Черные дыры – пожалуй, самые таинственные и загадочные астрономические объекты в нашей Вселенной, с момента своего открытия привлекают внимание ученых мужей и будоражат фантазию писателей-фантастов. Что же такое черные дыры и что они из себя представляют? Черные дыры – это погаснувшие звезды, в силу своих физических особенностей, обладающие настолько высокой плотностью и настолько мощной гравитацией, что даже свету не удается вырваться за их пределы.

История открытия черных дыр

Впервые теоретическое существование черных дыр, еще задолго до их фактического открытия предположил некто Д. Мичел (английский священник из графства Йоркшир, на досуге увлекающийся астрономией) в далеком 1783 году. По его расчетам, если наше взять и сжать (говоря современным компьютерным языком — заархивировать) до радиуса в 3 км., образуется настолько большая (просто огромная) сила гравитации, что даже свет не сможет ее покинуть. Так и появилось понятие «черная дыра», хотя на самом деле она вовсе не черная, на наш взгляд более подходящим был бы термин «темная дыра», ведь имеет место именно отсутствие света.

Позже, в 1918 году о вопросе черных дыр в контексте теории относительности писал великий ученый Альберт Эйнштейн. Но только в 1967 году стараниями американского астрофизика Джона Уиллера понятие черных дыр окончательно завоевало место в академических кругах.

Как бы там ни было, и Д. Мичел, и Альберт Эйнштейн, и Джон Уиллер в своих работах предполагали только теоретическое существование этих загадочных небесных объектов в космическом пространстве, однако подлинное открытие черных дыр состоялось в 1971 году, именно тогда они впервые были замечены в телескоп.

Так выглядит черная дыра.

Как образуются черные дыры в космосе

Как мы знаем из астрофизики, все звезды (в том числе и наше Солнце) имеют некоторый ограниченный запас топлива. И хотя жизнь звезды может длиться миллиарды световых лет, рано или поздно этот условный запас топлива подходит к концу, и звезда «гаснет». Процесс «угасания» звезды сопровождается интенсивными реакциями, в ходе которых звезда проходит значительную трансформацию и в зависимости от своего размера может превратиться в белого карлика, нейтронную звезду или же черную дыру. Причем в черную дыру, обычно, превращаются самые крупные звезды, обладающие невероятно внушительными размерами – за счет сжимание этих самых невероятных размеров происходит многократное увеличение массы и силы гравитации новообразованной черной дыры, которая превращается в своеобразный галактический пылесос – поглощает все и вся вокруг себя.

Черная дыра поглощает звезду.

Маленькая ремарка – наше Солнце по галактическим меркам вовсе не является крупной звездой и после угасания, которое произойдет примерно через несколько миллиардов лет, в черную дыру, скорее всего, не превратиться.

Но будем с вами откровенны – на сегодняшний день, ученые пока еще не знают всех тонкостей образования черной дыры, несомненно, это чрезвычайно сложный астрофизический процесс, который сам по себе может длиться миллионы световых лет. Хотя возможно продвинуться в этом направлении могло бы обнаружение и последующее изучение так званых промежуточных черных дыр, то есть звезд, находящихся в состоянии угасания, у которых как раз происходит активный процесс формирования черной дыры. К слову, подобная звезда была обнаружена астрономами в 2014 году в рукаве спиральной галактики.

Сколько черных дыр существует во Вселенной

Согласно теориям современных ученых в нашей галактике Млечного пути может находиться до сотни миллионов черных дыр. Не меньшее их количество может быть и в соседней с нами галактике , до которой от нашего Млечного пути лететь всего нечего — 2,5 миллиона световых лет.

Теория черных дыр

Не смотря на огромную массу (которая в сотни тысяч раз превосходит массу нашего Солнца) и невероятной силы гравитацию увидеть черные дыры в телескоп было не просто, ведь они совсем не излучают света. Ученым удалось заметить черную дыру только в момент ее «трапезы» — поглощения другой звезды, в этот момент появляется характерное излучение, которое уже можно наблюдать. Таким образом, теория черной дыры нашла фактическое подтверждение.

Свойства черных дыр

Основное свойство черно дыры – это ее невероятные гравитационные поля, не позволяющие окружающему пространству и времени оставаться в своем привычном состоянии. Да, вы не ослышались, время внутри черной дыры протекает в разы медленнее чем обычно, и окажись вы там, то вернувшись обратно (если б вам так повезло, разумеется) с удивлением бы заметили, что на Земле прошли века, а вы даже состариться не успели. Хотя будем правдивы, окажись внутри черной дыры вы вряд ли бы выжили, так как сила гравитации там такая, что любой материальный объект просто разорвала бы даже не на части, на атомы.

А вот окажись вы даже поблизости черной дыры, в пределах действия ее гравитационного поля, то вам тоже пришлось бы не сладко, так как, чем сильнее вы бы сопротивлялись ее гравитации, пытаясь улететь подальше, тем быстрее бы упали в нее. Причинной этому казалось бы парадоксу является гравитационное вихревое поле, которым обладают все черные дыры.

Что если человек попадет в черную дыру

Испарение черных дыр

Английский астроном С. Хокинг открыл интересный факт: черные дыры также, оказывается, выделяют испарение. Правда это касается только дыр сравнительно небольшой массы. Мощная гравитация около них рождает пары частиц и античастиц, один из пары втягивается дырой внутрь, а второй исторгается наружу. Таким образом, черная дыра излучает жесткие античастицы и гамма- . Это испарение или излучение черной дыры было названо на честь ученого, открывшего его – «излучение Хокинга».

Самая большая черная дыра

Согласно теории черных дыр в центре почти всех галактик находятся огромные черные дыры с массами от нескольких миллионов до нескольких миллиардом солнечных масс. И сравнительно недавно учеными были открыты две самые большие черные дыры, известные на сегодняшний момент, они находятся в двух близлежащих галактиках: NGC 3842 и NGC 4849.

NGC 3842 – самая яркая галактика в созвездии Льва, от нас находится на расстоянии 320 миллионов световых лет. В центре нее иметься огромная черная дыра массой в 9,7 миллиарда солнечных масс.

NGC 4849 – галактика в скопление Кома, на расстоянии 335 миллионов световых лет от нас может похвалится не менее внушительной черной дырой.

Зоны действия гравитационного поля этих гигантских черных дыр, или говоря академическим языком, их горизонт событий, примерно в 5 раз больше дистанции от Солнца до ! Такая черна дыра скушала бы нашу солнечную систему и даже не поперхнулась бы.

Самая маленькая черная дыра

Но есть в обширном семействе черных дыр и совсем маленькие представители. Так самая карликовая черная дыра, открытая учеными на настоящий момент по своей массе всего лишь в 3 раза превосходит массу нашего Солнца. По сути это теоретический минимум, необходимый для образования черной дыры, будь та звезда чуть меньше, дыра бы не образовалась.

Черные дыры — каннибалы

Да, есть такое явление, как мы писали выше, черные дыры являются своего рода «галактическими пылесосами», поглощающими все вокруг себя, и в том числе и… другие черные дыры. Недавно астрономами было обнаружено поедание черной дыры из одной галактике еще большой черной обжорой из другой галактики.

  • Согласно гипотезам некоторых ученых черные дыры являются не только галактическими пылесосами, всасывающими все в себя, но при определенных обстоятельствах могут и сами порождать новые вселенные.
  • Черные дыры могут испаряться со временем. Выше мы писали, что английским ученым Стивеном Хокингом было открыто, что черные дыры имеют свойство излучение и через какой-то очень большой отрезок времени, когда поглощать вокруг будет уже нечего, черная дыра начнет больше испарять, пока со временем не отдаст всю свой массу в окружающий космос. Хотя это только предположение, гипотеза.
  • Черные дыры замедляют время и искривляют пространство. О замедлении времени мы уже писали, но и пространство в условиях черной дыры будет совершенно искривлено.
  • Черные дыры ограничивают количество звезд во Вселенной. А именно их гравитационные поля препятствуют остыванию газовых облаков в космосе, из которых, как известно, рождаются новые звезды.

Черные дыры на канале Discovery, видео

И в завершение предлагаем вам интересный научно-документальный фильм о черных дырах от канала Discovery

Нет более завораживающего своей красотой космического явления, чем черные дыры. Как известно, свое название объект получил из-за того, что способен поглощать свет, но при этом не может отражать его. Из-за огромного притяжения черные дыры всасывают все, что находится рядом с ними – планеты, звезды, космический мусор. Однако это далеко не все, что следует знать про черные дыры, так как существует множество удивительных фактов про них.

Точки невозврата у черных дыр нет

Долгое время считалось, что все, что попадает в область черной дыры остается в ней, но результатом последних исследований стало то, что оказывается спустя время черная дыра «выплевывает» в космос все содержимое, но в другом виде, отличном от первоначального. Горизонт событий, который считался точкой невозврата для космических объектов, оказался лишь их временным убежищем, однако этот процесс происходит очень медленно.

Земле угрожает черная дыра

Солнечная система лишь часть бесконечной галактики, в которой находится огромное количество черных дыр. Оказывается, что и Земле угрожает две из них, но к счастью, находятся они на огромном расстоянии – около 1600 световых лет . Обнаружены они в галактике, которая образовалась в результате слияния двух галактик.


Увидели черные дыры ученые только благодаря тому, что они находились рядом с Солнечной системой с помощью рентгеновского телескопа, который способен улавливать рентгеновские лучи, излучаемые этими космическими объектами. Черные дыры, так как они находятся рядом друг с другом и практически сливаются в одну, назвали одним именем – Чандра в честь бога Луны из индуистской мифологии. Ученые уверены, что вскоре Чандра станет единым целым из-за огромной силы гравитации.

Черные дыры со временем могут исчезнуть

Рано или поздно все содержимое из черной дыры выходит и остается только радиация. Теряя массу, черные дыры со временем становятся меньше, а после совсем исчезают. Гибель космического объекта очень медленна и потому вряд ли кому-то из ученых удастся увидеть, как уменьшается, а после и исчезает черная дыра. Стивен Хоккинг утверждал, что дыра в космосе представляет собой сильно сжатую планету и со временем она испаряется, начиная с краев искажения.

Черные дыры не обязательно могут выглядеть черными

Ученые утверждают, что так как космический объект поглощает в себя световые частицы, не отражая их, черная дыра не имеет цвета, выдает ее только поверхность – горизонт событий. Своим гравитационным полем она заслоняет все пространство позади себя, включая планеты и звезды. Но при этом из-за поглощения планет и звезд на поверхности черной дыры по спирали из-за огромной скорости движения объектов и трения между ними, появляется свечение, которое может быть ярче звезд. Это скопление газов, звездной пыли и другой материи, которую затягивает черная дыра. Также иногда черная дыра может излучать электромагнитные волны и потому может быть видимой.

Черные дыры не создаются из ниоткуда, их основа – погасшая звезда

Звезды светятся в космосе благодаря своему запасу термоядерного топлива. Когда он заканчивается, звезда начинает охлаждаться, постепенно превращаясь из белого карлика в черного. Внутри остывшей звезды начинает снижаться давление. Под действием силы гравитации космическое тело начинает сжиматься. Следствием этого процесса является то, что звезда как бы взрывается, все ее частицы разлетаются в космосе, но при этом силы гравитации продолжают действовать, притягивая соседние космические объекты, которые после поглощаются ею, увеличивая мощность черной дыры и ее размеры.

Сверхмассивная черная дыра

Черная дыра, размеры которой в десятки тысяч раз превышают размеры Солнца, находится в самом центре Млечного пути. Ученые назвали ее Стрелец и находится она от Земли на расстоянии 26000 световых лет . Данная область галактики чрезвычайно активна и с огромной скоростью поглощает все, что находится рядом с ней. Также часто она «выплевывает» погасшие звезды.


Удивительным является тот факт, что средняя плотность черной дыры, даже учитывая ее огромный размер, может быть равна даже плотности воздуха. С увеличением радиуса черной дыры, то есть количества захваченных ею объектов, плотность черной дыры становится меньше и объясняется это простыми законами физики. Таким образом, самые большие тела в космосе на самом деле могут быть такими же легкими, как и воздух.

Черная дыра может создать новые Вселенные

Как бы это не звучало странно, особенно на фоне того, что на самом деле черные дыры поглощают и соответственно разрушают все вокруг, ученые всерьез задумываются о том, что данные космические объекты могут положить начало появлению новой Вселенной. Так, как известно черные дыры не только поглощают материю, но и могут освобождать ее в определенные периоды. Любая частичка, которая вышла из черной дыры, может взорваться и это станет новым Большим взрывом, а согласно его теории наша Вселенная так и появилась, потому не исключено, что Солнечная система, которая сегодня существует и в которой вертится Земля, населенное огромным количеством людей, когда-то была рождена массивной черной дырой.

Возле черной дыры время идет очень медленно

Когда объект подходит близко к черной дыре, вне зависимости от того, какая у него масса, его движение начинает замедляться и это происходит потому, что в самой черной дыре время замедляется и все происходит очень медленно. Это связано с огромной силой гравитации, которую имеет черная дыра. При этом то, что происходит в самой черной дыре происходит достаточно быстро, потому если бы наблюдатель смотрел на черную дыру со стороны, ему показалось бы, что все происходящие процессы в ней протекают медленно, однако если бы попал в ее воронку, силы гравитации мгновенно бы разорвали его.

Понятие чёрной дыры известно всем - от школьника до людей преклонного возраста, оно используется в научной и фантастической литературе, в желтых СМИ и на научных конференциях. Но что конкретно представляют собой такие дыры, известно далеко не всем.

Из истории чёрных дыр

1783 г. Первая гипотеза существования такого явления, как чёрная дыра, была выдвинута в 1783 году английским учёным Джоном Мичеллом. В своей теории он объединил два творению Ньютона - оптику и механику. Идея Мичелла была такова: если свет - это поток мельчайших частиц, то, как и все другие тела, частицы должны испытывать притяжение гравитационного поля. Получается, чем массивнее звезда, тем сложнее свету противиться её притяжению. Через 13 лет после Мичелла, французский астроном и математик Лаплас выдвинул (скорее всего, независимо от британского коллеги) схожую теорию.

1915 г. Однако, все их труды оставались невостребованными вплоть до начала XX века. В 1915 году Альберт Эйнштейн опубликовал Общую теорию относительности и показал, что гравитация есть искривление пространства-времени, вызванное материей, а спустя несколько месяцев немецкий астроном и физик-теоретик Карл Шварцшильд использовал её для решения конкретной астрономической задачи. Он исследовал структуру искривленного пространства-времени вокруг Солнца и заново открыл феномен чёрных дыр.

(Джон Уилер ввел в научный обиход термин "Чёрные дыры")

1967 г. Американский физик Джон Уилер обрисовал пространство, которое можно скомкать, подобно листику бумаги, в бесконечно малую точку и обозначил термином "Чёрная дыра".

1974 г. Британский физик Стивен Хокинг доказал, что чёрные дыры, хоть и поглащают метерию без возврата, могут испускать излучение и в конце концов испаряться. Такое явление получило название "излучение Хокинга".

Наше время. Новейшие исследования пульсаров и квазаров, а также открытие реликтового излучения, наконец сделали возможным описать само понятие чёрных дыр. В 2013 году газовое облако G2 приблизилось на очень близкое расстояние к Чёрной дыре и скорее всего будет поглощено ей, наблюдения за уникальным процессом даст огромные возможности для новых открытий особенностей чёрных дыр.

Чем на самом деле являются чёрные дыры


Лаконичное объяснение феномена звучит так. Чёрная дыр - это пространственно-временная область, чье гравитационное притяжение настолько велико, что её не может покинуть ни один объект, в том числе световые кванты.

Когда-то чёрная дыра была массивной звёздой. Пока термоядерные реакции поддерживают в её недрах высокое давление, всё остаётся в норме. Но со временем запас энергии истощается и небесное тело, под действием собственной гравитации, начинает сжиматься. Завершающий этап этого процесса - схлопывание звездного ядра и образование чёрной дыры.


  • 1. Выбрасывание черной дырой струи на высокой скорости

  • 2. Диск материи перерастает в чёрную дыру

  • 3. Чёрная дыра

  • 4. Детальная схема региона чёрной дыры

  • 5. Размер найденных новых наблюдений

Самая распространённая теория гласит, что подобные феномены есть в каждой галактике, в том числе и в центре нашего Млечного пути. Огромная сила притяжения дыры способна удерживать вокруг себя несколько галактик, не давая им удаляться друг от друга. «Площадь покрытия» может быть разной, всё зависит от массы звёзды, которая превратилась в чёрную дыру, и может составлять тысячи световых лет.

Радиус Шварцшильда

Главное свойство чёрной дыры - любое вещество, которое в неё попало, никогда не сможет вернуться. Это же касается и света. По своей сути дыры - это тела, которые полностью поглощают весь попадающий на них свет и не испускающие собственного. Такие объекты визуально могут казаться сгустками абсолютной темноты.


  • 1. Движущаяся материя в половину скорости света

  • 2. Фотонное кольцо

  • 3. Внутреннее фотонное кольцо

  • 4. Горизонт событий в чёрной дыре

Отталкиваясь от Общей теории относительности Эйнштейна, если тело приблизилось на критическое расстояние к центру дыры, оно уже не сможет вернуться. Это расстояние называют радиусом Шварцшильда. Что именно происходит внутри этого радиуса доподлинно неизвестно, но есть наиболее распространенная теория. Считается, что всё вещество чёрной дыры концентрируется в бесконечно малой точке, а в её центре находится объект с бесконечной плотностью, который ученые именуют сингулярным возмущением.

Как происходит падение в чёрную дыру


(На картинке чёрная дыра Стрельца А* выглядит крайне ярким скоплением света)

Не так давно, в 2011 году, ученые обнаружили газовое облако, дав ему несложное название G2, которое испускает необычные свет. Такое свечение может давать трение в газе и пыли, вызываемое действием чёрной дыры Стрельца А* и которые вращаются вокруг нее в виде аккреционного диска. Таким образом, мы становимся наблюдателями удивительного явления поглощения сверхмассивной чёрной дырой газового облака.

По последним исследованиям наибольшее сближение с черной дырой произойдет в марте 2014 года. Мы можем воссоздать картину того, как будет происходит это захватывающее зрелище.

  • 1. При первом появлении в данных газовое облако напоминает огромный шар из газа и пыли.

  • 2. Сейчас по состоянию на июнь 2013 года облако находится в десятках миллиардов километров от чёрной дыры. Оно падает в неё со скоростью 2500 км/с.

  • 3. Ожидается, что облако пройдет мимо чёрной дыры, но приливные силы, вызванные различием в притяжении, действующем на передний и задний край облака, заставят его принимать всё более вытянутую форму.

  • 4. После того, как облако будет разорвано, большая его часть, скорее всего, вольется в аккреционный диск вокруг Стрельца А*, порождая в нём ударные волны. Температура при этом подскочит до нескольких миллионов градусов.

  • 5. Часть облака упадёт прямо в чёрную дыру. Никто не знает в точности, что случится потом с этим веществом, но ожидается, что в процессе падения оно будет испускать мощные потоки рентгеновских лучей, и больше его никто не увидит.

Видео: чёрная дыра поглощает газовое облако

(Компьютерное моделирование того, как большая часть газового облака G2 будет разрушено и поглощено чёрной дырой Стрельцом А*)

Что там внутри чёрной дыры?

Есть теория, которая утверждает, что чёрная дыра внутри практически пуста, а вся её масса сосредоточена в невероятно маленькой точке, находящейся в самом её центре - сингулярности.

Согласно другой теории, существующей на протяжении полувека, всё, что попадает в чёрную дыру, переходит в другую вселенную, находящуюся в самой чёрной дыре. Сейчас это теория не является основной.

И есть третья, самая современная и живучая теория, по которой всё, что попадает в чёрную дыру, растворяется в колебаниях струн на её поверхности, которую обозначают, как горизонт событий.


Так что же такое - горизонт событий? Внутрь чёрной дыры заглянуть нельзя даже сверхмощным телескопом, так как даже свет, попадая внутрь гигантской космической воронки, не имеет шансов вынырнуть назад. Всё, что можно хоть как-то рассмотреть, находится в её ближайших окрестностях.

Горизонт событий - это условная линия поверхности, из под которой ничто (ни газ, ни пыль, ни звезды, ни свет) выйти уже не сможет. И вот это и есть та самая таинственная точка невозврата в чёрных дырах Вселенной.

Для того, чтобы образовалась черная дыра, нужно сжать тело до некоторой критической плотности так, чтобы радиус сжатого тела оказался равным его гравитационному радиусу. Величина этой критической плотности обратно пропорциональна квадрату массы черной дыры.

Для типичной черной дыры звездной массы (M =10M sun) гравитационный радиус равен 30 км, а критическая плотность 2·10 14 г/см 3 , то есть двести миллионов тонн в кубическом сантиметре. Эта плотность очень велика по сравнению со средней плотностью Земли (5,5 г/см 3), она равна плотности вещества атомного ядра.

Для черной дыры в ядре галактики (M =10 10 M sun) гравитационный радиус равен 3·10 15 см = 200 а.е., что в пять раз больше расстояния от Солнца до Плутона (1 астрономическая единица - среднее расстояние от Земли до Солнца - равна 150 млн. км или 1,5·10 13 см). Критическая плотность при этом равна 0,2·10 –3 г/см 3 , что в несколько раз меньше плотности воздуха, равной 1,3·10 –3 г/см 3 (!).

Для Земли (M =3·10 –6 M sun) гравитационный радиус близок к 9 мм, а соответствующая критическая плотность чудовищно велика: ρ кр = 2·10 27 г/см 3 , что на 13 порядков выше плотности атомного ядра.

Если мы возьмем некий воображаемый сферический пресс и будем сжимать Землю, сохраняя ее массу, то когда мы уменьшим радиус Земли (6370 км) в четыре раза, ее вторая космическая скорость возрастет вдвое и станет равной 22,4 км/c. Если же мы сожмем Землю так, что ее радиус станет равным примерно 9 мм, то вторая космическая скорость примет значение, равное скорости света c = 300000 км/с.

Дальше пресс не понадобится - сжатая до таких размеров Земля уже сама будет сжиматься. В конце концов, на месте Земли образуется черная дыра, радиус горизонта событий которой будет близок к 9 мм (если пренебречь вращением образовавшейся черной дыры). В реальных условиях, разумеется, никакого сверхмощного пресса нет - «работает» гравитация. Именно поэтому черные дыры могут образовываться лишь при коллапсе внутренних частей весьма массивных звезд, у которых гравитация достаточно сильна, чтобы сжать вещество до критической плотности.

Эволюция звезд

Черные дыры образуются на конечных стадиях эволюции массивных звезд. В недрах обычных звезд идут термоядерные реакции, выделяется огромная энергия и поддерживается высокая температура (десятки и сотни миллионов градусов). Силы гравитации стремятся сжать звезду, а силы давления горячего газа и излучения противостоят этому сжатию. Поэтому звезда находится в гидростатическом равновесии.

Кроме того, в звезде может существовать тепловое равновесие, когда энерговыделение, обусловленное термоядерными реакциями в ее центре, в точности равно мощности, излучаемой звездой с поверхности. При сжатии и расширении звезды тепловое равновесие нарушается. Если звезда стационарна, то ее равновесие устанавливается так, что отрицательная потенциальная энергия звезды (энергия гравитационного сжатия) по абсолютной величине всегда вдвое больше тепловой энергии. Из-за этого звезда обладает удивительным свойством - отрицательной теплоемкостью. Обычные тела имеют положительную теплоемкость: нагретый кусок железа, остывая, то есть, теряя энергию, понижает свою температуру. У звезды же все наоборот: чем больше она теряет энергии в виде излучения, тем выше становится температура в ее центре.

Эта странная, на первый взгляд, особенность находит простое объяснение: звезда, излучая, медленно сжимается. При сжатии потенциальная энергия превращается в кинетическую энергию падения слоев звезды, и ее недра разогреваются. Причем тепловая энергия, приобретаемая звездой в результате сжатия, вдвое больше энергии, которая теряется в виде излучения. В итоге температура недр звезды растет, и осуществляется непрерывный термоядерный синтез химических элементов. Например, реакция преобразования водорода в гелий в нынешнем Солнце идет при температуре 15 миллионов градусов. Когда, через 4 миллиарда лет, в центре Солнца водород весь превратится в гелий, для дальнейшего синтеза атомов углерода из атомов гелия потребуется значительно более высокая температура, около 100 миллионов градусов (электрический заряд ядер гелия вдвое больше, чем ядер водорода, и чтобы сблизить ядра гелия на расстояние 10 –13 см требуется гораздо большая температура). Именно такая температура будет обеспечена благодаря отрицательной теплоемкости Солнца к моменту зажигания в его недрах термоядерной реакции превращения гелия в углерод.

Белые карлики

Если масса звезды невелика, так что масса ее ядра, затронутого термоядерными превращениями, менее 1,4M sun , термоядерный синтез химических элементов может прекратиться из-за так называемого вырождения электронного газа в ядре звезды. В частности, давление вырожденного газа зависит от плотности, но не зависит от температуры, поскольку энергия квантовых движений электронов много больше энергии их теплового движения.

Высокое давление вырожденного электронного газа эффективно противодействует силам гравитационного сжатия. Поскольку давление не зависит от температуры, потеря энергии звездой в виде излучения не приводит к сжатию ее ядра. Следовательно, гравитационная энергия не выделяется в виде добавочного тепла. Поэтому температура в эволюционирующем вырожденном ядре не растет, что приводит к прерыванию цепочки термоядерных реакций.

Внешняя водородная оболочка, не затронутая термоядерными реакциями, отделяется от ядра звезды и образует планетарную туманность, светящуюся в линиях излучения водорода, гелия и других элементов. Центральное компактное и сравнительно горячее ядро проэволюционировавшей звезды небольшой массы представляет собой белый карлик - объект с радиусом порядка радиуса Земли (~10 4 км), массой менее 1,4M sun и средней плотностью порядка тонны в кубическом сантиметре. Белые карлики наблюдаются в большом количестве. Их полное число в Галактике достигает 10 10 , то есть около 10% от всей массы наблюдаемого вещества Галактики.

Термоядерное горение в вырожденном белом карлике может быть неустойчивым и приводить к ядерному взрыву достаточно массивного белого карлика с массой, близкой к так называемому чандрасекаровскому пределу (1,4M sun). Такие взрывы выглядят, как вспышки сверхновых I типа, у которых в спектре нет линий водорода, а только линии гелия, углерода, кислорода и других тяжелых элементов.

Нейтронные звезды

Если ядро звезды вырождено, то при приближении его массы к пределу 1,4M sun обычное вырождение электронного газа в ядре сменяется так называемым релятивистским вырождением.

Квантовые движения вырожденных электронов становятся такими быстрыми, что их скорости приближаются к скорости света. При этом упругость газа падает, его способность противодействовать силам гравитации уменьшается, и звезда испытывает гравитационный коллапс. Во время коллапса электроны захватываются протонами, и происходит нейтронизация вещества. Это ведет к формированию из массивного вырожденного ядра нейтронной звезды.

Если исходная масса ядра звезды превышает 1,4M sun , то в ядре достигается высокая температура, и вырождение электронов не происходит на протяжении всей ее эволюции. В этом случае работает отрицательная теплоемкость: по мере потери энергии звездой в виде излучения температура в ее недрах растет, и идет непрерывная цепочка термоядерных реакций превращения водорода в гелий, гелия в углерод, углерода в кислород и так далее, вплоть до элементов группы железа. Реакция термоядерного синтеза ядер элементов, более тяжелых, чем железо, идет уже не с выделением, а с поглощением энергии. Поэтому, если масса ядра звезды, состоящего в основном из элементов группы железа, превышает чандрасекаровский предел 1,4M sun , но меньше так называемого предела Оппенгеймера–Волкова ~3M sun , то в конце ядерной эволюции звезды происходит гравитационный коллапс ядра, в результате которого внешняя водородная оболочка звезды сбрасывается, что наблюдается как вспышка сверхновой звезды II типа, в спектре которой наблюдаются мощные линии водорода.

Коллапс железного ядра приводит к формированию нейтронной звезды.

При сжатии массивного ядра звезды, достигшей поздней стадии эволюции, температура поднимается до гигантских значений порядка миллиарда градусов, когда ядра атомов начинают разваливаться на нейтроны и протоны. Протоны поглощают электроны, превращаются в нейтроны, испуская при этом нейтрино. Нейтроны же, согласно квантово–механическому принципу Паули, при сильном сжатии начинают эффективно отталкиваться друг от друга.

Когда масса коллапсирующего ядра меньше 3M sun , скорости нейтронов значительно меньше скорости света и упругость вещества, обусловленная эффективным отталкиванием нейтронов, может уравновесить силы гравитации и привести к образованию устойчивой нейтронной звезды.

Впервые возможность существования нейтронных звезд была предсказана в 1932 году выдающимся советским физиком Ландау сразу после открытия нейтрона в лабораторных экспериментах. Радиус нейтронной звезды близок к 10 км, ее средняя плотность составляет сотни миллионов тонн в кубическом сантиметре.

Когда масса коллапсирующего ядра звезды больше 3M sun , то, согласно существующим представлениям, образующаяся нейтронная звезда, остывая, коллапсирует в черную дыру. Коллапсу нейтронной звезды в черную дыру способствует также обратное падение части оболочки звезды, сброшенной при взрыве сверхновой.

Нейтронная звезда, как правило, быстро вращается, поскольку породившая ее обычная звезда может иметь значительный угловой момент. Когда ядро звезды коллапсирует в нейтронную звезду, характерные размеры звезды уменьшаются от R = 10 5 –10 6 км до R ≈ 10 км. С уменьшением размера звезды уменьшается ее момент инерции. Для сохранения момента количества движения должна резко вырасти скорость осевого вращения. Например, если Солнце, вращающееся с периодом около месяца, сжать до размеров нейтронной звезды, то период вращения уменьшится до 10 –3 секунды.

Одиночные нейтронные звезды с сильным магнитным полем проявляют себя как радиопульсары - источники строго периодических импульсов радиоизлучения, возникающих при преобразовании энергии быстрого вращения нейтронной звезды в направленное радиоизлучение. В двойных системах аккрецирующие нейтронные звезды демонстрируют феномен рентгеновского пульсара и рентгеновского барстера 1-го типа.

У черной дыры строго периодических пульсаций излучения ожидать не приходится, поскольку черная дыра не имеет наблюдаемой поверхности и магнитного поля. Как часто выражаются физики, черные дыры не имеют «волос» - все поля и все неоднородности вблизи горизонта событий излучаются при формировании черной дыры из коллапсирующей материи в виде потока гравитационных волн. В итоге, у образовавшейся черной дыры имеются лишь три характеристики: масса, угловой момент и электрический заряд. Все индивидуальные свойства коллапсирующего вещества при образовании черной дыры забываются: например, черные дыры, образовавшиеся из железа и из воды, имеют при прочих равных условиях одинаковые характеристики.

Как предсказывает Общая теория относительности (ОТО), звезды, массы железных ядер которых в конце эволюции превышают 3M sun , испытывают неограниченное сжатие (релятивистский коллапс) с образованием черной дыры. Это объясняется тем, что в ОТО силы гравитации, стремящиеся сжать звезду, определяются плотностью энергии, а при громадных плотностях вещества, достигаемых при сжатии столь массивного ядра звезды, главный вклад в плотность энергии вносит уже не энергия покоя частиц, а энергия их движения и взаимодействия. Получается, что в ОТО давление вещества при очень больших плотностях как бы само «весит»: чем больше давление, тем больше плотность энергии и, следовательно, тем больше силы гравитации, стремящиеся сжать вещество. Кроме того, при сильных гравитационных полях становятся принципиально важными эффекты искривления пространства–времени, что также способствует неограниченному сжатию ядра звезды и превращению его в черную дыру (рис. 3).

В заключение отметим, что черные дыры, образовавшиеся в нашу эпоху (например, черная дыра в системе Лебедь X-1), строго говоря, не являются стопроцентными черными дырами, поскольку из-за релятивистского замедления хода времени для далекого наблюдателя горизонты событий у них еще не сформировались. Поверхности таких коллапсирующих звезд выглядят для земного наблюдателя как застывшие, бесконечно долго приближающиеся к своим горизонтам событий.

Чтобы черные дыры из таких коллапсирующих объектов сформировались окончательно, мы должны прождать все бесконечно большое время существования нашей Вселенной. Следует подчеркнуть, однако, что уже в первые секунды релятивистского коллапса поверхность коллапсирующей звезды для наблюдателя с Земли приближается очень близко к горизонту событий, и все процессы на этой поверхности бесконечно замедляются.

Черная дыра является особенной областью в пространстве. Это некое скопление черной материи, способное втягивать в себя и поглощать другие объекты космоса. Явление черных дыр до сих пор не . Все имеющиеся данные - всего лишь теории и предположения ученых астрономов.

Название "черная дыра" ввел в употребление ученый ДЖ.А. Уилер в 1968 году в Принстонском университете.

Существует теория, что черные дыры в являются звездами, но необычными, наподобие нейтронных. Черная дыра - - , потому что имеет очень большую плотность свечения и не посылает абсолютно никакого излучения. Поэтому она невидима ни в инфракрасных, ни в рентгеновских, ни в радиолучах.

Эту ситуацию французский астроном П. Лаплас еще за 150 лет до черных дыр . Согласно его доводам, если имеет плотность, равную плотности Земли, и диаметр, превышающий диаметр Солнца в 250 раз, то она не дает лучам света распространяться по Вселенной в силу своего тяготения, поэтому и остается невидимой. Таким образом предполагается, что черные дыры являются самыми мощными излучающими объектами во Вселенной, но при этом они не имеют твердой поверхности.

Свойства черных дыр

Все предполагаемые свойства черных дыр основаны на теории относительности, выведенной в 20 веке А.Эйнштейном. Любой традиционный подход к изучению этого явления не дает никакого убедительного объяснения явлению черных дыр.

Главное свойство черной дыры - способность искривлять время и пространство. Любой движущийся объект, попавший в ее гравитационное поле, неизбежно будет втянут внутрь, т.к. при этом вокруг объекта возникает плотный гравитационный вихрь, некая воронка. При этом трансформируется и понятие времени. Ученые расчетным путем все же склоняются к выводу, что черные дыры - это не небесные тела в общепринятом понимании. Это действительно некие дыры, червоточины во времени и пространстве, способные изменять и уплотнять его.

Черная дыра - замкнутая область пространства, в которую сжато вещество и откуда ничто не может выйти, даже свет.

Согласно расчетам астрономов, при том мощном гравитационном поле, которое существует внутри черных дыр, ни один объект не сможет остаться невредимым. Его мгновенно разорвет на миллиарды кусочков еще до того, как он попадет внутрь. Однако при этом не исключается возможность обмена частицами и информацией с их помощью. А если черная дыра имеет массу, как минимум в миллиард раз превышающую массу Солнца (сверхмассивная), то теоретически возможно и передвижение объектов сквозь нее без быть разорванными гравитацией.

Конечно, это только теории, ведь исследования ученых еще слишком далеки от понимания того, какие процессы и возможности скрывают черные дыры. Вполне возможно, в будущем нечто подобное может осуществиться.