Мобилизация депонированных ТАГ стимулируется глюкагоном и адреналином, и, но в гораздо меньшей степени, соматотропным гормоном и кортизолом. В постабсорбтивный период и при голодании глюкагон, действуя на адипоциты через аденилатциклазную систему, активирует гормончувствительную липазу, что инициирует липолиз и выделение жирных кислот и глицерола в кровь. При физической активности увеличивается секреция адреналина, который также через аденилатциклазную систему активирует липолиз. В настоящее время предполагается, что действие адреналина двояко: при низких концентрациях в крови преобладает его антилиполитическое действие через α2-рецепторы, а при высокой – преобладает липолитическое действие через β-рецепторы.
В результате мобилизации ТАГ концентрация жирных кислот в крови увеличивается приблизительно в 2 раза, но они достаточно быстро утилизируются. Для мышц, сердца, почек, печени при голодании или физической работе жирные кислоты становятся важным источником энергии. Печень перерабатывает часть жирных кислот в кетоновые тела, используемые мозгом, нервной и некоторыми другими тканями как источники энергии. Когда постабсорбтивный период сменяется абсорбтивным, инсулин через промежуточные механизмы подавляет активность гормончувствительной липазы и распад жиров останавливается.

В абсорбтивный период при увеличении соотношения инсулин/глюкагон активируется синтез ТАГ в печени. В жировой ткани индуцируется синтез липопротенлипазы (ЛПЛ), т.е в этот период активируется поступление жирных кислот в адипоциты. Одновременно инсулин активирует белки-переносчики глюкозы – ГЛЮТ-4, что ведет к увеличению поступления глюкозы в адипоциты и активации там гликолиза. В результате образуются необходимые для синтеза жиров глицерол-3-фосфат и активированные жирные кислоты. В печени в результате действия инсулина увеличивается количество и активность регуляторных ферментов гликолиза, пируватдегидрогеназного комплекса, а также ферментов, участвующих в синтезе жирных кислот из ацетил-КоА. Итогом этих изменений является увеличение синтеза ТАГ и секреция их в кровь в составе ЛПОНП. ЛПОНП доставляют жиры в капилляры жировой ткани, где действие ЛПЛ обеспечивает быстрое поступление жирных кислот в адипоциты, где они депонируются в составе ТАГ.
Мобилизация жиров, т.е. гидролиз до глицерола и жирных кислот, происходит в постабсорбтивный период, при голодании и активной физической работе. Процесс осуществляется под действием гормончувствительной ТАГ-липазы. Этот фермент отщепляет одну жирную кислоту у первого углеродного атома глицерола с образованием диацилглицерола, а затем другие липазы гидролизуют его до глицерола и жирных кислот, которые поступают в кровь. Глицерол как водорастворимое вещество транспортируется кровью в свободном виде, а жирные кислоты – в комплексе с белком плазмы альбумином.

Приём пищи человеком происходит иногда со значительными интервалами, поэтому в организме выработались механизмы депонирования энергии. ТАГ (нейтральные жиры) – наиболее выгодная и основная форма депонирования энергии. Депонированный жир может обеспечивать организм энергией при голодании в течение длительного времени (до 7-8 недель). Синтез ТАГ происходит в абсорбтивный период в печени и жировой ткани. Но если жировая ткань – только место депонирования жира, то печень выполняет важную роль превращения части углеводов, поступающих с пищей, в жиры, которые затем секретируются в кровь в составе ЛПОНП и доставляются в другие ткани. Непосредственными субстратами в синтезе жиров являются ацил-КоА и глицерол-3-фосфат. Метаболический путь синтеза жиров в печени и жировой ткани одинаков, за исключением разных путей образования глицерол-3-фосфата.
Печень – основной орган, где идет синтез жирных кислот из продуктов гликолиза. В гладком эндоплазматическом ретикулюме гепатоцитов жирные кислоты активируются и сразу же используются для синтеза ТАГ, взаимодействуя с глицерол-3-фосфатом. Синтезированные жиры упаковываются в ЛПОНП и секретируются в кровь.
В жировой ткани для синтеза ТАГ используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП. Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом. Кроме жирных кислот, поступающих в адипоциты из крови, в этих клетках идет и синтез жирных кислот из продуктов распада глюкозы. Молекулы ТАГ в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул.

Поступившие с пищей жиры, если они приняты в умеренном количестве (не более 100-150 г), усваиваются почти полностью, и при нормальном пищеварении кал содержит не более 5% жиров. Остатки жировой пищи выделяются преимущественно в виде мыл. При нарушениях переваривания и всасывания липидов наблюдается избыток липидов в кале – стеаторея (жирный стул). Различают 3 типа стеаторей.
Панкреатогенная стеаторея возникает при дефиците панкреатической липазы. Причинами такого состояния могут быть хронический панкреатит, врожденнная гипоплазия поджелудочной железы, врожденный или приобретенный дефицит панкреатической липазы, а также муковисцидоз, когда наряду с другими железами повреждается и поджелудочная. В этом случае в кале содержатся желчные пигменты, понижено содержание свободных жирных кислот и повышено ТАГ.
Гепатогенная стеаторея вызывается закупоркой желчных протоков. Это происходит при врожденной атрезии желчных путей, в результате сужения желчного протока желчными камнями, или сдавления его опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров, и, следовательно, к ухудшению их переваривания. В кале больных отсутствуют желчные пигменты, высоко содержание ТАГ, жирных кислот и мыл.
Энтерогенная стеаторея отмечается при интестинальной липодистрофии, амилоидозе, обширной резекции тонкого кишечника, то есть процессах, сопровождающихся снижением метаболической активности слизистой оболочки кишечника. Для этой патологии характерен сдвиг рН кала в кислую сторону, рост содержания в кале жирных кислот.
Всасывание жиров из кишечника происходит по лимфатическим путям при активной сократительной деятельности ворсинок, поэтому жировой стул может наблюдаться также при нарушении лимфооттока в случае паралича tunicae muscularis mucosae, а также при туберкулезе и опухолях мезентериальных лимфатических узлов, находящихся на пути оттока лимфы. Ускоренное продвижение пищевого химуса по тонкому кишечнику также может быть причиной нарушения всасывания жира.

Липиды в водной среде нерастворимы, поэтому для их транспорта в организме образуются комплексы липидов с белками – липопротеины (ЛП). Различают экзо- и эндогенный транспорт липидов. К экзогенному относят транспорт липидов, поступивших с пищей, а к эндогенному – перемещение липидов, синтезированных в организме.
Существует несколько типов ЛП, но все они имеют сходное строение – гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов – фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе, а гидрофобные – к ядру, в котором находятся транспортируемые липиды. Апопротеины выполняют несколько функций:
· формируют структуру липопротеинов (например, В-48 – основной белок ХМ, В-100 – основной белок ЛПОНП, ЛППП, ЛПНП);
· взаимодействуют с рецепторами на поверхности клеток, определяя, какими тканями будет захватываться данный тип липопротеинов (апопротеин В-100, Е);
· являются ферментами или активаторами ферментов, действующих на липопротеины (С-II – активатор ЛП-липазы, А-I – активатор лецитин:холестеролацилтрансферазы).
При экзогенном транспорте ресинтезированные в энтероцитах ТАГ вместе с фосфолипидами, холестеролом и белками образуют ХМ, и в таком виде секретируются сначала в лимфу, а затем попадают в кровь. В лимфе и крови с ЛПВП на ХМ переносятся апопротеины Е (апо Е) и С-II (апо С-II), таким образом ХМ превращаются в «зрелые». ХМ имеют довольно большой размер, поэтому после приема жирной пищи они придают плазме крови опалесцирующий, похожий на молоко, вид. Попадая в систему кровообращения, ХМ быстро подвергаются катаболизму, и исчезают в течение нескольких часов.

Взрослому человеку требуется от 70 до 145 г липидов в сутки в зависимости от трудовой деятельности, пола, возраста и климатических условий. При рациональном питании жиры должны обеспечивать не более 30% от общей калорийности рациона. Жидкие жиры (масла), содержащие в своем составе незаменимые жирные кислоты, должны составлять не менее одной трети жиров пищи.
В ротовой полости и желудке взрослого человека нет ферментов и условий для переваривания липидов. Основное место расщепления липидов – тонкий кишечник. Для увеличения поверхности соприкосновения с гидрофильными ферментами жиры должны эмульгироваться (разбиться на мелкие капли). Эмульгирование происходит под действием солей желчных кислот. Эмульгированию также способствует перистальтика кишечника и выделение пузырьков СО2, происходящее при нейтрализации кислого содержимого желудка бикарбонатом, выделяющимся в составе сока поджелудочной железы.
Основная масса липидов пищи представлена ТАГ, меньше фосфолипидами (ФЛ) и стероидами. Постадийный гидролиз ТАГ осуществляется панкреатической липазой. Она секретируется в кишечник в неактивном виде и активируется колипазой и желчными кислотами. Панкреатическая липаза гидролизует жиры преимущественно в положениях 1 и 3, поэтому основными продуктами гидролиза являются глицерол, свободные жирные кислоты, моноацилглицеролы.
Фосфолипиды гидролизуются панкреатическими фосфолипазами А1, А2, С и D. Продуктами переваривания являются глицерол, жирные кислоты, фосфорная кислота и азотистые спирты (холин, этаноламин, серин, инозитол). Эфиры холестерола (ЭХЛ) расщепляются панкреатической холестеролэстеразой на холестерол (ХЛ) и жирные кислоты. Активность фермента проявляется в присутствии желчных кислот.

Липиды составляют около 10-12% массы тела человека. В среднем в теле взрослого человека содержится около 10-12 кг липидов, из них 2-3 кг приходится на структурные липиды, а остальное количество – на резервные. Основная масса резервных липидов (около 98%) сосредоточена в жировой ткани и представлена ТАГ. Эти липиды являются источником потенциальной химической энергии, доступной в периоды голодания.
Содержание липидов в тканях человека существенно различается. В жировой ткани они составляют до 75% сухого веса. В нервной ткани липидов содержится до 50% сухого веса, основные из них фосфолипиды и сфингомиелины (30%), холестерол (10%), ганглиозиды и цереброзиды (7%). В печени общее количество липидов в норме не превышает 10-14%.
Жирные кислоты, характерные для организма человека, содержат чётное число атомов углерода, чаще всего – от 16 до 20. Основной насыщенной жирной кислотой в липидах человека является пальмитиновая (до 30-35%). Ненасыщенные жирные кислоты представлены моноеновыми и полиеновыми. Двойные связи в жирных кислотах в организме человека имеют цис-конфигурацию Жиры и фосфолипиды организма при нормальной температуре тела имеют жидкую консистенцию, так как количество ненасыщенных жирных кислот преобладает над насыщенными. В фосфолипидах мембран ненасыщенных кислот может быть до 80-85%, а в составе подкожного жира – до 60%.

Липиды – неоднородная в химическом отношении группа веществ биологического происхождения, общим свойством которых является гидрофобность и способность растворяться в неполярных органических растворителях. Существует несколько классификаций липидов: физико-химическая, биологическая или физиологическая и структурная. Наиболее сложной является структурная классификация, основанная на структурных особенностях этих соединений. Согласно этой классификации, все липиды делятся на омыляемые и неомыляемые. К омыляемым относят те соединения, которые при щелочном гидролизе образуют соли жирных кислот (мыла), неомыляемые же липиды щелочному гидролизу не подвергаются.
Разделение липидов по физико-химическим свойствам учитывает степень их полярности. По этому признаку липиды делятся на нейтральные или неполярные (не имеющие заряда), и полярные (несущие заряд), например, фосфолипиды и жирные кислоты. По физиологическому значению липиды делятся на резервные и структурные. Резервные липиды депонируются в больших количествах и затем расходуются для энергетических нужд организма. К резервным липидам относятся триацилглицеролы (ТАГ). Все остальные липиды можно отнести к структурным. Они не имеют особой энергетической ценности, но участвуют в построении биологических мембран и защитных покровов.
Характерным структурным компонентом большинства липидов являются жирные кислоты. Это длинноцепочечные органические кислоты, состоящие из 4-24 углеродных атомов и содержащие одну карбоксильную группу и длинный неполярный углеводородный «хвост». В составе ТАГ жирные кислоты выполняют функцию депонирования энергии. В составе фосфолипидов и сфинголипидов жирные кислоты образуют внутренний гидрофобный слой мембран, определяя его свойства. В клетках и тканях жирные кислоты встречаются в ковалентно связанной форме в составе липидов различных классов. В свободном состоянии жирные кислоты в организме содержатся в небольшом количестве, например в крови, где они транспортируются в комплексе с белком альбумином.

Гликогеновые болезни – группа наследственных нарушений в основе которых лежит снижение или отсутствие активности ферментов, катализирующих реакции синтеза или распада гликогена. К данным нарушениям относятся гликогенозы и агликогеноз.
Гликогенозы – заболевания, обусловленные дефектом ферментов участвующих в распаде гликогена. Они проявляются или необычной структурой гликогена, или его избыточным накоплением в печени, мышцах и других органах. В настоящее время предлагается деление гликогенозов на 2 группы: печеночные и мышечные.
Печеночные формы гликогенозов проявляются в нарушении использования гликогена для поддержания уровня глюкозы в крови. Общий симптом этих форм – гипогликемия в постабсорбтивный период. К этой группе относятся гликогенозы I, III, IY, YI, IX и X типов по нумерации Кори.
Мышечные формы гликогенозов характеризуются нарушениями в энергоснабжении скелетных мышц. Эти болезни проявляются при физических нагрузках и сопровождаются болями и судорогами в мышцах, слабостью и тыстрой утомляемостью. К ним относятся гликогенозы Y и YII типов.
Агликогеноз (гликогеноз О по классификации) – заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях наблюдается очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде. Характерным симптомом являются судороги, особенно по утрам. Болезнь совместима с жизнью, но больные дети нуждаются в частом кормлении.

Гликоген синтезируется в период пищеварения (через 1-2 часа после приема углеводный пищи). Синтез гликогена из глюкозы, как и любой анаболический процесс, является эндергоническим, т. е. требует затрат энергии.
Синтез гликогена включает 4 этапа:
1. Фосфорилирование глюкозы до глюкозо-6-фосфата при участии гексокиназы или глюкокиназы.
2. Активация первого углеродного атома с образованием активной формы – УДФ – глюкозы.
3. Образование α-1,4-гликозидных связей. В присутствии «затравки» гликогена (молекулы, включающей не менее 4 остатков глюкозы) фермент гликогенсинтаза присоединяет остатки глюкозы из УДФ-глюкозы к С4-атому концевого остатка глюкозы в гликогене, образуя α-1,4-гликозидную связь.
4. Образование α-1,6-гликозидных связей (точки ветвления молекулы). Образование их осуществляется амилозо-1,4 → 1,6-трансглюкозидазой (ветвящий или бранчинг фермент). Когда длина линейного участка цепи включает минимально 11 остатков глюкозы, этот фермент переносит фрагмент (1 → 4) цепи с минимальным количеством 6 остатков глюкозы на соседнюю цепь или на несколько участков глюкозы дальше, образуя α-1,6-гликозидную связь. Таким образом, образуется точка ветвления. Ветви растут путем последовательного присоединения (1 – 4)-глюкозильных единиц и дальнейшего ветвления.
Гликогенсинтаза – регуляторный фермент, существующий в двух формах: 1. – дефосфорилированной, активной (форма а); 2. – фосфорилированной, неактивной (форма b). Активная форма образуется из неактивной под действием фосфатазы гликогенсинтазы при дефосфорилировании. Превращение активной формы в неактивную происходит при участии протеинкиназы путем фосфорилирования за счет АТФ.

Липаза — синтезируемый человеческим организмом водорастворимый фермент, катализирующий гидролиз нерастворимых эстеров (липидных субстратов) и способствующий перевариванию, растворению и фракционированию нейтральных жиров.

Вместе с желчью липаза стимулирует переваривание жиров, жирных кислот, жирорастворимых витаминов А, Е, D, К, трансформируя их в энергию и тепло.

Назначением липопротеинлипазы является расщепление триглицеридов (липидов) в липопротеинах крови, благодаря чему обеспечивается доставка жирных кислот к тканям.

Липазу вырабатывают:

  • поджелудочная железа;
  • печень;
  • легкие;
  • кишечник
  • особые железы, расположенные в ротовой полости детей грудного возраста.

В последнем случае синтезируется так называемая лингвальная липаза. Каждый из перечисленных ферментов способствует расщеплению определенной группы жиров.

Функции липазы в организме

Основной функцией любого типа липазы является переработка жиров, их расщепление и фракционирование. Кроме того, этот энзим участвует в энергетическом обмене, процессах усваивания полиненасыщенных жирных кислот и некоторых витаминов.

Самым важным энзимом, благодаря которому обеспечивается полноценное и своевременное усвоение липидов, является панкреатическая липаза (вырабатываемая поджелудочной железой). Фермент поступает в пищеварительный тракт в виде неактивного энзима – пролипазы, где под воздействием колипазы (еще одного фермента поджелудочной железы) и желчных кислот трансформируется в активную форму. Панкреатическая липаза расщепляет эмульгированные печеночной желчью жиры. Она является катализатором расщепления содержащихся в продуктах триглицеридов (нейтральных жиров) на высшие жирные кислоты и глицерин.

  • Печеночная липаза способствует усвоению хиломикронов и липопротеинов низкой плотности, а также регулирует содержание липидов плазмы.
  • Желудочная липаза стимулирует расщепление трибутирина масла.
  • Лингвальная разновидность липазы расщепляет жиры, содержащиеся в грудном молоке.

Есть определенные критерии нормы содержания липазы в составе крови.

  • Для взрослых как женского, так и мужского пола (старше 17 лет) показатель составляет от 0 до 190 единиц на 1 миллилитр крови.
  • У детей и подростков до 17 лет нормой считается уровень липазы в диапазоне от 0 до 130 единиц на 1 миллилитр.
  • Что касается конкретно панкреатической липазы, то нормальным считается содержание 13-60 единиц фермента поджелудочной железы на 1 мл крови.

На что указывает повышение уровня липазы в крови?

С точки зрения значимости при постановке диагноза важную роль играет липаза, вырабатываемая поджелудочной железой. Колебания ее уровня в составе сыворотки крови в ту или иную сторону являются показателем наличия определенных нарушений в работе поджелудочной железы.

Повышение уровня фермента отмечается при:

  • панкреатите, протекающем в острой форме, или при обострении хронического процесса;
  • желчных коликах;
  • травме поджелудочной железы;
  • наличии в поджелудочной железе новообразований;
  • хронических патологиях желчного пузыря;
  • образовании кисты или псевдокисты в поджелудочной железе;
  • закупорке панкреатического протока рубцом или камнем;
  • внутрипеченочном холестазе;
  • острой кишечной непроходимости;
  • инфаркте кишечника;
  • перитоните;
  • прободении язвы желудка;
  • перфорации внутреннего (полого) органа;
  • острой или хронической почечной патологии;
  • эпидемическом паротите, при котором происходит поражение поджелудочной железы;
  • нарушениях обменных процессов, имеющих место при сахарном диабете, ожирении или подагре;
  • циррозе печени;
  • длительном приеме медицинских препаратов – в частности, барбитуратов, анальгетиков наркотического ряда, гепарина, индометацина;
  • операции по трансплантации органов.

В редких случаях процесс активизации липазы оказывается связанным с некоторыми травмами – например, переломами трубчатых костей. Но в этом случае колебания уровня фермента в крови не могут считаться специфическим показателем наличия физического повреждения. По этой причине анализы на липазу не учитываются при диагностике травм различного происхождения.

Определение уровня липазы в сыворотке обретает особую важность при любом поражении поджелудочной железы. В этом случае анализ крови на содержание данного энзима вместе с анализом на амилазу (фермент, способствующий расщеплению крахмала до олигосахаридов) с высокой степенью достоверности указывает на наличие патологического процесса в тканях поджелудочной железы: оба показателя оказываются выше нормы). В процессе нормализации состояния больного названные ферменты возвращаются к адекватным показателям не одновременно: как правило, уровень липазы остается на высоком уровне дольше, чем уровень амилазы.

В ходе исследований было выявлено, что при панкреатите в первые сутки уровень липазы повышается лишь до умеренных отметок и в очень редких случаях доходит до уровня, при котором можно с высокой степенью уверенности ставить диагноз. В основном наличие болезни на основе показателей активности липазы можно определить лишь на третьи сутки. При этом следует учесть некоторые моменты:

  • при отечной разновидности заболевания уровень липазы остается в пределах нормы;
  • среднее повышение уровня фермента отмечается при наличии жирового панкреонекроза;
  • активность липазы повышается в 3,5 раза при геморрагической форме панкреонекроза.

Высокий уровень липазы сохраняется от 3 до 7 суток с начала развития воспаления. Тенденция к снижению фиксируется только спустя 7-14 дней.

При повышении уровня липазы в 10 и более раз прогноз заболевания считают крайне неблагоприятным, особенно если активность сохраняется на протяжении нескольких суток и не опускается ниже трехкратного превышения нормального показателя.

Повышение уровня панкреатической липазы имеет свою специфику в зависимости от вызвавшей ее конкретной причины:

  1. При остроой форме панкреатита уровень фермента начинает подниматься спустя несколько часов (от 2 до 6) после поражения поджелудочной железы. Через 12-30 часов он достигает максимальной отметки и начинает снижаться. Нормализация активности энзима наблюдается спустя 2-4 дня.
  2. При хронической форме панкреатита сначала фиксируется умеренное повышение уровня липазы. Но по мере развития патологии показатель приходит в норму.

Причины пониженного уровня липазы в сыворотке крови

Низкий уровень липазы фиксируется:

  • при наличии злокачественного новообразования в любой части организма, кроме самой поджелудочной железы;
  • вследствие снижения функции поджелудочной железы;
  • при кистозном фиброзе (муковисцидозе) – генетическом заболевании с тяжелым течением, возникающем в результате патологического поражения желез внешней секреции (ЖКТ, легких).
  • после оперативного вмешательства по удалению поджелудочной железы;
  • при избыточном содержании триглицеридов в крови, возникающем по причине неправильного питания с обилием жирных продуктов в рационе или вследствие наследственной гиперлипидемии.

В некоторых случаях снижение уровня липазы является маркером перехода панкреатита в хроническую форму.

Первое, что происходит при использовании нейтрального жира во время голодания и физической нагрузки – это активация ферментов, отвечающих за отщепление жирных кислот от триацилглицерола. Первый активируемый фермент называется триацилглицерол-липаза или ТАГ-липаза.

В настоящее время существует современная , другая концепция регуляции ферментов, отвечающих за мобилизацию триацилглицеролов в клетках. Согласно этой теории гормон-чувствительной на самом деле является HSL-липаза (hormone-sensitive lipase , здесь ДАГ-липаза ), а не ТАГ-липаза.

На данной странице изложена еще принятая, но устарешая, схема регуляции липолиза.

Кроме ТАГ-липазы, в адипоцитах имеются еще диацилглицерол-липаза (ДАГ-липаза) и моноацилглицерол-липаза (МАГ-липаза), которые постоянно активны, однако в покое их активность не проявляется из-за отсутствия субстрата. Как только в клетке после работы ТАГ-липазы появляются диацилглицеролы, начинает работать постоянно активная ДАГ-липаза, продукт ее реакции моноацилглицерол (МАГ) является субстратом для МАГ-липазы. Образующиеся жирные кислоты и глицерол покидают клетку.

Гидролиз триацилглицеролов липазами жировой клетки

Для регуляции активности ТАГ-липазы обязательно наличие гормонального влияния (адреналин, глюкагон, соматотропин, инсулин и ряд других гормонов).

Активация триацилглицерол-липазы

Гормонзависимая активация липолиза в адипоцитах адреналином и глюкагоном происходит при напряжении организма (голодание , длительная мышечная работа , охлаждение ). Активность ТАГ-липазы зависит, главным образом, от соотношения инсулин / глюкагон.

В целом последовательность событий активации липолиза по классической, но устаревшей, схеме выглядит следующим образом:

  1. Молекула гормона (адреналин, глюкагон, АКТГ) взаимодействует со своим рецептором.
  2. Активный гормон-рецепторный комплекс воздействует на мембранный G-белок .
  3. G-белок активирует фермент аденилатциклазу .
  4. Аденилатциклаза превращает АТФ в циклический АМФ (цАМФ) – вторичный посредник (мессенджер).
  5. цАМФ аллостерически активирует фермент протеинкиназу А .
  6. Протеинкиназа А фосфорилирует ТАГ-липазу и активирует ее.
  7. ТАГ-липаза отщепляет от триацилглицеролов жирную кислоту в 1 или 3 положении с образованием диацилглицерола (ДАГ).

Каскадный механизм активации ТАГ-липазы

Кроме гормонов, влияющих на активность аденилатциклазы через G-белки, существуют иные механизмы активации. Например, соматотропный гормон увеличивает количество аденилатциклазы, глюкокортикоиды способствуют синтезу ТАГ-липазы.

Первое, что происходит при использовании нейтрального жира во время голодания и физической нагрузки – это активация ферментов, отвечающих за отщепление жирных кислот от триацилглицерола. Первый активируемый фермент называется триацилглицерол-липаза или ТАГ-липаза.

В настоящее время существует современная , другая концепция регуляции ферментов, отвечающих за мобилизацию триацилглицеролов в клетках. Согласно этой теории гормон-чувствительной на самом деле является HSL-липаза (hormone-sensitive lipase , здесь ДАГ-липаза ), а не ТАГ-липаза.

На данной странице изложена еще принятая, но устарешая, схема регуляции липолиза.

Кроме ТАГ-липазы, в адипоцитах имеются еще диацилглицерол-липаза (ДАГ-липаза) и моноацилглицерол-липаза (МАГ-липаза), которые постоянно активны, однако в покое их активность не проявляется из-за отсутствия субстрата. Как только в клетке после работы ТАГ-липазы появляются диацилглицеролы, начинает работать постоянно активная ДАГ-липаза, продукт ее реакции моноацилглицерол (МАГ) является субстратом для МАГ-липазы. Образующиеся жирные кислоты и глицерол покидают клетку.

Гидролиз триацилглицеролов липазами жировой клетки

Для регуляции активности ТАГ-липазы обязательно наличие гормонального влияния (адреналин, глюкагон, соматотропин, инсулин и ряд других гормонов).

Активация триацилглицерол-липазы

Гормонзависимая активация липолиза в адипоцитах адреналином и глюкагоном происходит при напряжении организма (голодание , длительная мышечная работа , охлаждение ). Активность ТАГ-липазы зависит, главным образом, от соотношения инсулин / глюкагон.

В целом последовательность событий активации липолиза по классической, но устаревшей, схеме выглядит следующим образом:

  1. Молекула гормона (адреналин, глюкагон, АКТГ) взаимодействует со своим рецептором.
  2. Активный гормон-рецепторный комплекс воздействует на мембранный G-белок .
  3. G-белок активирует фермент аденилатциклазу .
  4. Аденилатциклаза превращает АТФ в циклический АМФ (цАМФ) – вторичный посредник (мессенджер).
  5. цАМФ аллостерически активирует фермент протеинкиназу А .
  6. Протеинкиназа А фосфорилирует ТАГ-липазу и активирует ее.
  7. ТАГ-липаза отщепляет от триацилглицеролов жирную кислоту в 1 или 3 положении с образованием диацилглицерола (ДАГ).

Каскадный механизм активации ТАГ-липазы

Кроме гормонов, влияющих на активность аденилатциклазы через G-белки, существуют иные механизмы активации. Например, соматотропный гормон увеличивает количество аденилатциклазы, глюкокортикоиды способствуют синтезу ТАГ-липазы.

Классический механизм формирования ожирения предусматривает повышение способности к образованию жира и его отложению в жировой ткани, в основном в «жировых депо», и затруднение мобилизации жира из тканей . Повышенное накопление жира в организме осуществляется за счет не столько экзогенно вводимых и эндогенно образуемых жиров, сколько углеводов. Активация циклов обмена веществ, способствующих новообразованию жиров из углеводов, при ожирении преимущественно выражена в жировой ткани. Естественно, она должна занять центральное место среди патогенетических механизмов тучности.

Жировая ткань у здорового человека составляет до 20% массы тела, но у тучного субъекта может достигать 40- 50%, а в отдельных случаях возрастать до 70%. Большую часть жировой ткани составляют триглицериды (70-90%). Жировая ткань в норме не является простым депо жира. Она обладает высокой метаболической активностью. В ней непрерывно совершаются интенсивные процессы обмена веществ, такие как синтез и гидролиз липидов: синтез жирных кислот, в том числе из углеводов, их эстерификация в триглицериды или нейтральный жир, его депонирование и расщепление с образованием жирных кислот, использование последних для энергетических целей. У здорового человека процессы липогенеза и липолиза уравновешены. Синтез жира обеспечивают два метаболических цикла - гликолитический и пентозный.

По гликолитическому пути осуществляется синтез глицерина из глюкозы через стадию образования α-глицерофосфата. Свободный глицерин в жировой ткани используется для синтеза триглицеридов. Стадии пентозного цикла включают образование пировиноградной кислоты из моносахаридов и глюкогенных аминокислот, декарбоксилирование с последующим образованием ацетил-КоА. Ацетил-КоА при участии аденозинтрифосфата (АТФ) и НАДФ-Н2 конденсируется через ряд этапов в высшие жирные кислоты. Если пентозный цикл неактивен, то в среде преобладает невосстановленный НАДФ и процессы липосинтеза неинтенсивны. При преобладании в среде восстановленного НАДФ, или НАДФ-Н2, липосинтез активируется.

Известно, что отложение жира в жировой ткани происходит в основном в результате его новообразования из углеводов пищи. Интенсивность реакций пентозного цикла и определяет скорость формирования жирных кислот из глюкозы. В жировой ткани по сравнению с другими тканями организма пентозофосфатный цикл обладает наивысшей активностью. Соотношение этого и гликолитического цикла в жировой ткани составляет приблизительно 1:1, а в печени 1: 12. В кишечной ткани обмен по пентозному циклу вообще не осуществляется [Лейтес С. М., 1967]. Расчеты по результатам исследований с меченым углеродом показали, что жировая ткань использует около 50% поступившей в нее глюкозы в реакциях гликолиза и 50% окисляется по пентозофосфатному и другим альтернативным путям обмена.

Доказано, что процессы липосинтеза при ожирении усиливаются в значительной мере повышением активности не гликолиза, а пентозофосфатного цикла [Шонка Г., Ермоленко Р. И., 1960]. Избыточное питание, особенно чрезмерное поступление углеводов с пищей, считают одним из серьезных факторов, способствующих активации пентозофосфатного цикла.

Ферментное соотношение в жировой ткани до недавнего времени изучали лишь в опытах на животных [Лейтес С. М., Давтян Н. К., 1965; Покровский А. А., Пиленицына Р. А., 1966; Когп, 1955, 1959; Korn et al., 1957]. Во многих работах показана важная роль липаз (гидролазы эфиров глицерина и жирных кислот; КФ 3.1.1.3) в процессах обмена веществ в жировой ткани.

Различают несколько типов липаз, активность которых регулируется различными факторами: липаза, активируемая адреналином; липаза, действующая в нестимулированной ткани; липаза липопротеидная, активность которой повышается при инкубации с гепарином . Жиромобилизующая липаза осуществляет гидролиз триглицеридов, обеспечивает поступление в кровь НЭЖК с последующим их использованием в качестве энергетического материала. Липазу жировой ткани, кроме адреналина, активируют норадреналин, соматотропный гормон, АКТГ. Липопротеидная липаза обладает как липолитическим, так и липосинтетическим действием в отношении триглицеридов жировой ткани . Кроме гепарина, активность липопротеидлипазы повышает добавление в инкубационную среду инсулина и глюкозы. Липопротеид-липаза в жировой ткани подготавливает липопротеиды крови к ассимиляции и синтезу триглицеридов.

У человека с нормальным обменом веществ, не страдающего ожирением, и та и другая липаза, будучи достаточно активными, в известной мере уравновешивают процессы липогенеза и липосинтеза [Давтян Н. К., 1962; Лейтес С. М. Давтян Н. К., 1963, 1965; Давтян Н. К., Буртман Р. Н., 1964; Nestel, Havel, 1962; Stern et al., 1962; Chlouverakis, 1963, 1979, и др.].

У тучных животных снижена липолитическая активность жировой ткани . Многие авторы [Лейтес С. М., 1962, 1967; Kekwick, Pawan, 1963, 1964, и др.] сообщали, что при ожирении липолитический эффект специально подобранных диет, в том числе малой энергетической ценности, с высоким содержанием жира объясняется активацией липолитических ферментов.

Это стало предпосылкой для определения активности липаз в подкожной жировой ткани у больных ожирением в Институте питания АМН СССР [Покровский А. А., Оленева В. А., Пиленицина Р. А., 1964]. Наблюдения показали, что у всех тучных людей резко снижена активность обеих липаз. Активность жиромобилизующей липазы у больных ожирением снижена в 5 раз, липопротеидлипазы- в 2,6 раза. Те же соотношения сохранялись при применении активаторов - адреналина и гепарина.

Одновременное снижение активности двух ферментов противоположного действия позволило выдвинуть гипотезу о глубокой метаболической инертности жировой ткани у больных ожирением. Тем не менее при общей низкой активности ферментов особенно снижена активность фермента, обеспечивающего липолиз.

Соотношение липопротеидной и жиромобилизующей липаз в подкожной жировой ткани весьма демонстративно показывает преобладание у больных ожирением липосинтеза над липолизом при общей метаболической инертности жировой ткани. Сдвиг активности ферментов в сторону липосинтеза, как было показано, отчетливо виден при стимуляции физиологическими активаторами. В этих условиях соотношение активности липопротеидной и жиромобилизующей липаз в жировой ткани у тучных более чем в Образа превышало соответствующий показатель у здоровых людей. Следует не только оценить это явление с точки зрения снижения процессов биологического окисления, нарушения динамического равновесия между мобилизацией НЭЖК жировой тканью при ожирении и недостаточностью их использования в энергетических целях другими тканями организма, но и предположить своеобразное блокирование перманентного вывода НЭЖК из жировых депо, что прямо связано с торможением липолиза вследствие снижения активности ферментов.

За последние годы возрос интерес к еще одному ферменту жировой ткани - глюкозо-6-фосфат-дегидрогеназе (Г-6-ФДГ). Этот фермент является ключевым в пентозофосфатном цикле, а в жировой ткани пентозный путь превращения глюкозо-6-фосфата функционирует весьма интенсивно. Глюкозо-6-фосфат окисляется под влиянием дегидрогеназы в 6-фосфоглюконат, который затем подвергается дальнейшему окислению благодаря действию другой дегидрогеназы. Жировая ткань остается наиболее богатым источником дегидрогеназ, дегидрирующих высшие жирные кислоты. В этом отношении активность жировой ткани выше активности печени в 2-3 раза, мышц и почек-в 30 раз [Лейтес С. М., 1948, 1954]. Высокая активность Г-6-ФДГ пентозного пути еще раз свидетельствует о большой способности жировой ткани генерировать НАДФН2, необходимый для биосинтеза жирных кислот . Активность Г-6-ФДГ повышается при усиленном откармливании нормальных животных , а также при кормлении крыс пищей, обогащенной углеводами . И то, и другое, по-видимому, объясняется усилением липогенеза в условиях опытов.

Активность Г-6-ФДГ в жировой ткани определяли в микроучастке подкожной жировой клетчатки, добытой путем эксцизии из передней брюшной стенки [Мокина М. Н., 1971]. Использовали спектрофотометрический метод Корнберга и Хорекера в модификации Ю. Л. Захарьина (1967). Активность выражена в микромолях НАДФ, восстановленного за 1 мин, в расчете на 1 г растворенного белка. Белок в жировой ткани определяли методом Лоури (1967). Контролем служили 23 человека (13 мужчин в возрасте 18- 54 лет и 10 женщин в возрасте 16-50 лет) с нормальной массой тела. У лиц контрольной группы биоптат получали во время операции по поводу аппендицита.

Средние величины активности Г-6-ФДГ у людей с нормальной массой тела составили 20,42+3,28 мкМ/(мин·г) белка.

В наших исследованиях при ожирении активность Г-6-ФДГ оказалась значительно сниженной по сравнению с нормой в 3,7 раза . Тяжесть ожирения не влияла на активность фермента.

Наиболее низкая активность фермента оказалась у людей, давно страдающих ожирением. Так, если ожирение возникало с детских лет или продолжалось 15-20 лет, то активность Г-6-ФДГ была в пределах 4,46±0,76-4,92±1,45 Ед, а при давности болезни не больше 3-5 лет она составляла 12,69±1,75 Ед. У больных последней группы, относительно недавно достигших разных степеней ожирения, активность фермента была почти в 3 раза выше.

Следовательно, у больных ожирением наряду с низкой активностью липолитических ферментов в жировой ткани значительно снижена активность глюкозо-6-фосфат-дегид-рогеназы - одного из ферментов, обеспечивающих необходимое количество НАДФ для биосинтеза жирных кислот, ключевого фермента пентозного цикла. Следовательно, в определенной мере заторможен липосинтез. Представленные данные еще раз подтверждают гипотезу о своеобразной инертности метаболических процессов, о заторможенности ферментных реакций у больных ожирением.