составленное по наиболее современным стандартам.

Компьютерная томография - это особый вид рентгенологического исследования, которое проводится посредством непрямого измерения ослабления или затухания, рентгеновских лучей из различных положений, определяемых вокруг обследуемого пациента. В сущности, все, что мы знаем, это:

  • что покидает рентгеновскую трубку,
  • что достигает детектора и
  • каково место рентгеновской трубки и детектора в каждом положении.

Все остальное следует из этой информации. Большинство КТ-сечений ориентированы вертикально по отношению к оси тела. Они обычно называются аксиальными или поперечными срезами. Для каждого среза рентгеновская трубка поворачивается вокруг пациента, толщина среза выбирается заранее. Большинство КТ-сканеров работают по принципу постоянного вращения с веерообразным расхождением лучей. При этом рентгеновская трубка и детектор жестко спарены, а их ротационные движения вокруг сканируемой области происходят одновременно с испусканием и улавливанием рентгеновского излучения. Таким образом, рентгеновские лучи, проходя через пациента, доходят до детекторов, расположенных на противоположной стороне. Веерообразное расхождение происходит в диапазоне от 40° до 60°, в зависимости от устройства аппарата, и определяется углом, начинающимся от фокусного пятна рентгеновской трубки и расширяющимся в виде сектора до наружных границ ряда детекторов. Обычно изображение формируется при каждом обороте в 360°, полученных данных оказывается для этого достаточно. В процессе сканирования во многих точках измеряют коэффициенты ослабления, формируя профайл затухания. На самом деле профайлы затухания представляют собой не что иное, как набор полученных сигналов от всех каналов детекторов с данного угла системы трубка-детектор. Современные КТ-сканеры способны излучать и собирать данные приблизительно с 1400 положений системы детектор-трубка на окружности 360°, или около 4 положений в градусе. Каждый профайл ослабления включает в себя измерения от 1500 каналов детекторов, т. е. приблизительно 30 каналов в градусе, при условии угла расхождения луча 50°. В начале исследования, при продвижении стола пациента с постоянной скоростью внутрь гентри, получают цифровую рентгенограмму («сканограмму» или «топограмму»), на которой в дальнейшем могут быть распланированы требуемые срезы. При КТ-исследовании позвоночника или головы гентри поворачивают под нужным углом, тем самым добиваясь оптимальной ориентации сечений).

Компьютерная томография использует комплексные показания датчика рентгена, который вращается вокруг пациента с целью получения большого количества разнообразных изображений определенной глубины (томограммы), которые переводятся в цифровую форму и преобразовываются в перекрестные изображения. КТ обеспечивает 2- и 3-мерную информацию, которую невозможно получить с помощью простого рентгена и с помощью гораздо более высококонтрастного разрешения. В результате КТ стала новым стандартом для отображения большей части внутричерепных, головных и шейных, внутригрудных и внутрибрюшных структур.

Ранние образцы сканеров КТ использовали только один датчик рентгена, и пациент проходил через сканер с приращением, останавливаясь для каждого снимка. Этот метод был в значительной степени заменен винтовой КТ: пациент непрерывно перемещается через сканер, который непрерывно вращается и делает снимки. Винтовая КТ в большой степени сокращает время отображения и уменьшает толщину пластины. Использование сканеров с многочисленными датчиками (4-64 рядов датчиков рентгена) далее уменьшает время отображения и обеспечивает толщину пластины менее 1 мм.

С таким количеством отображенных данных изображения могут быть восстановлены в почти любом ракурсе (как это делается в МРТ) и могут использоваться для построения 3-мерных снимков при поддержании диагностического решения изображения. Клиническое применение включает ангиографию КТ (например, для оценки легочной эмболии) и кардиоотоб-ражения (например, коронарная ангиография, оценка коронарного отвердения артерии). Электронно-лучевая КТ, другой тип быстрой КТ, может также использоваться для оценки коронарного отвердения артерии.

Снимки КТ могут быть получены с/или без контраста. Неконтрастная КТ может обнаруживать острое кровоизлияние (которое кажется ярко-белым) и характеризовать переломы кости. Контрастная КТ использует IV или устный контраст, или оба. IV контраст, подобный используемому в простом рентгене, применяется для отображения опухолей, инфекции, воспаления и травм в мягких тканях и для оценки состояния сосудистой системы, как в случаях подозрения на легочную эмболию, аортальную аневризму или аортального рассечения. Выделение контраста через почки позволяет дать оценку мочеполовой системы. Для получения информации о контрастных реакциях и их трактовке.

Оральный контраст используется для отображения брюшной области; это помогает отделять кишечную структуру от окружающих. Стандартный устный контраст - контраст на основе бариумного йода, может использоваться в том случае, когда есть подозрение на кишечную перфорацию (например, при травме); низкий осмолярный контраст должен использоваться, когда высок риск аспирации.

Воздействие радиации - важный вопрос при использовании КТ. Лучевая доза от обычной брюшной КТ в 200- 300 раз выше, чем доза радиации, получаемая при типичном рентгене грудной области. КТ сегодня является наиболее распространенным источником искусственного облучения для большей части населения и составляет более 2/3 совокупного медицинского облучения. Эта степень подверженности человека облучению - не тривиальна, риск облучения детей, сегодня испытывающих воздействие радиации КТ, за всю их жизнь, согласно подсчетам, будет намного выше, чем степень облучения взрослых. Поэтому необходимость экспертизы КТ должна быть тщательно взвешена с учетом возможного риска для каждого отдельного пациента.

Мультиспиральная компьютерная томография

Спиральная компьютерная томография с многорядным расположением детекторов (мультиспиральная компьютерная томография)

Компьютерные томографы с многорядным расположением детекторов относятся к самому последнему поколению сканеров. Напротив рентгеновской трубки располагается не один, а несколько рядов детекторов. Это дает возможность значительно укоротить время исследования и улучшить контрастное разрешение, что позволяет, например, четче визуализировать контрастированные кровеносные сосуды. Ряды детекторов Z-оси напротив рентгеновской трубки различны по ширине: наружный ряд шире, чем внутренний. Это обеспечивает лучшие условия для реконструкции изображения после сбора данных.

Сравнение традиционной и спиральной компьютерной томографии

При традиционной компьютерной томографии получают серии последовательных одинаково пространственно расположенных изображений через определенную часть тела, например, брюшную полость или голову. Обязательна короткая пауза после каждого среза для продвижения стола с пациентом в следующее заранее заданное положение. Толщина и наложение/межсрезовый промежуток выбираются заранее. Сырые данные для каждого уровня сохраняются отдельно. Короткая пауза между срезами дает возможность пациенту, находящемуся в сознании, перевести дыхание и тем самым избежать грубых дыхательных артефактов на изображении. Тем не менее, исследование может занимать несколько минут, в зависимости от области сканирования и размеров пациента. Необходимо правильно подобрать время получения изображения после в/в введения КС, что особенно важно для оценки перфузионных эффектов. Компьютерная томография является методом выбора для получения полноценного двухмерного аксиального изображения тела без помех, создаваемых наложением костной ткани и/или воздуха, как это бывает на обычной рентгенограмме.

При спиральной компьютерной томографии с однорядным и многорядным расположением детекторов (МСКТ) сбор данных исследования пациента происходит постоянно во время продвижения стола внутрь гентри. Рентгеновская трубка при этом описывает винтовую траекторию вокруг пациента. Продвижение стола скоординировано со временем, необходимым для оборота трубки на 360° (шаг спирали) - сбор данных продолжается непрерывно в полном объеме. Подобная современная методика значительно улучшает томографию, потому что дыхательные артефакты и возникающие помехи не затрагивают единый набор данных так значительно, как при традиционной компьютерной томографии. Единая база сырых данных используется для восстановления срезов различной толщины и различных интервалов. Частичное наложение сечений улучшает возможности реконструкции.

Сбор данных при исследовании всей брюшной полости занимает 1 - 2 минуты: 2 или 3 спирали, каждая длительностью 10-20 секунд. Ограничение времени обусловлено способностью пациента задержать дыхание и необходимостью охлаждения рентгеновской трубки. Еще некоторое время необходимо на воссоздание изображения. При оценке функции почек требуется небольшая пауза после введения контрастного вещества, чтобы дождаться экскреции контрастного препарата.

Еще одно важное преимущество спирального метода - возможность выявить патологические образования меньшего размера, чем толщина среза. Маленькие метастазы в печени могут быть пропущены, если в результате неодинаковой глубины дыхания пациента во время сканирования не попадают в срез. Метастазы хорошо выявляются из сырых данных спирального метода при восстановлении срезов, полученных с наложением сечений.

Пространственное разрешение

Восстановление изображения основано на различиях в контрастности отдельных структур. На основе этого создается матрица изображения области визуализации 512 х 512 или более элементов изображения (пикселей). Пиксели выглядят на экране монитора как участки различных оттенков серого цвета в зависимости от их коэффициента ослабления. На самом деле это даже не квадратики, а кубики (воксели = объемные элементы), имеющие длину вдоль оси тела, соответственно толщине среза.

Качество изображения повышается с уменьшением вокселей, но это относится только к пространственному разрешению, дальнейшее истончение среза снижает соотношение «сигнал-помеха». Другой недостаток тонких срезов - увеличение дозы облучения пациента. Тем не менее, маленькие воксели с одинаковыми размерами во всех трех измерениях (изотропный воксель), дают значительные преимущества: мультипланарная реконструкция (MPR) в корональной, сагиттальной или других проекциях представлена на изображении без ступенчатого контура). Использование вокселей неодинаковых размеров (анизотропные воксели) для MPR приводит к появлению зубчатости реконструированного изображения. Так, например, могут возникнуть трудности при исключении перелома.

Шаг спирали

Шаг спирали характеризует степень перемещения стола в мм за одно вращение и толщину среза. Медленное продвижение стола формирует сжатую спираль. Ускорение перемещения стола без изменения толщины среза или скорости вращения создает пространство между срезами на получаемой спирали.

Наиболее часто шаг спирали понимают как отношение перемещения (подачи) стола при обороте гентри, выраженное в мм, к коллимации, также выраженной в мм.

Поскольку размерности (мм) в числителе и знаменателе уравновешены, шаг спирали - величина безразмерная. Для МСКТ за т. н. объемный шаг спирали обычно принимают отношение подачи стола к одиночному срезу, а не к полной совокупности срезов вдоль оси Z. Для примера, который был использован выше, объемный шаг спирали равен 16 (24 мм / 1,5 мм). Тем не менее, существует тенденция возврата к первому определению шага спирали.

Новые сканеры дают возможность выбора краниокаудального (ось Z) расширения области исследования по топограмме. Также по мере необходимости корректируются время оборота трубки, коллимирование среза (тонкий или толстый срез) и время исследования (промежуток задержки дыхания). Программное обеспечение, например, «SureView», рассчитывает соответствующий шаг спирали, обычно устанавливая величину между 0,5 и 2,0.

Коллимирование среза: разрешение вдоль оси Z

Разрешение изображения (вдоль оси Z или оси тела пациента) может также быть адаптировано к конкретной диагностической задаче с помощью коллимирования. Срезы толщиной от 5 до 8 мм полностью соответствуют стандартному исследованию брюшной полости. Однако точная локализация небольших фрагментов переломов костей или оценка едва различимых легочных изменений требуют использования тонких срезов (от 0,5 до 2 мм). Что определяет толщину среза?

Термин коллимирование определяют как получение тонкого или толстого среза вдоль продольной оси тела пациента (ось Z). Врач может ограничить веерообразное расхождение пучка излучения от рентгеновской трубки коллиматором. Размер отверстия коллиматора регулирует прохождение лучей, которые попадают на детекторы позади пациента широким или узким потоком. Сужение пучка излучения позволяет улучшить пространственное разрешение вдоль оси Z пациента. Коллиматор может быть расположен не только сразу на выходе из трубки, но также непосредственно перед детекторами, то есть «позади» пациента, если смотреть со стороны источника рентгеновского излучения.

Зависимая от ширины отверстия коллиматора система с одним рядом детекторов позади пациента (одиночный срез) может выполнять срезы толщиной 10 мм, 8 мм, 5 мм или даже 1 мм. КТ-исследование с получением очень тонких сечений именуется «КТ высокого разрешения» (ВРКТ). Если толщина срезов меньше миллиметра - говорят о «КТ сверхвысокого разрешения» (СВРКТ). СВРКТ, применяемая для исследования пирамиды височной кости со срезами толщиной около 0,5 мм, выявляет тонкие линии перелома, проходящие через основание черепа или слуховые косточки в барабанной полости). Для печени высококонтрастное разрешение используется с целью обнаружения метастазов, при этом требуются срезы несколько большей толщины.

Схемы расстановки детекторов

Дальнейшее развитие односрезовой спиральной технологии привело к внедрению мультисрезовой (мультиспиральной) методики, при которой используется не один, а несколько рядов детекторов, расположенных перпендикулярно оси Z напротив источника рентгеновского излучения. Это дает возможность одновременно собирать данные с нескольких сечений.

В связи с веерообразным расхождением излучения ряды детекторов должны иметь разную ширину. Схема расстановки детекторов заключается в том, что ширина детекторов увеличивается от центра к краю, что позволяет варьировать комбинациями толщины и количества получаемых срезов.

Например, 16-срезовое исследование может быть выполнено с 16 тонкими срезами высокого разрешения (для Siemens Sensation 16 это методика 16 х 0,75 мм) или с 16 сечениями вдвое большей толщины. Для подвздошно-бедренной КТ-ангиографии предпочтительно получение объемного среза за один цикл вдоль оси Z. При этом ширина коллимирования 16 х 1,5 мм.

Развитие КТ-сканеров не закончилось 16 срезами. Сбор данных можно ускорить, используя сканеры с 32 и 64 рядами детекторов. Однако тенденция к уменьшению толщины срезов ведет к повышению дозы облучения пациента, что требует дополнительных и уже осуществимых мероприятий по снижению воздействия излучения.

При исследовании печени и поджелудочной железы многие специалисты предпочитают уменьшать толщину срезов с 10 до 3 мм для улучшения резкости изображения. Однако это увеличивает уровень помех приблизительно на 80 %. Поэтому, чтобы сохранить качество изображения, нужно или дополнительно прибавить силу тока на трубке, т. е. повысить силу тока (мА) на 80 %, или увеличить время сканирования (возрастает произведение мАс).

Алгоритм реконструкции изображений

Спиральная компьютерная томография имеет дополнительное преимущество: в процессе восстановления изображения большинство данных не измеряются фактически в конкретном срезе. Взамен этого, измерения, полученные за пределами этого среза, интерполируются с большинством значений вблизи среза и становятся данными, закрепленными за этим срезом. Другими словами: результаты обработки данных вблизи среза являются более важными для восстановления изображения конкретного сечения.

Из этого следует интересный феномен. Доза пациента (в мГр) определяется как мАс за вращение, разделенное на шаг спирали, а доза на одно изображение приравнивается к мАс за вращение без учета шага спирали. Если, например, выставлены настройки 150 мАс за вращение с шагом спирали 1,5, то доза пациента составляет 100 мАс, а доза, приходящаяся на изображение, - 150 мАс. Поэтому использование спиральной технологии может улучшить контрастное разрешение выбором высокого значения мАс. При этом появляется возможность увеличить контрастность изображения, тканевое разрешение (четкость изображения) за счет уменьшения толщины среза и подобрать такой шаг и длину интервала спирали, чтобы доза пациента уменьшалась! Таким образом, большое количество срезов может быть получено без увеличения дозы или нагрузки на рентгеновскую трубку.

Эта технология особенно важна при преобразовании полученных данных в 2-мерные (сагиттальную, криволинейную, корональную) или 3-мерные реконструкции.

Данные измерений от детекторов пропускаются, профайл за профайлом, к электронной части детектора как электрические сигналы, соответствующие фактическому ослаблению рентгеновского излучения. Электрические сигналы оцифровываются и затем пересылаются на видеопроцессор. На этом этапе реконструкции изображения используется метод «конвейера», состоящий из предварительной обработки, фильтрации и обратного проектирования.

Предварительная обработка включает все исправления, произведенные для подготовки полученных данных для восстановления изображения. Например, исправление темнового тока, выходного сигнала, калибровки, коррекция дорожек, увеличение жесткости излучения и др. Эти корректировки выполняются для уменьшения вариаций в работе трубки и детекторов.

Фильтрация использует отрицательные величины для коррекции размазывания изображения, присущего обратному проектированию. Если, например, сканируется цилиндрический водный фантом, который воссоздается без фильтрации, края его окажутся крайне расплывчатыми. Что произойдет, когда восемь профайлов ослабления накладываются друг на друга для восстановления изображения? Так как некоторая часть цилиндра измеряется двумя совмещенными профайлами, вместо реального цилиндра получается звездчатое изображение. Вводя отрицательные величины за пределами положительной составляющей профайлов ослабления, удается достичь того, что края этого цилиндра становятся четкими.

Обратное проектирование перераспределяет данные свернутого скана в 2-мерную матрицу изображения, отображая порченные срезы. Это выполняется, профайл за профайлом, до завершения процесса воссоздания образа. Матрицу изображения можно представить в виде шахматной доски, но состоящей из 512 x 512 или 1024 х 1024 элементов, обычно называемых «пикселями». В результате обратного проектирования каждому пикселю в точности соответствует заданная плотность, которая на экране монитора имеет различные оттенки серого цвета, от светлого до темного. Чем светлее участок экрана, тем выше плотность ткани в пределах пикселя (например, костные структуры).

Влияние напряжения (кВ)

Когда исследуемая анатомическая область характеризуется высокой поглощающей способностью (например, КТ головы, плечевого пояса, грудного или поясничного отделов позвоночника, таза или просто полного пациента), целесообразно использовать повышенное напряжение или, взамен этого, более высокие значения мА. При выборе высокого напряжения на рентгеновской трубке, вы увеличиваете жесткость рентгеновского излучения. Соответственно, рентгеновские лучи гораздо легче проникают через анатомическую область с высокой поглощающей способностью. Положительной стороной этого процесса является снижение низкоэнергетических компонентов излучения, которые поглощаются тканями пациента, не влияя на получение изображения. Для обследования детей и при отслеживании болюса KB может быть целесообразным использование более низкого напряжения, чем в стандартных установках.

Сила тока трубки (мАс)

Сила тока, измеряемая в миллиампер-секундах (мАс), также оказывает влияние на дозу облучения, получаемую пациентом. Крупному больному для получения качественного изображения требуется увеличение силы тока трубки. Таким образом, более тучный пациент получает большую дозу облучения, чем, например, ребенок с заметно меньшими размерами тела.

Области с костными структурами, которые больше поглощают и рассеивают излучение, такие как плечевой пояс и таз, нуждаются в большей силе тока трубки, чем, например, шея, брюшная полость худощавого человека или ноги. Эта зависимость активно используется при защите от облучения.

Время сканирования

Следует выбрать максимально короткое время сканирования, особенно при исследовании брюшной полости и грудной клетки, где сокращения сердца и перистальтика кишечника могут ухудшить качество изображения. Качество КТ-исследования также улучшается при снижении вероятности непроизвольных движений пациента. С другой стороны, может возникать необходимость более длительного сканирования для сбора достаточного количества данных и максимального пространственного разрешения. Иногда выбор продленного времени сканирования со снижением силы тока используется сознательно с целью продления срока эксплуатации рентгеновской трубки.

Трехмерная реконструкция

В связи с тем, что при спиральной томографии собирается объем данных для целой области тела пациента, визуализация переломов и кровеносных сосудов заметно улучшилась. Применяют несколько различных методов трехмерной реконструкции:

Проекция максимальной интенсивности (Maximal Intensity Projection), MIP

MIP - это математический метод, посредством которого из двухмерного или трехмерного набора данных извлекаются гиперинтенсивные воксели. Воксели выбираются из набора данных, полученных иод различными углами, и затем проецируются как двухмерные изображения. Трехмерный эффект получают изменением угла проецирования с малым шагом, и затем, визуализируя восстановленное изображение в быстрой последовательности (т. е. в динамическом режиме просмотра). Этот метод часто используется при исследовании кровеносных сосудов с контрастным усилением.

Мультипланарная реконструкция (Multiplanar Reconstruction), MPR

Эта методика делает возможной реконструкцию изображения в любой проекции, будь то корональная, сагиттальная или криволинейная. MPR является ценным инструментом в диагностике переломов и в ортопедии. Например, традиционные аксиальные срезы не всегда дают полную информацию о переломах. Тончайший перелом без смещения отломков и нарушения кортикальной пластинки может быть более эффективно обнаружен с помощью MPR.

Трехмерная реконструкция затененных поверхностей (Surface Shaded Display), SSD

Этот метод воссоздает поверхность органа или кости, определенную выше заданного порога в единицах Хаунсфилда. Выбор угла изображения, так же как местоположение гипотетического источника света, является ключевым фактором для получения оптимальной реконструкции (компьютер вычисляет и удаляет с изображения участки затенения). На поверхности кости четко виден перелом дистальной части лучевой кости, продемонстрированный с помощью MPR.

Трехмерная SSD также используется при планировании хирургического вмешательства, как в случае травматического перелома позвоночника. Меняя угол изображения, легко обнаружить компрессионный перелом грудного отдела позвоночника и оценить состояние межпозвоночных отверстий. Последние можно исследовать в нескольких различных проекциях. На сагиттальной МПР виден костный фрагмент, который смещается в спинномозговой канал.

Основные правила чтения компьютерных томограмм

  • Анатомическая ориентация

Изображение на мониторе - не просто 2-мерное отображение анатомических структур, оно содержит данные о средней величине поглощения тканями рентгеновского излучения, представленное матрицей, состоящей из 512 x 512 элементов (пикселей). Срез имеет определенную толщину (d S) и представляет собой сумму кубовидных элементов (вокселей) одинакового размера, объединенных в матрицу. Эта техническая особенность лежит в основе эффекта частного объема, объясняемого ниже. Получаемые изображения обычно представляют собой вид снизу (с каудальной стороны). Поэтому правая сторона пациента находится на изображении слева и наоборот. Например, печень, расположенная в правой половине брюшной полости, представлена на левой стороне изображения. А органы, расположенные слева, такие как желудок и селезенка, видны на картинке справа. Передняя поверхность тела, в данном случае представленная передней брюшной стенкой, определяется в верхней части изображения, а задняя поверхность с позвоночником - снизу. Тот же принцип формирования изображения используется при традиционной рентгенографии.

  • Эффекты частного объема

Рентгенолог сам устанавливает толщину среза (d S). Для исследования грудной и брюшной полостей обычно выбирают 8 - 10 мм, а для черепа, позвоночника, глазниц и пирамид височных костей - 2 - 5 мм. Поэтому структуры могут занимать всю толщину среза или только часть ее. Интенсивность окраски вокселя по серой шкале зависит от среднего коэффициента ослабления для всех его компонентов. Если структура имеет одинаковую форму по всей толщине среза, она будет выглядеть четко очерченной, как в случае брюшной аорты и нижней полой вены.

Эффект частного объема возникает, когда структура занимает не всю толщину среза. Например, если срез включает только часть тела позвонка и часть диска, то их контуры оказываются нечеткими. То же самое наблюдается, когда орган суживается внутри среза. Это является причиной плохой четкости полюсов почки, контуров желчного и мочевого пузыря.

  • Различие между узловыми и трубчатыми структурами

Важно уметь отличать увеличенные и патологически измененные ЛУ от сосудов и мышц, попавших в поперечное сечение. Сделать это только по одному сечению бывает очень сложно, потому что эти структуры имеют одинаковую плотность (и одинаковый оттенок серого). Поэтому следует всегда анализировать соседние срезы, расположенные краниальнее и каудальнее. Уточнив, на скольких срезах видна данная структура, можно решить дилемму, видим ли мы увеличенный узел или более-менее длинную трубчатую структуру: лимфоузелбудет определяться только на одном - двух срезах и не визуализируется на соседних. Аорта, нижняя полая венаи мышцы, например, пояснично-подвздошная, видны на протяжении серии кранио-каудальных изображений.

Если возникло подозрение на увеличенное узловое образование на одном срезе, то врачу следует немедленно сравнить соседние сечения, чтобы четко определить, не является ли это «образование» просто сосудом или мышцей в поперечном сечении. Такая тактика хороша и тем, что дает возможность быстро установить эффект частного объема.

  • Денситометрия (измерение плотности тканей)

Если не известно, например, является ли жидкость, найденная в плевральной полости, выпотом или кровью, измерение ее плотности облегчает дифференциальный диагноз. Точно так же, денситометрию можно применить при очаговых образованиях в паренхиме печени или почек. Однако не рекомендуется делать заключение на основании оценки одиночного вокселя, т. к. подобные измерения малодостоверны. Для большей надежности следует расширить «область интереса», состоящую из нескольких вокселей в очаговом образовании, какой-либо структуре или объеме жидкости. Компьютер рассчитывает среднюю плотность и величину стандартного отклонения.

Следует быть особенно внимательным и не упустить артефакты увеличения жесткости излучения или эффекты частного объема. Если образование распространяется не на всю толщину среза, то измерение плотности включает в себя соседствующие с ним структуры. Плотность образования будет измерена корректно, только если оно заполняет всю толщину среза (d S). В этом случае более вероятно, что измерения будут затрагивать само образование, а не соседние структуры. Если ds больше, чем диаметр образования, например, очаг маленьких размеров, это приведет к проявлению эффекта частного объема на любом уровне сканирования.

  • Уровни плотности различных типов тканей

Современные аппараты способны охватить 4096 оттенков серой шкалы, которыми представлены различные уровни плотности в единицах Хаунсфилда (HU). Плотность воды произвольно была принята за 0 HU, а воздуха за - 1000 HU. Экран монитора может отображать максимум 256 оттенков серого. Однако человеческий глаз способен различить только около 20. Поскольку спектр плотностей тканей человека простирается шире, чем эти довольно узкие рамки, можно выбрать и отрегулировать окно изображения таким образом, чтобы были видны только ткани требуемого диапазона плотности.

Средний уровень плотности окна необходимо установить как можно ближе к уровню плотности исследуемых тканей. Легкое, из-за повышенной воздушности, лучше исследовать в окне с настройками низкого значения HU, тогда как для костной ткани уровень окна следует значительно повысить. От ширины окна зависит контрастность изображения: суженное окно более контрастно, поскольку 20 оттенков серого перекрывают только малую часть шкалы плотностей.

Важно отметить, что уровень плотности почти всех паренхиматозных органов находится в пределах узких границ между 10 и 90 HU. Исключением являются легкие, поэтому, как было указано выше, необходимо установить специальные параметры окна. В отношении кровоизлияний следует принять в расчет, что уровень плотности недавно свернувшейся крови примерно на 30 HU выше, чем свежей крови. Затем уровень плотности снова падает в участках старого кровоизлияния и в зонах лизиса тромбов. Экссудат с содержанием белка более 30 г/л нелегко отличить от транссудата (с содержанием белка ниже 30 г/л) при стандартных настройках окна. В дополнение следует сказать, что высокая степень совпадения плотностей, например, у лимфоузлов, селезенки, мышц и поджелудочной железы, делает невозможным установить принадлежность ткани только на основании оценки плотности.

В заключение следует отметить, что обычные значения плотностей тканей также индивидуальны у разных людей и меняются под влиянием контрастных препаратов в циркулирующей крови и в органе. Последний аспект имеет особое значение для исследования мочеполовой системы и касается в/в введения КВ. При этом контрастный препарат быстро начинает выделяться почками, что приводит к повышению плотности паренхимы почек во время сканирования. Этот эффект можно использовать для оценки функции почек.

  • Документирование исследований в различных окнах

Когда изображение получено, для документирования исследования необходимо перенести снимок на пленку (сделать твердую копию). Например, при оценке состояния средостения и мягких тканей грудной клетки устанавливается такое окно, что мышцы и жировая ткань четко визуализируются оттенками серого цвета. При этом используется мягко-тканное окно с центром на 50 HU и шириной 350 HU. В результате серым цветом представлены ткани плотностью от -125 HU (50-350/2) до +225 HU (50+350/2). Все ткани с плотностью ниже чем -125 HU, такие как легкое, выглядят черными. Ткани с плотностью выше +225 HU - белыми, а их внутренняя структура не дифференцируется.

Если необходимо исследовать паренхиму легких, например, когда исключают узловые образования, центр окна должен быть снижен до -200 HU, а ширина увеличена (2000 HU). При использовании данного окна (легочное окно), лучше дифференцируются структуры лёгкого с низкой плотностью.

Для достижения максимальной контрастности между серым и белым веществом головного мозга следует выбрать специальное мозговое окно. Так как плотности серого и белого вещества различаются незначительно, мягкотканное окно должно быть очень узким (80 - 100 HU) и высококонтрастным, а его центр должен находиться в середине значений плотности мозговой ткани (35 HU). При таких установках невозможно исследовать кости черепа, т. к. все структуры плотнее 75 - 85 HU выглядят белыми. Поэтому центр и ширина костного окна должны быть значительно выше - около +300 HU и 1500 HU, соответственно. Метастазы в затылочной кости визуализируются только при использовании костного. но не мозгового окна. С другой стороны, головной мозг практически не виден в костном окне, поэтому небольшие метастазы в веществе мозга будут незаметны. Следуем всегда помнить эти технические детали, т. к. на пленку в большинстве случаев не переносят изображения во всех окнах. Врач, проводящий исследование, просматривает изображения на экране во всех окнах, чтобы не пропустить важные признаки патологии.