Строение и состав атмосферы Земли, нужно сказать, не всегда были постоянными величинами в тот или иной период развития нашей планеты. Сегодня вертикальное строение этого элемента, имеющего общую «толщину» 1,5-2,0 тыс. км, представлено несколькими основными слоями, в том числе:

  1. Тропосферой.
  2. Тропопаузой.
  3. Стратосферой.
  4. Стратопаузой.
  5. Мезосферой и мезопаузой.
  6. Термосферой.
  7. Экзосферой.

Основные элементы атмосферы

Тропосфера представляет собой слой, в котором наблюдаются сильные вертикальные и горизонтальные движения, именно здесь формируется погода, осадочные явления, климатические условия. Она простирается на 7-8 километров от поверхности планеты почти повсеместно, за исключением полярных регионов (там - до 15 км). В тропосфере наблюдается постепенное понижение температуры, приблизительно на 6,4°С с каждым километром высоты. Этот показатель может отличаться для разных широт и времен года.

Состав атмосферы Земли в этой части представлен следующими элементами и их процентными долями:

Азот - около 78 процентов;

Кислород - почти 21 процент;

Аргон - около одного процента;

Углекислый газ - менее 0.05 %.

Единый состав до высоты 90 километров

Кроме того, здесь можно найти пыль, капельки воды, водяной пар, продукты горения, кристаллики льда, морские соли, множество аэрозольных частиц и др. Такой состав атмосферы Земли наблюдается приблизительно до девяноста километров высоты, поэтому воздух примерно одинаков по химическому составу, не только в тропосфере, но и в вышележащих слоях. Но там атмосфера имеет принципиально другие физические свойства. Слой же, который имеет общий химический состав, называют гомосферой.

Какие элементы еще входят в состав атмосферы Земли? В процентах (по объему, в сухом воздухе) здесь представлены такие газы как криптон (около 1.14 х 10 -4), ксенон (8.7 х 10 -7), водород (5.0 х 10 -5), метан (около 1.7 х 10 -4), закись азота (5.0 х 10 -5) и др. В процентах по массе из перечисленных компонентов больше всего закиси азота и водорода, далее следует гелий, криптон и пр.

Физические свойства разных атмосферных слоев

Физические свойства тропосферы тесно связаны с ее прилеганием к поверхности планеты. Отсюда отраженное солнечное тепло в форме инфракрасных лучей направляется обратно вверх, включая процессы теплопроводности и конвекции. Именно поэтому с удалением от земной поверхности падает температура. Такое явление наблюдается до высоты стратосферы (11-17 километров), потом температура становится практически неизменной до отметки 34-35 км, и далее идет опять рост температур до высот в 50 километров (верхняя граница стратосферы). Между стратосферой и тропосферой есть тонкий промежуточный слой тропопаузы (до 1-2 км), где наблюдаются постоянные температуры над экватором - около минус 70°С и ниже. Над полюсами же тропопауза «прогревается» летом до минус 45°С, зимой температуры здесь колеблются около отметки -65°С.

Газовый состав атмосферы Земли включает в себя такой важный элемент, как озон. Его относительно немного у поверхности (десять в минус шестой степени от процента), так как газ образуется под воздействием солнечных лучей из атомарного кислорода в верхних частях атмосферы. В частности, больше всего озона на высоте около 25 км, а весь «озоновый экран» расположен в областях от 7-8 км в области полюсов, от 18 км на экваторе и до пятидесяти километров в общем над поверхностью планеты.

Атмосфера защищает от солнечной радиации

Состав воздуха атмосферы Земли играет очень важную роль в сохранении жизни, так как отдельные химические элементы и композиции удачно ограничивают доступ солнечной радиации к земной поверхности и живущим на ней людям, животным, растениям. Например, молекулы водяного пара эффективно поглощают почти все диапазоны инфракрасного излучения, за исключением длин в интервале от 8 до 13 мкм. Озон же поглощает ультрафиолет вплоть до длины волн в 3100 А. Без его тонкого слоя (составит всего в среднем 3 мм, если его расположить на поверхности планеты) обитаемы могут быть только воды на глубине более 10 метров и подземные пещеры, куда не доходит солнечная радиация.

Ноль по Цельсию в стратопаузе

Между двумя следующими уровнями атмосферы, стратосферой и мезосферой, существует примечательный слой - стратопауза. Он приблизительно соответствует высоте озонных максимумов и здесь наблюдается относительно комфортная для человека температура - около 0°С. Выше стратопаузы, в мезосфере (начинается где-то на высоте 50 км и заканчивается на высоте 80-90 км), наблюдается опять же падение температур с увеличением расстояния от поверхности Земли (до минус 70-80°С). В мезосфере обычно полностью сгорают метеоры.

В термосфере - плюс 2000 К!

Химический состав атмосферы Земли в термосфере (начинается после мезопаузы с высот около 85-90 до 800 км) определяет возможность такого явления, как постепенный нагрев слоев весьма разреженного «воздуха» под воздействием солнечного излучения. В этой части «воздушного покрывала» планеты встречаются температуры от 200 до 2000 К, которые получаются в связи с ионизацией кислорода (выше 300 км находится атомарный кислород), а также рекомбинацией атомов кислорода в молекулы, сопровождающейся выделением большого количества тепла. Термосфера - это место возникновения полярных сияний.

Выше термосферы находится экзосфера - внешний слой атмосферы, из которого легкие и быстро перемещающиеся атомы водорода могут уходить в космическое пространство. Химический состав атмосферы Земли здесь представлен больше отдельными атомами кислорода в нижних слоях, атомами гелия в средних, и почти исключительно атомами водорода - в верхних. Здесь господствуют высокие температуры - около 3000 К и отсутствует атмосферное давление.

Как образовалась земная атмосфера?

Но, как уже упоминалось выше, такой состав атмосферы планета имела не всегда. Всего существует три концепции происхождения этого элемента. Первая гипотеза предполагает, что атмосфера была взята в процессе аккреции из протопланетного облака. Однако сегодня эта теория подвергается существенной критике, так как такая первичная атмосфера должна была быть разрушена солнечным «ветром» от светила в нашей планетной системе. Кроме того, предполагается, что летучие элементы не могли удержаться в зоне образования планет по типу земной группы из-за слишком высоких температур.

Состав первичной атмосферы Земли, как предполагает вторая гипотеза, мог быть сформирован за счет активной бомбардировки поверхности астероидами и кометами, которые прибыли из окрестностей Солнечной системы на ранних этапах развития. Подтвердить или опровергнуть эту концепцию достаточно сложно.

Эксперимент в ИДГ РАН

Самой правдоподобной представляется третья гипотеза, которая считает, что атмосфера появилась в результате выделения газов из мантии земной коры приблизительно 4 млрд. лет назад. Эту концепцию удалось проверить в ИДГ РАН в ходе эксперимента под названием «Царев 2», когда в вакууме был разогрет образец вещества метеорного происхождения. Тогда было зафиксировано выделение таких газов как Н 2 , СН 4 , СО, Н 2 О, N 2 и др. Поэтому ученые справедливо предположили, что химический состав первичной атмосферы Земли включал в себя водяной и углекислый газ, пары фтороводорода (HF), угарного газа (CO), сероводорода (H 2 S), соединений азота, водород, метан (СН 4), пары аммиака (NH 3), аргон и др. Водный пар из первичной атмосферы участвовал в образовании гидросферы, углекислый газ оказался в большей мере в связанном состоянии в органических веществах и горных породах, азот перешел в состав современного воздуха, а также опять в осадочные породы и органические вещества.

Состав первичной атмосферы Земли не позволил бы современным людям находиться в ней без дыхательных аппаратов, так как кислорода в требуемых количествах тогда не было. Этот элемент в значительных объемах появился полтора миллиарда лет назад, как полагают, в связи с развитием процесса фотосинтеза у сине-зеленых и других водорослей, которые являются древнейшими обитателями нашей планеты.

Минимум кислорода

На то, что состав атмосферы Земли изначально был почти бескислородным, указывает то, что в древнейших (катархейских) породах находят легкоокисляемый, но не окисленный графит (углерод). Впоследствии появились так называемые полосчатые железные руды, которые включали в себя прослойки обогащенных окислов железа, что означает появление на планете мощного источника кислорода в молекулярной форме. Но эти элементы попадались только периодически (возможно, те же водоросли или другие продуценты кислорода появились небольшими островками в бескислородной пустыне), в то время как остальной мир был анаэробным. В пользу последнего говорит то, что легко окисляемый пирит находили в виде гальки, обработанной течением без следов химических реакций. Так как текучие воды не могут быть плохо аэрированными, выработалась точка зрения, что атмосфера до начала кембрия содержала менее одного процента кислорода от сегодняшнего состава.

Революционное изменение состава воздуха

Приблизительно в середине протерозоя (1,8 млрд. лет назад) произошла «кислородная революция», когда мир перешел к аэробному дыханию, в ходе которого из одной молекулы питательного вещества (глюкоза) можно получать 38, а не две (как при анаэробном дыхании) единицы энергии. Состав атмосферы Земли, в части кислорода, стал превышать один процент от современного, стал возникать озоновый слой, защищающий организмы от радиации. Именно от нее «скрывались» под толстыми панцирями, к примеру, такие древние животные, как трилобиты. С тех пор и до нашего времени содержание основного «дыхательного» элемента постепенно и медленно возрастало, обеспечивая многообразие развития форм жизни на планете.

Точный размер атмосферы неизвестен, так как ее верхняя граница четко не прослеживается. Однако строение атмосферы изучено достаточно для того чтобы каждый мог получить представление о том, как устроена газовая оболочка нашей планеты.

Ученые, изучающие физику атмосферы, определяют ее как область вокруг Земли, которая вращается вместе с планетой. ФАИ дает следующее определение :

  • граница между космосом и атмосферой проходит по линии Кармана. Линия эта, по определению той же организации — это высота над уровнем моря, находящаяся на высоте 100 км.

Все, что выше этой линии – космическое пространство. В межпланетное пространство атмосфера переходит постепенно, именно поэтому существуют разные представления о ее размерах.

С нижней границей атмосферы все гораздо проще – она проходит по поверхности земной коры и водной поверхности Земли – гидросфере. При этом граница, можно сказать, сливается с земной и водной поверхностью, так как частицы там также растворены частички воздуха.

Какие слои атмосферы входят в размер Земли

Интересный факт : зимой она находится ниже, летом – выше.

Именно в этом слое возникает турбулентность, антициклоны и циклоны, образуются облака. Именно эта сфера отвечает за формирование погоды, в ней расположено примерно 80% всех воздушных масс.

Тропопаузой называют слой, в котором с высотой не происходит снижение температуры. Выше тропопаузы, на высоте выше 11 и до 50 км находится . В стратосфере располагается слой озона, который, как известно, защищает планету от ультрафиолетовых лучей. Воздух в этом слое разряжен, эти объясняется характерный фиолетовый оттенок неба. Скорость воздушных потоков здесь может достигать 300 км/час. Между стратосферой и мезосферой находится стратопауза – пограничная сфера, в которой имеет место температурный максимум.

Следующий слой – . Она простирается до высот 85-90 километров. Цвет неба в мезосфере – черный, поэтому звезды можно наблюдать даже утром и днем. Там происходят сложнейшие фотохимические процессы, в ходе которых возникает свечение атмосферы.

Между мезосферой и следующим слоем, находится мезопауза. Его определяют как переходный слой, в котором наблюдается температурный минимум. Выше, на высоте 100 километров над уровнем моря, находится линия Кармана. Выше этой линии находятся термосфера (предел высоты 800км) и экзосфера, которую также называют «зоной рассеивания». Она на высоте примерно 2-3 тысячи километров переходит в ближнекосмический вакуум.

Учитывая то, что верхний слой атмосферы четко не прослеживается, точный ее размер высчитать невозможно. Кроме того, в разных странах существуют организации, придерживающиеся разных мнений на этот счет. Надо отметить, что линию Кармана можно считать границей земной атмосферы лишь условно, так как разные источники используют разные отметки границ. Так, в некоторых источниках можно найти сведения о том, что верхняя граница проходит на высоте 2500-3000 км.

NASA для расчетов использует отметку 122 километра. Не так давно были проведены эксперименты, которые уточнили границу, как расположенную на отметке 118км.

Толщина атмосферы - примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере - (5,1-5,3)·10 18 кг. Из них масса сухого воздуха составляет 5,1352 ±0,0003·10 18 кг, общая масса водяных паров в среднем равна 1,27·10 16 кг.

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 ° (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Атмосфера Земли

Граница атмосферы Земли

Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца . В периоды низкой активности - например, в 2008-2009 гг - происходит заметное уменьшение размеров этого слоя .

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана , за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение .

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство ;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N 2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

Благородные газы

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек . Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200-300 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , , SO 2). Диоксид серы окисляется кислородом воздуха до SO 3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н 2 SO 4) и сульфат аммония ((NH 4) 2 SO 4) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2) 4)).

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

См. также

  • Jacchia (модель атмосферы)

Примечания

Ссылки

Литература

  1. В. В. Парин, Ф. П. Космолинский, Б. А. Душков «Космическая биология и медицина» (издание 2-е, переработанное и дополненное), М.: «Просвещение», 1975, 223 стр.
  2. Н. В. Гусакова «Химия окружающей среды», Ростов-на-Дону: Феникс, 2004, 192 с ISBN 5-222-05386-5
  3. Соколов В. А. Геохимия природных газов, М., 1971;
  4. МакИвен М., Филлипс Л. Химия атмосферы, М., 1978;
  5. Уорк K., Уорнер С. Загрязнение воздуха. Источники и контроль, пер. с англ., М.. 1980;
  6. Мониторинг фонового загрязнения природных сред. в. 1, Л., 1982.

Атмосфера - это воздушная оболочка, которая окружает Землю и связанная с ней силой тяжести. Атмосфера участвует в суточном вращении и годовом движении нашей планеты. Воздух атмосферы - смесь газов, в котором находятся во взвешенном состоянии жидкие (капельки воды) и твердые частицы (дым, пыль). Газовый состав атмосферы является неизменным до высоты 100-110 км, что обусловлено равновесием в природе. Объемные доли газов составляют: азот - 78%, кислород - 21%, инертные газы (аргон, ксенон, криптон) - 0,9%, углерод - 0,03%. Кроме того, в атмосфере всегда присутствует водяной пар.

Кроме биологических процессов, кислород, азот и углерод активно участвуют в химическом выветривании горных пород. Очень важна роль озона 03 поглощающий большую часть ультрафиолетового излучения Солнца, в больших дозах опасен для живых организмов. Твердые частицы, которых особенно много над городами, служат ядрами конденсации (вокруг них образуются капли воды и снежинки).

Высота, границы и строение атмосферы

Верхнюю границу атмосферы условно проводят на высоте около 1000 км, хотя она прослеживается гораздо выше - до 20 000 км, но там она очень разрежена.

Через различный характер изменений температуры воздуха с высотой, других физических свойств в атмосфере выделяют несколько частей, которые отделяются друг от друга переходными слоями.

Тропосфера - самый низкий и плотный слой атмосферы. Его верхнюю границу проводят на высоте 18 км над экватором и 8-12 км - над полюсами. Температура в тропосфере снижается в среднем на 0,6 ° С на каждые 100 м. Для нее характерны значительные горизонтальные различия в распределении температуры, давления, скорости ветра, а также образование облаков и осадков. В тропосфере происходит интенсивный вертикальное движение воздуха - конвекция. Именно в этом нижнем слое атмосферы в основном формируется погода. Здесь сосредоточена почти вся водяной пар атмосферы.

Стратосфера распространяется в основном до высоты 50 км. Концентрация озона на высоте 20-25 км достигает наибольших значений, образуя озоновый экран. Температура воздуха в стратосфере, как правило, повышается с высотой в среднем на 1-2 ° С на 1 км, достигая на верхней границе 0 ° С и выше. Это происходит за счет поглощения озоном солнечной энергии. В стратосфере почти нет водяного пара и облаков, а ураганные ветры дуют со скоростью до 300- 400 км / ч.

В мезосфере температура воздуха снижается до -60 ...- 100 ° С, происходят интенсивные вертикальные и горизонтальные перемещения воздуха.

В верхних слоях термосферы, где воздух очень ионизированный, температура вновь повышается до 2000 ° С. Здесь наблюдаются полярные сияния и магнитные бури.

Атмосфера играет большую роль в жизни Земли. Она предотвращает чрезмерное нагревание земной поверхности днем и охлаждению ее ночью, перераспределяет влагу на Земле, защищает ее поверхность от падений метеоритов. Наличие атмосферы является непременным условием существования органической жизни на нашей планете.

Солнечная радиация. Нагрев атмосферы

Солнце излучает огромное количество энергии, только маленькую долю которой получает Земля.

Излучение Солнцем света и тепла называют солнечной радиацией. Солнечная радиация, прежде чем достичь земной поверхности, проходит долгий путь в атмосфере. Преодолевая его, она в значительной мере поглощается и рассеивается воздушной оболочкой. Радиацию, которая непосредственно достигает земной поверхности в виде прямых лучей, называют прямой радиацией. Часть радиации, рассеивается в атмосфере, также попадает на поверхность Земли в форме рассеянной радиации.

Совокупность прямой и рассеянной радиации, поступающей на горизонтальную поверхность, называют суммарной солнечной радиацией. Атмосфера поглощает порядка 20% солнечной радиации, поступающей на ее верхнюю границу. Еще 34% радиации отражается от поверхности Земли и атмосферы (отраженная радиация). 46% солнечной радиации поглощает земная поверхность. Такую радиацию называют поглощенной (впитанной).

Отношение интенсивности отраженной солнечной радиации интенсивности всей лучистой энергии Солнца, поступающей на верхнюю границу атмосферы, называют альбедо Земли и выражают в процентах.

Итак, альбедо нашей планеты вместе с ее атмосферой составляет в среднем 34%. Величина альбедо на разных широтах имеет значительные отличия, связанные с цветом поверхности, растительностью, облачностью и тому подобное. Участок поверхности, покрытая свежим снегом, отражает 80-85% радиации, травяной растительностью и песком - соответственно 26% и ЗО%, а водой - только 5%.

Количество солнечной энергии, получаемой отдельными участками Земли, зависит прежде всего от угла падения солнечных лучей. Чем прямовиснише они падают (т.е. большая высота Солнца над горизонтом), тем большее количество солнечной энергии попадает на единицу площади.

Зависимость величины суммарной радиации от угла падения лучей обусловлена двумя причинами. Во-первых, чем меньше угол падения солнечных лучей, тем на большую площадь распределяется этот поток света и тем меньше энергии приходится на единицу поверхности. Во-вторых, чем меньше угол падения, тем длиннее путь проходит луч в атмосфере.

На величину солнечной радиации, которая попадает на земную поверхность влияет, и прозрачность атмосферы, особенно облачность. Зависимость солнечной радиации от угла падения солнечных лучей и прозрачности атмосферы обусловливает зональный характер ее распределения. Различия в величине суммарной солнечной радиации на одной широте вызванные, в основном, облачностью.

Количество тепла, поступающего на земную поверхность, определяют в калориях на единицу площади (1 см) за единицу времени (1 год).

Поглощенная радиация расходуется на нагрев тонкого приповерхностного слоя Земли и испарения воды. Нагретая земная поверхность передает тепло в окружающую среду благодаря излучению, теплопроводности, конвекции и конденсации водяного пара.

Изменения температуры воздуха в зависимости от географической широты места и от высоты над уровнем океана

Суммарная радиация уменьшается от экваториально-тропических широт к полюсам. Она максимальная - около 850 Дж / м2 в год (200 ккал / см2 в год) - в тропических пустынях, где прямая солнечная, радиация через большую высоту Солнца и безоблачное небо интенсивная. В летнее полугодие различия в поступлении суммарной солнечной радиации между низкими и высокими широтами сглаживаются. Это происходит за счет большей продолжительности освещения Солнцем, особенно в полярных районах, где полярный день длится даже полгода.

Хотя суммарная солнечная радиация, поступающая на земную поверхность, частично отражается ней, однако большая ее часть поглощается земной поверхностью и превращается в теплоту. Часть суммарной радиации, остается после ее расходы на отражение и на тепловое излучение земной поверхности, называется радиационным балансом (остаточной радиацией). В целом за год всюду на Земле он положительный, за исключением высоких ледяных пустынь Антарктиды и Гренландии. Радиационный баланс закономерно уменьшается по направлению от экватора к полюсам, где он близок к нулю.

Соответственно и температура воздуха распределяется зонально, то есть уменьшается в направлении от экватора к полюсам. .Температура Воздуха зависит также от высоты местности над уровнем моря: чем выше местность, тем температура ниже.

Существенное влияние на температуру воздуха распределение суши и воды. Поверхность суши быстро нагревается, но быстро и охлаждается, а поверхность воды нагревается медленнее, однако дольше сохраняет тепло и медленнее отдает его в воздух.

В результате различной интенсивности нагрева и охлаждения поверхности Земли днем и ночью, в теплую и холодную времени года, температура воздуха меняется в течение суток и года.

Для определения температуры воздуха используют термометры. ее измеряют 8 раз в сутки и выводят среднюю за сутки. При среднесуточной температуре рассчитывают среднемесячные. Именно их, как правило, показывают на климатических картах изотермами (линиями, которые соединяют точки с одинаковой температурой за определенный промежуток времени). Для характеристики температур чаще всего берут среднемесячные январские и июльские показатели, реже годовых. ,

Занимается метеорология, а длительными вариациями - климатология.

Толщина атмосферы 1500 км от поверхности Земли. Суммарная масса воздуха, то есть смеси газов, составляющих атмосферу, - 5,1-5,3 *10^15 т. Молекулярная масса чистого сухого воздуха составляет 29. Давление при 0 °С на уровне моря 101 325 Па, или 760 мм. рт. ст.; критическая температура — 140,7 °С; критическое давление 3,7 МПа. Растворимость воздуха в воде при 0 °С - 0,036 %, при 25 °С - 0,22 %.

Физическое состояние атмосферы определяется . Основные параметры атмосферы: плотность воздуха, давление, температура и состав. С увеличением высоты плотность воздуха и уменьшаются. Температура меняется также в зависимости от изменения высоты. Вертикальное характеризуется различными температурными и электрическими свойствами, разным состоянием воздуха. В зависимости от температуры в атмосфере различают следующие основные слои: тропосферу, стратосферу, мезосферу, термосферу, экзосферу (сферу рассеяния). Переходные области атмосферы между соседними оболочками называют соответственно тропопауза, стратопауза и т.д.

Тропосфера - нижний, основной, наиболее изученный , высотой в полярных областях 8-10 км, в умеренных широтах до 10-12 км, на экваторе - 16-18 км. В тропосфере сосредоточено примерно 80-90 % всей массы атмосферы и почти все водяные пары. При подъеме через каждые 100 м температура в тропосфере понижается в среднем на 0,65 °С и достигает -53 °С в верхней части. Этот верхний слой тропосферы называют тропопаузой. В тропосфере сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть , возникают облака, развиваются .

Стратосфера - слой атмосферы, располагающийся на высоте 11-50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение ее в слое 25-40 км от -56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения 273 К (0 °С), температура остается постоянной до высоты 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Именно в стратосфере располагается слой озоносферы («озоновый слой», на высоте от 15-20 до 55- 60 км), который определяет верхний предел жизни в . Важный компонент стратосферы и мезосферы - озон, образующийся в результате фотохимических реакций наиболее интенсивно на высоте равной 30 км. Общая масса озона составила бы при нормальном давлении слой толщиной 1,7-4 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового . Разрушение озона происходит при его взаимодействии со свободными радикалами, оксидом азота, галогенсодержащими соединениями (в том числе «фреонами»). Озон - аллотропия кислорода, образуется в результате следующей химической реакции, обычно после дождя, когда полученное соединение поднимается в верхние слои тропосферы; озон имеет специфический запах.

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц, и других свечений. В стратосфере почти нет водяного пара.

Мезосфера начинается на высоте 50 км и простирается до 80-90 км. до высоты 75-85 км понижается до -88 °С. Верхней границей мезосферы является мезопауза.

Термосфера (другое название - ионосфера) - слой атмосферы, следующий за мезосферой, - начинается на высоте 80-90 км и простирается до 800 км. Температура воздуха в термосфере быстро и неуклонно возрастает и достигает нескольких сотен и даже тысяч градусов.

Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 800 км. Газ в экзосфере сильно разрежен, и отсюда идет утечка его частиц в межпланетное пространство (диссипация).
До высоты 100 км атмосфера представляет собой гомогенную (однофазную), хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжелых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °С в стратосфере до -110 °С в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре приблизительно 1500 °С. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме этих чрезвычайно разреженных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от обшей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, т.к. их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже ее лежит хорошо перемешанная, однородная по составу часть атмосферы называемая гомосферой. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Атмосферное давление - давление атмосферного воздуха на находящиеся в нем предметы и земную поверхность. Нормальным атмосферным давлением является показатель в 760 мм рт. ст. (101 325 Па). При повышении высоты на каждый километр давление падает на 100 мм.

Состав атмосферы

Воздушная оболочка Земли, состоящая в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения), количество которых непостоянно. Основным газами являются азот (78 %), кислород (21 %) и аргон (0,93 %). Концентрация газов, составляющих атмосферу, практически постоянна, за исключением углекислого газа СО2 (0,03 %).

Также в атмосфере содержатся SO2, СН4, NH3, СО, углеводороды, НС1, HF, пары Hg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твердых и жидких частиц (аэрозоль).