Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.

Что такое мейоз?

Редукционное деление клетки, другими словами - мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.

В переводе с древнегреческого языка, мейоз обозначает уменьшение.

Данный процесс происходит в два этапа:

  • Редукционный ;

На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.

  • Эквационный ;

В ходе второго деления гаплоидность клеток сохраняется.

ТОП-4 статьи которые читают вместе с этой

Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.

Фазы мейоза

В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы . Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза .

Первое деление:

Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:

Стадия

Признак

Лептотена

Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити.

Зиготена

Гомологичные хромосомы соединяются в пары.

Пахитена

По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними.

Диплотена

Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой.

Диакинез

Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой.

Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.

Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.

Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.

В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.

На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.

Рис. 1. Схема мейоза первого этапа деления

Второе деление имеет такие признаки:

  • Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
  • В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
  • Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
  • Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.

Рис. 2. Схема мейоза второго этапа деления

В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз - это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.

Значение мейоза

В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера - перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.

В природе мейоз имеет огромное значение, а именно:

  • Это один из основных этапов гаметогенеза;

Рис. 3. Схема гаметогенеза

  • Осуществляет передачу генетического кода при размножении;
  • Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.

Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.

Что мы узнали?

Мейоз - это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом. Весь процесс проходит в два этапа - редукционного и эквационного, каждый из которых состоит из четырёх фаз - профазы, метафазы, анафазы и телофазы. Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 772.

Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное, или мейоз I)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное, или мейоз II)

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Типы мейоза. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

Биологическое значение мейоза. Немецкий биолог Август Вайсман (1887) теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Мейозом называют процесс деления ядер зародышевых клеток при их превращении в гаметы. Мейоз включает два деления клеток, которые называют соответственно мейоз I и мейоз II. Каждое из этих делений формально состоит из тех же стадий, что и митоз: профазы, метафазы, анафазы и телофазы.

Первое мейотическое деление – редукционное. Из одной клетки с диплоидным набором хромосом образуется две с гаплоидным.

· Лептотена. Стадия тонких нитей. Увеличение ядра (диплоидный набор хромосом), начинается спирализация хромосом.

· Зиготена. Коньюгация гомологичных хромосом.

· Пахитена. Стадия толстых нитей. Бивалент (коньюгирующие хромосомы) состоит из 4 хроматид. Число бивалентов равно гаплоидному набору. Происходит дальнейшая спирализация. Кроссинговер.

· Диплотена. Возникают силы отталкивания. Расхождение хромосом (начинается в области центромер). В каждой хиазме (место, где происходит кроссинговер) осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.

· Диакинез. Максимальная спирализация, укорочение и утолщение хромосом. Ядрышко и ядерная оболочка растворяются. Центриоли расходятся к полюсам.

Метафаза 1. Биваленты хромосом располагаются по экватору веретена деления клетки, образуя метафазную пластинку. К хромосомам прикрепляются нити веретена деления.

Анафаза 1. К полюсам веретена деления расходятся хромосомы. В дочерние клетки попадают только по одной паре гомологичных хромосом.

Телофаза 1. Число хромосом в каждой клетке становится гаплоидным. На короткое время образуется ядерная оболочка, хромосомы деспирализуются, ядро становится интерфазным. Затем у животной клетки – деление цитоплазмы, у растительной – образование клеточной стенки.

Интерфаза 2. (только у животных клеток). В синтетическом периоде не происходит репликации ДНК.

Второе мейотическое деление – эквационное. Похоже на митоз. Из хромосом, имеющих две хроматиды, образуются хромосомы, состоящие из одной хроматиды.

Профаза 2. Хромосомы утолщаются и укорачиваются. Ядрышко и ядерная оболочка растворяются. Образуется веретено деления.

Метафаза 2. Хромосомы выстраиваются вдоль экватора. Нити ахроматинового веретена отходят к полюсам. Образуется метафазная пластинка.

Анафаза 2. Центромеры делятся и тянут за собой хромосомы (к противоположным полюсам).

Телофаза 2. Хромосомы деспирализуются, становятся невидимыми. Нити веретена исчезают. Вокруг ядер формируется ядерная оболочка. Ядра содержат гаплоидный набор. Происходит деление цитоплазмы/образование клеточной стенки. Из одной исходной клетки – 4 гаплоидных.



Значение мейоза:

1. Поддержание постоянства числа хромосом.

2. При мейозе образуется большое число новых комбинаций негомологичных хромосом.

3. В процессе кроссинговера имеют место рекомбинация генетического материала.

Отличия митоза от мейоза.

В митозе: 1) в процессе митоза происходит только одно деление клетки;

2) ДНК синтезируется перед делением клетки, в интерфазе (в S-период интерфазы);

3) профаза занимает небольшой промежуток времени;

4) в профазе конъюгация и кроссинговер не происходят;

5) в метафазе по экватору располагаются отдельные хромосомы, состоящие из двух хроматид;

6) вначале разъединяются плечи хроматид;

7) в анафазе центромеры делятся и хроматиды расходятся к полюсам;

8) в результате митоза количество хромосом в клетке остаётся неизменным;

9) митоз происходит в гаплоидных, диплоидных и полиплоидных клетках;

10) происходит при образовании соматических клеток, а также при образовании гамет у растений (у которых имеет место чередование поколений).

В мейозе: 1) в процессе мейоза происходит два деления (первое и второе деление мейоза);

2) ДНК синтезируется только перед первым делением мейоза. Между первым и вторым мейотическими делениями репликации ДНК не происходит;

3) профаза-I занимает очень большой промежуток времени и делится на 5 стадий;

4) во время профазы гомологичные хромосомы конъюгируют и могут обмениваться участками (происходит кроссинговер);

5) в метафазе-I по экватору клетки располагаются не отдельные хромосомы, а пары конъюгированных хромосом – биваленты. В метафазе-II по экватору клетки располагаются хромосомы;

6) сила отталкивания проявляется в области центромер;

7) центромеры делятся только во втором делении мейоза; хроматиды расходятся только во втором делении мейоза;



8) количество хромосом в клетке после мейоза уменьшается вдвое;

9) происходит только в диплоидных и полиплоидных клетках;

10) происходит при гамето- и спорогенезе.

12. Прогенез. Сперматогенез. Цитологическая и цитогенетическая характеристика процесса. Строение семенника млекопитающего. Сперматозоид. Взаимосвязь строения и функции.

Прогенез - процесс созревания половых клеток до достижения организмом взрослого состояния.

Сперматогенез – образование половых клеток в гонадах у мужчин.

К пубертатному возрасту некоторые клетки дифференцируются в сперматоциты 1 порядка. Мейоз 1 порядка. При его завершения сперматоцит 1 порядка образовал два сперматоцита второго порядка, каждый из которых имеет удвоенный набор гаплоидных хромосом. В мейозе 2 каждый сперматоцит второго порядка делится с образованием двух сперматид. Сперматида дифференцируется в сперматозоиды. Сперматогенез у самцов является непрерывным процессом.

Семенники – мужские парные половые железы, в которых вырабатываются половые продукты и половые гормоны. У плацентарных млекопитающих они вынесены за пределы полости тела и располагаются в особом органе – мошонке в связи с высокой температурой тела. У млекопитающих с поверхности семенник одет оболочками. Внутренняя часть соединительной тканью разделена на дольки. В каждой дольке расположен извитой семенной каналец. Извитой каналец представляет собой цилиндрическую трубку, которая с одной стороны заканчивается слепо, а с другой соединен с прямыми канальцами. Стенка канальца образована клетками Сертоли (клетки эпителиального происхождения). Клетки Сертоли крупные, их ядро смещено к внешней части, а цитоплазма обращена в просвет канальца. Она представляет собой синтициальную основу для развивающихся половых клеток.

В извитых семенных канальцах происходит развитие сперматозоидов. Это развитие осуществляется волнообразно, как по длине, так и по его поперечному сечению, а именно, у тупого конца находятся клетки на ранних стадиях развития, а ближе к просвету – зрелые сперматозоиды. На поперечном разрезе можно обнаружить последовательно расположенные поколения половых клеток, начиная от сперматогоний у клеток Сертоли до готовых сперматозоидов в центре канальца.

Сперматозоид - мужская половая клетка, мужская гамета, которая служит для оплодотворения женской гаметы, яйцеклетки.

· Головка сперматозоида человека имеет форму эллипсоида, сжатого с боков, с одной из сторон имеется небольшая ямка, поэтому иногда говорят о «ложковидной» форме головки сперматозоида у человека. В головке сперматозоида располагаются следующие клеточные структуры:

1. Ядро, несущее одинарный набор хромосом. Такое ядро называют гаплоидным. После слияния сперматозоида и яйцеклетки (ядро которой также гаплоидно) образуется зигота - новый диплоидный организм, несущий материнские и отцовские хромосомы. При сперматогенезе (развитии сперматозоидов) образуются сперматозоиды двух типов: несущие X-хромосому и несущие Y-хромосому. При оплодотворении яйцеклетки X-несущим сперматозоидом формируется эмбрион женского пола. При оплодотворении яйцеклетки Y-несущим сперматозоидом формируется эмбрион мужского пола. Ядро сперматозоида значительно мельче ядер других клеток, это во многом связано с уникальной организацией строения хроматина сперматозоида (см. протамины). В связи с сильной конденсацией хроматин неактивен - в ядре сперматозоида не синтезируется РНК.

2. Акросома - видоизмененная лизосома - мембранный пузырек, несущий литические ферменты - вещества, растворяющие оболочку яйцеклетки. Акросома занимает около половины объёма головки и по своему размеру приблизительно равна ядру. Она лежит спереди от ядра и покрывает собой половину ядра (поэтому часто акросому сравнивают с шапочкой). При контакте с яйцеклеткой акросома выбрасывает свои ферменты наружу и растворяет небольшой участок оболочки яйцеклетки, благодаря чему образуется небольшой «проход» для проникновения сперматозоида. В акросоме содержится около 15 литических ферментов, основным из который является акрозин.

3. Центросома - центр организации микротрубочек, обеспечивает движение хвоста сперматозоида, а также предположительно участвует в сближении ядер зиготы и первом клеточном делении зиготы.

· Позади головки располагается так называемая «средняя часть» сперматозоида. От головки среднюю часть отделяет небольшое сужение - «шейка». Позади средней части располагается хвост. Через всю среднюю часть сперматозоида проходит цитоскелет жгутика, который состоит из микротрубочек. В средней части вокруг цитоскелета жгутика располагается митохондрион - гигантская митохондрия сперматозоида. Митохондрион имеет спиральную форму и как бы обвивает цитоскелет жгутика. Митохондрион выполняет функцию синтеза АТФ и тем самым обеспечивает движение жгутика.

· Хвост, или жгутик, расположен за средней частью. Он тоньше средней части и значительно длиннее её. Хвост - орган движения сперматозоида. Его строение типично для клеточных жгутиков эукариот.

Второе деление мейоза по механизму является типичным митозом. Оно происходит быстро:

Профаза II у всех организмов короткая.

Если телофаза I и интерфаза II имели место, то ядрышки и ядерные мембраны разруша­ются, а хроматиды укорачиваются и утолщаются. Центриоли, если они имеются, перемещаются к про­тивоположным полюсам клетки. Во всех случаях, к концу профазы II появляются новые нити веретена деления. Они расположены под прямыми углами к веретену мейоза I.

Метафаза II. Как и в митозе, хромосомы выстраиваются по отдельности на эк­ваторе веретена.

Анафаза II. Аналогична митотической: центромеры делятся (разрушение когезинов) и нити веретена деления растаскивают хроматиды к противоположным полю­сам.

Телофаза II. Происходит так же, как телофаза митоза с той лишь разницей, что образуются четыре гаплоидные дочер­ние клетки. Хромосомы раскручиваются, удлиняются и становятся плохо различимыми. Нити веретена ис­чезают. Вокруг каждого ядра вновь образуется ядерная оболо6нчка, но ядро со­держит теперь половину числа хромосом исходной родительской клетки. При последую­щем цитокинезе из единственной роди­тельской клетки получается четыре дочерних клетки.

Предварительные итоги:

При мейозе в результате двух последовательных клеточных делений, следующих за одним циклом репликации ДНК, из одной диплоидной клетки образуются четыре гаплоидные.

В мейозе доминирует профаза I, которая может занимать 90% всего времени. В этот период каждая хромосома состоит из двух тесно сближенных сестринских хроматид.

Кроссинговер (перекрест) между хромосомами осуществляется на стадии пахитены в профазе I, при плотной конъюгации каждой пары гомологичных хромосом, что приводит к образованию хиазм, сохраняющих единство бивалентов вплоть до анафазы I.

В результате первого деления мейоза в каждую дочернюю клетку попадает по одной хромосоме из каждой пары гомологов, состоящих в это время из соединенных сестринских хроматид.

Затем без репликации ДНК быстро протекает второе деление, при котором каждая сестринская хроматида попадает в отдельную гаплоидную клетку.

Сопоставление митоза и мейоза I (мейоз II практически идентичен митозу)

Стадия Митоз Мейоз I
Профаза Гомологичные хромосомы обособ­лены. Хиазмы не образуются. Кроссинговер не происходит Гомологичные хромосомы конъюгируют. Хиазмы образуются. Кроссинговер имеет место
Метафаза Хромосомы, из двух хроматид каждая, располагаются на экваторе веретена деления Биваленты, образованные парами гомологичных хромосом, располагаются на эква­торе веретена деления
Анафаза Центромеры делятся. Расходятся хроматиды. Расходящиеся хроматиды идентич­ны Центромеры не делятся. Расходятся целые хромосомы (из двух хроматид каждая) Расходящиеся хромосомы и их хроматиды могут быть неидентичными в результате кроссинговера
Телофаза Плоидность дочерних клеток равна плоидности родительских клеток. У диплоидов дочерние клетки содержат обе гомо­логичные хромосомы Плоидность дочерних клеток вдвое меньше плоидности родительских клеток. Дочерние клетки содержат только по одной из каждой пары гомологичных хромосом
Где и когда происходит В гаплоидных, диплоидных и поли­плоидных клетках При образовании соматических кле­ток При образовании спор у некоторых грибов и низших растений. При образовании гамет у высших растений Только в диплоидных и полиплоидных клетках На каком-либо этапе жизненного цикла организмов с половым размножением, например – при гаметогенезе у большинства животных и при спорогенезе у высших растений.

Значение мейоза:

1. Половое размножение. Мейоз происходит у всех организмов, размножающихся по­ловым путем. Во время оплодотворения ядра двух гамет сливаются. Каждая гамета содержит гаплоидный (n) набор хромосом. В результате слияния гамет образуется зигота, содержащая диплоидный (2n) набор хромосом. В отсутст­вие мейоза слияние гамет приводило бы к удвоению числа хромосом у каждого по­следующего поколения, возникающего в результате полового размножения. У всех организмов с половым размножением это­го не происходит благодаря существова­нию особого клеточного деления, при котором диплоидное число хромосом (2n) сокращается до гаплоидного (n).

2. Генетическая изменчивость. Мейоз создает также возможность для возникновения в гаметах новых комбинаций генов, что ве­дет к генетическим изменениям в потом­стве, получаемым в результате слияния га­мет. В процессе мейоза это достигается двумя способами, а именно – независи­мым распределением хромосом при первом мейотическом де­лении и кроссинговером.


А) Независимое распределение хромосом.

Независимое распределение означает, что в анафазе I хромосомы, составляющие данный бивалент, распределяются независимо от хро­мосом других бивалентов. Этот процесс лучше всего объяснить на схеме, приведенной справа (черные и белые полоски соответствуют мате­ринским и отцовским хромосомам).

В метафазе I биваленты располагаются на экваторе веретена случайным образом. На схеме представлена про­стая ситуация, в которой участвуют только два бивалента, а поэтому возможно распо­ложение только двумя способами (при од­ном из них белые хромосомы ориентированы в одну сторону, а при другом – в разные стороны). Чем больше число бивалентов, тем больше число возможных комбинаций, а, следовательно, тем выше изменчивость. Число вариантов образующихся гаплоидных клеток – 2 x . Неза­висимое распределение лежит в основе одного из законов классической генетики – второго закона Менделя.

Б) Кроссинговер.

В результате образования хи­азм между хроматидами гомологичных хромосом в профазе I происходит кроссинговер, веду­щий к образованию новых комбинаций ге­нов в хромосомах гамет.

Это показано на схеме кроссинговера

Итак, коротко о главном:

Митоз – это такое деление клеточного ядра, при котором образуются два дочерних ядра, содер­жащие наборы хромосом, идентичные наборам родительской клетки. Обычно сразу же после деления ядра происходит деление всей клетки с образованием двух дочерних клеток. Митоз с последующим делением клетки приводит к уве­личению числа клеток, обеспечивая процессы роста, регенерации и замещения клеток у эукариот. У одноклеточных эукариот митоз служит механизмом бесполого размножения, приводя­щего к увеличению численности популяции.

Мейоз представляет собой процесс деления клеточного ядра с образованием дочерних ядер, каждое из которых содержит вдвое меньше хро­мосом, чем исходное ядро. Мейоз называют так­же редукционным делением, так как при этом число хромосом в клетке уменьшается от дипло­идного (2n) до гаплоидного (n). Значение мейоза состоит в том, что у видов с половым размноже­нием он обеспечивает сохранение постоянного числа хромосом в ряду поколений. Мейоз про­исходит при образовании гамет у животных и спор у растений. В результате слияния гаплоид­ных гамет при оплодотворении восстанавливает­ся диплоидное число хромосом.


Прочие варианты клеточных делений.

Деление клеток прокариот.

Рассматривая механизмы митоза и мейоза как основные механизмы клеточных делений, не следует забывать, что они возможны лишь у представителей империи Эукариот, иначе громадная империя Прокариот останется вне сферы нашего внимания.

Отсутствие оформленного ядра и тубулярных органоидов (а значит – и веретена деления) делают очевидным тот факт, что механизмы прокариотического деления должны принципиально отличаться от эукариотических.

В клетках прокариот кольцевая молекула ДНК прикреплена к плазмалемме в области одной из мезосом (складок плазматической мембраны). Она прикреплена участ­ком, в котором начинается дву­направленная репликация (он называется ориджином репликации ДНК ). Сразу после начала репликации начинается активный рост плазмалеммы, причем встраивание но­вого мембранного материала идет в ограниченном пространст­ве плазматической мембраны – между точками прикрепления двух частично реплицированных молекул ДНК.

По мере роста мембраны, реплицированные молекулы ДНК постепенно отдаляются друг от друга, мезосома углубляется, а, напротив нее, закладывается еще одна мезосома. Ког­да реплицированные молекулы ДНК окончательно отдаляются друг от друга, мезосомы соединяются, и происходит разде­ление материнской клетки на две дочерние.

Полового размножения у прокариотов нет, поэтому отсутствуют варианты деления с сокращением плоидности, и все разнообразие способов деления сводится к особенностям цитокинеза:

При равновеликом делении цитокинез равномерный, и образующиеся дочерние клетки имеют сходные размеры; это наиболее распространенный способ цитокинеза у прокариотов;

При почковании одна из клеток наследует бо льшую часть цитоплазмы материнской клетки, а вторая выглядит маленькой почкой на поверхности большой (пока не отделится). Такой цитокинез дал название целому семейству прокариотов – Почкующиеся бактерии , хотя к почкованию способны не только они.

Особые варианты деления эукариотических клеток.

Мейоз - разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

В результате мейоза I число хромосом уменьшается вдвое (редукционное деление);

при мейозе II гаплоидность клеток сохраняется (эквационное деление). Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр.

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада).

Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией.

Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам.

В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками -кроссинговер , приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления. Содержание генетического материала остается прежним (2n2хр).

1)В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. Содержание генетического материала не изменяется (2п2хр).

2)В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна - число хромосом уменьшается вдвое (происходит редукция). Содержание генетического материала становится 1n2хр у каждого полюса.

3)В телофазе происходит формирование ядер и разделение цитоплазмы - образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома - две хроматиды (1n2хр).

Биологическое значение мейоза :

1) является основным этапом гаметогенеза;

2) обеспечивает передачу генетической информации от организма к организму при половом размножении;

3) дочерние клетки генетически не идентичны материнской и между собой.

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II - случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

18:Бесполое размножение живых организмов:

При бесполом размножении участвует одна особь, клеточным механизмом является митоз.

Способы бесполого размножения:

1) Деление клетки - характерно только для одноклеточных организмов(грибы…)

1. Монотамия

2. Палинтамия

3. Шизогония

4. Анизотомия

2) Фрагментация – в основе лежит процесс регенерации, т.е. восстановление утраченных органов или их частей. (червь)

3) Почкование – характерно для бактерий, грибов, кишечнополостных и для оболочников).

4) Споруляция – это размножение спорами. (бактерии, высшие и низшие растения)
Споры бывают:1. Зооспоры(подвижные)