а. Пусть даны две прямые Эти прямые как было указано в главе 1, образуют различные положительные и отрицательные углы, которые при этом могут быть как острыми, так и тупыми. Зная один из этих углов мы легко найдем какой-либо другой.

Между прочим, у всех этих углов численная величина тангенса одна и та же, различие может быть только в знаке

Уравнения прямых. Числа суть проекции направляющих векторов первой и второй прямой Угол между этими векторами равен одному из углов, образуемых прямыми линиями. Поэтому задача сводится к определению угла между векторами, Мы получим

Для простоты можно условиться под углом между двумя прямыми понимать острый положительный угол (как, например, на рис. 53).

Тогда тангенс этого угла будет всегда положительным. Таким образом, если в правой части формулы (1) получится знак минус, то мы его должны отбросить, т. е. сохранить только абсолютную величину.

Пример. Определить угол между прямыми

По формуле (1) имеем

с. Если будет указано, какая из сторон угла является его началом и какая концом, то, отсчитывая всегда направление угла против часовой стрелки, мы можем формулы (1) извлечь нечто большее. Как нетрудно убедиться из рис. 53 знак получающийся в правой части формулы (1), будет указывать, какой именно - острый или тупой - угол образует вторая прямая с первой.

(Действительно, из рис, 53 мы усматриваем, что угол между первым и вторым направляющими векторами или равен искомому углу между прямыми, или отличается от него на ±180°.)

d. Если прямые параллельны, то параллельны и их направляющие векторы, Применяя условие параллельности двух векторов получим!

Это есть условием необходимое и достаточное для параллельности двух прямых.

Пример. Прямые

параллельны, так как

e. Если прямые перпендикулярны то их направляющие векторы тоже перпендикулярны. Применяя условие перпендикулярности двух векторов мы получим условие перпендикулярности двух прямых а именно

Пример. Прямые

перпендикулярны ввиду того, что

В связи с условиями параллельности и перпендикулярности решим следующие две задачи.

f. Через точку провести прямую параллельно данной прямой

Решение проводится так. Так как искомая прямая параллельна данной, то за ее направляющий вектор можно взять тот же самый, что и у данной прямой, т. е. вектор с проекциями А и В. А тогда уравнение искомой прямой напишется в форме (§ 1)

Пример. Уравнение прямой, проходящей через точку (1; 3) параллельно прямой

будет следующее!

g. Через точку провести прямую перпендикулярно данной прямой

Здесь за направляющий вектор уже не годится брать вектор с проекциями А и , а надо веять вектор, ему перпендикулярный. Проекции этого вектора должны быть выбраны следовательно, согласно условию перпендикулярности обоих векторов, т. е. согласно условию

Выполнить же это условие можно бесчисленным множеством способов, так как здесь одно уравнение с двумя неизвестными Но проще всего взять иди же Тогда уравнение искомой прямой напишется в форме

Пример. Уравнение прямой, проходящей через точку (-7; 2) в перпендикулярной прямой

будет следующее (по второй формуле)!

h. В том случаем когда прямые заданы уравнениями вида

Буду кратким. Угол между двумя прямыми равен углу между их направляющими векторами. Таким образом, если вам удастся найти координаты направляющих векторов a = (x 1 ; y 1 ; z 1) и b = (x 2 ; y 2 ; z 2), то сможете найти угол. Точнее, косинус угла по формуле:

Посмотрим, как эта формула работает на конкретных примерах:

Задача. В кубе ABCDA 1 B 1 C 1 D 1 отмечены точки E и F - середины ребер A 1 B 1 и B 1 C 1 соответственно. Найдите угол между прямыми AE и BF.

Поскольку ребро куба не указано, положим AB = 1. Введем стандартную систему координат: начало в точке A, оси x, y, z направим вдоль AB, AD и AA 1 соответственно. Единичный отрезок равен AB = 1. Теперь найдем координаты направляющих векторов для наших прямых.

Найдем координаты вектора AE. Для этого нам потребуются точки A = (0; 0; 0) и E = (0,5; 0; 1). Поскольку точка E - середина отрезка A 1 B 1 , ее координаты равны среднему арифметическому координат концов. Заметим, что начало вектора AE совпадает с началом координат, поэтому AE = (0,5; 0; 1).

Теперь разберемся с вектором BF. Аналогично, разбираем точки B = (1; 0; 0) и F = (1; 0,5; 1), т.к. F - середина отрезка B 1 C 1 . Имеем:
BF = (1 − 1; 0,5 − 0; 1 − 0) = (0; 0,5; 1).

Итак, направляющие векторы готовы. Косинус угла между прямыми - это косинус угла между направляющими векторами, поэтому имеем:

Задача. В правильной трехгранной призме ABCA 1 B 1 C 1 , все ребра которой равны 1, отмечены точки D и E - середины ребер A 1 B 1 и B 1 C 1 соответственно. Найдите угол между прямыми AD и BE.

Введем стандартную систему координат: начало координат в точке A, ось x направим вдоль AB, z - вдоль AA 1 . Ось y направим так, чтобы плоскость OXY совпадала с плоскостью ABC. Единичный отрезок равен AB = 1. Найдем координаты направляющих векторов для искомых прямых.

Для начала найдем координаты вектора AD. Рассмотрим точки: A = (0; 0; 0) и D = (0,5; 0; 1), т.к. D - середина отрезка A 1 B 1 . Поскольку начало вектора AD совпадает с началом координат, получаем AD = (0,5; 0; 1).

Теперь найдем координаты вектора BE. Точка B = (1; 0; 0) считается легко. С точкой E - серединой отрезка C 1 B 1 - чуть сложнее. Имеем:

Осталось найти косинус угла:

Задача. В правильной шестигранной призме ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 , все ребра которой равны 1, отмечены точки K и L - середины ребер A 1 B 1 и B 1 C 1 соответственно. Найдите угол между прямыми AK и BL.

Введем стандартную для призмы систему координат: начало координат поместим в центр нижнего основания, ось x направим вдоль FC, ось y - через середины отрезков AB и DE, а ось z - вертикально вверх. Единичный отрезок снова равен AB = 1. Выпишем координаты интересующих нас точек:

Точки K и L - середины отрезков A 1 B 1 и B 1 C 1 соответственно, поэтому их координаты находятся через среднее арифметическое. Зная точки, найдем координаты направляющих векторов AK и BL:

Теперь найдем косинус угла:

Задача. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, отмечены точки E и F - середины сторон SB и SC соответственно. Найдите угол между прямыми AE и BF.

Введем стандартную систему координат: начало в точке A, оси x и y направим вдоль AB и AD соответственно, а ось z направим вертикально вверх. Единичный отрезок равен AB = 1.

Точки E и F - середины отрезков SB и SC соответственно, поэтому их координаты находятся как среднее арифметическое концов. Выпишем координаты интересующих нас точек:
A = (0; 0; 0); B = (1; 0; 0)

Зная точки, найдем координаты направляющих векторов AE и BF:

Координаты вектора AE совпадают с координатами точки E, поскольку точка A - начало координат. Осталось найти косинус угла:


Пусть в пространстве заданы прямые l и m . Через некоторую точку А пространства проведем прямые l 1 || l и m 1 || m (рис. 138).

Заметим, что точка А может быть выбрана произвольно, в частности она может лежать на одной из данных прямых. Если прямые l и m пересекаются, то за А можно взять точку пересечения этих прямых (l 1 = l и m 1 = m ).

Углом между непараллельными прямыми l и m называется величина наименьшего из смежных углов, образованных пересекающимися прямыми l 1 и m 1 (l 1 || l , m 1 || m ). Угол между параллельными прямыми считается равным нулю.

Угол между прямыми l и m обозначается \(\widehat{(l;m)} \). Из определения следует, что если он измеряется в градусах, то 0°< \(\widehat{(l;m)} \) < 90°, а если в радианах, то 0 < \(\widehat{(l;m)} \) < π / 2 .

Задача. Дан куб ABCDA 1 B 1 C 1 D 1 (рис. 139).

Найти угол между прямыми АВ и DС 1 .

Прямые АВ и DС 1 скрещивающиеся. Так как прямая DC параллельна прямой АВ, то угол между прямыми АВ и DС 1 , согласно определению, равен \(\widehat{C_{1}DC}\).

Следовательно, \(\widehat{(AB;DC_1)}\) = 45°.

Прямые l и m называются перпендикулярными , если \(\widehat{(l;m)} \) = π / 2 . Например, в кубе

Вычисление угла между прямыми.

Задача вычисления угла между двумя прямыми в пространстве решается так же, как и на плоскости. Обозначим через φ величину угла между прямыми l 1 и l 2 , а через ψ - величину угла между направляющими векторами а и b этих прямых.

Тогда, если

ψ <90° (рис. 206, а), то φ = ψ; если же ψ > 90° (рис. 206,6), то φ = 180° - ψ. Очевидно, что в обоих случаях верно равенство cos φ = |cos ψ|. По формуле (косинус угла между ненулевыми векторами а и b равен скалярному произведению этих векторов, деленному на произведение их длин) имеем

$$ cos\psi = cos\widehat{(a; b)} = \frac{a\cdot b}{|a|\cdot |b|} $$

следовательно,

$$ cos\phi = \frac{|a\cdot b|}{|a|\cdot |b|} $$

Пусть прямые заданы своими каноническими уравнениями

$$ \frac{x-x_1}{a_1}=\frac{y-y_1}{a_2}=\frac{z-z_1}{a_3} \;\; и \;\; \frac{x-x_2}{b_1}=\frac{y-y_2}{b_2}=\frac{z-z_2}{b_3} $$

Тогда угол φ между прямыми определяется с помощью формулы

$$ cos\phi = \frac{|a_{1}b_1+a_{2}b_2+a_{3}b_3|}{\sqrt{{a_1}^2+{a_2}^2+{a_3}^2}\sqrt{{b_1}^2+{b_2}^2+{b_3}^2}} (1)$$

Если одна из прямых (или обе) задана не каноничecкими уравнениями, то для вычисления угла нужно найти координаты направляющих векторов этих прямых, а затем воспользоваться формулой (1).

Задача 1. Вычислить угол между прямыми

$$ \frac{x+3}{-\sqrt2}=\frac{y}{\sqrt2}=\frac{z-7}{-2} \;\;и\;\; \frac{x}{\sqrt3}=\frac{y+1}{\sqrt3}=\frac{z-1}{\sqrt6} $$

Направляющие векторы прямых имеют координаты:

а = (-√2 ; √2 ; -2), b = (√3 ; √3 ; √6 ).

По формуле (1) находим

$$ cos\phi = \frac{|-\sqrt6+\sqrt6-2\sqrt6|}{\sqrt{2+2+4}\sqrt{3+3+6}}=\frac{2\sqrt6}{2\sqrt2\cdot 2\sqrt3}=\frac{1}{2} $$

Следовательно, угол между данными прямыми равен 60°.

Задача 2. Вычислить угол между прямыми

$$ \begin{cases}3x-12z+7=0\\x+y-3z-1=0\end{cases} и \begin{cases}4x-y+z=0\\y+z+1=0\end{cases} $$

За направляющий вектор а первой прямой возьмем векторное произведение нормальных векторов n 1 = (3; 0; -12) и n 2 = (1; 1; -3) плоскостей, задающих эту прямую. По формуле \(=\begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} \) получаем

$$ a==\begin{vmatrix} i & j & k \\ 3 & 0 & -12 \\ 1 & 1 & -3 \end{vmatrix}=12i-3i+3k $$

Аналогично находим направляющий вектор второй прямой:

$$ b=\begin{vmatrix} i & j & k \\ 4 & -1 & 1 \\ 0 & 1 & 1 \end{vmatrix}=-2i-4i+4k $$

Но формуле (1) вычисляем косинус искомого угла:

$$ cos\phi = \frac{|12\cdot (-2)-3(-4)+3\cdot 4|}{\sqrt{12^2+3^2+3^2}\sqrt{2^2+4^2+4^2}}=0 $$

Следовательно, угол между данными прямыми равен 90°.

Задача 3. В треугольной пирамиде МАВС ребра MA, MB и МС взаимно перпендикулярны, (рис. 207);

их длины соответственно равны 4, 3, 6. Точка D - середина [МА]. Найти угол φ между прямыми СА и DB.

Пусть СА и DB - направляющие векторы прямых СА и DB.

Примем точку М за начало координат. По условию зядачи имеем А (4; 0; 0), В(0; 0; 3), С(0; 6; 0), D (2; 0; 0). Поэтому \(\overrightarrow{CA}\) = (4; - 6;0), \(\overrightarrow{DB}\)= (-2; 0; 3). Воспользуемся формулой (1):

$$ cos\phi=\frac{|4\cdot (-2)+(-6)\cdot 0+0\cdot 3|}{\sqrt{16+36+0}\sqrt{4+0+9}} $$

По таблице косинусов находим, что угол между прямыми СА и DB равен приблизительно 72°.

Инструкция

Обратите внимание

Период тригонометрической функции тангенс равен 180 градусам, а значит углы наклоны прямых не могут, по модулю, превышать этого значения.

Полезный совет

Если угловые коэффициенты равны между собой, то угол между такими прямыми равен 0, так как такие прямые или совпадают или параллельны.

Чтобы определить величину угла между скрещивающимися прямыми, необходимо обе прямые (или одну из них) перенести в новое положение методом параллельного переноса до пересечения. После этого следует найти величину угла между полученными пересекающимися прямыми.

Вам понадобится

  • Линейка, прямоугольный треугольник, карандаш, транспортир.

Инструкция

Итак, пусть задан вектор V = (а, b, с) и плоскость А x + В y + C z = 0, где А, В и C – координаты нормали N. Тогда косинус угла α между векторами V и N равен:сos α = (а А + b В + с C)/(√(а² + b² + с²) √(А² + В² + C²)).

Чтобы вычислить величину угла в градусах или радианах, нужно от получившегося выражения рассчитать функцию, обратную к косинусу, т.е. арккосинус:α = аrссos ((а А + b В + с C)/(√(а² + b² + с²) √(А² + В² + C²))).

Пример: найдите угол между вектором (5, -3, 8) и плоскостью , заданной общим уравнением 2 x – 5 y + 3 z = 0.Решение: выпишите координаты нормального вектора плоскости N = (2, -5, 3). Подставьте все известные значения в приведенную формулу:сos α = (10 + 15 + 24)/√3724 ≈ 0,8 → α = 36,87°.

Видео по теме

Прямая линия, имеющая с окружностью одну общую точку, является касательной к окружности. Другая особенность касательной – она всегда перпендикулярна радиусу, проведенному в точку касания, то есть касательная и радиус образуют прямой угол . Если из одной точки А проведены две касательных к окружности АВ и АС, то они всегда равны между собой. Определение угла между касательными (угол АВС) производится с помощью теоремы Пифагора.

Инструкция

Для определения угла необходимо знать радиус окружности ОВ и ОС и расстояние точки начала касательной от центра окружности - О. Итак, углы АВО и АСО равны , радиус ОВ, например 10 см, а расстояние до центра окружности АО равно 15 см. Определите длину касательной по формуле в соответствии с теоремой Пифагора: АВ = квадратный корень из АО2 – ОВ2 или 152 - 102 = 225 – 100 = 125;

Определение. Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми будет определяться как

Две прямые параллельны, если k 1 = k 2 . Две прямые перпендикулярны, если k 1 = -1/ k 2 .

Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты А 1 = λА, В 1 = λВ. Если еще и С 1 = λС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.

Уравнение прямой, проходящей через данную точку

Перпендикулярно данной прямой

Определение. Прямая, проходящая через точку М 1 (х 1 , у 1) и перпендикулярная к прямой у = kx + b представляется уравнением:

Расстояние от точки до прямой

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как

.

Доказательство. Пусть точка М 1 (х 1 , у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М 1:

(1)

Координаты x 1 и у 1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой. Если преобразовать первое уравнение системы к виду:

A(x – x 0) + B(y – y 0) + Ax 0 + By 0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.

Пример . Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.

k 1 = -3; k 2 = 2; tgφ = ; φ= p /4.

Пример . Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны.

Решение . Находим: k 1 = 3/5, k 2 = -5/3, k 1* k 2 = -1, следовательно, прямые перпендикулярны.

Пример . Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С.

Решение . Находим уравнение стороны АВ: ; 4 x = 6 y – 6;

2 x – 3 y + 3 = 0;

Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b . k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: .

Ответ: 3 x + 2 y – 34 = 0.

Уравнение прямой, проходящей через данную точку в данном направлении. Уравнение прямой, проходящей через две данные точки. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Определение точки пересечения двух прямых

1. Уравнение прямой, проходящей через данную точку A (x 1 , y 1) в данном направлении, определяемом угловым коэффициентом k ,

y - y 1 = k (x - x 1). (1)

Это уравнение определяет пучок прямых, проходящих через точку A (x 1 , y 1), которая называется центром пучка.

2. Уравнение прямой, проходящей через две точки: A (x 1 , y 1) и B (x 2 , y 2), записывается так:

Угловой коэффициент прямой, проходящей через две данные точки, определяется по формуле

3. Углом между прямыми A и B называется угол, на который надо повернуть первую прямую A вокруг точки пересечения этих прямых против движения часовой стрелки до совпадения ее со второй прямой B . Если две прямые заданы уравнениями с угловым коэффициентом

y = k 1 x + B 1 ,

y = k 2 x + B 2 , (4)

то угол между ними определяется по формуле

Следует обратить внимание на то, что в числителе дроби из углового коэффициента второй прямой вычитается угловой коэффициент первой прямой.

Если уравнения прямой заданы в общем виде

A 1 x + B 1 y + C 1 = 0,

A 2 x + B 2 y + C 2 = 0, (6)

угол между ними определяется по формуле

4. Условия параллельности двух прямых:

а) Если прямые заданы уравнениями (4) с угловым коэффициентом, то необходимое и достаточное условие их параллельности состоит в равенстве их угловых коэффициентов:

k 1 = k 2 . (8)

б) Для случая, когда прямые заданы уравнениями в общем виде (6), необходимое и достаточное условие их параллельности состоит в том, что коэффициенты при соответствующих текущих координатах в их уравнениях пропорциональны, т. е.

5. Условия перпендикулярности двух прямых:

а) В случае, когда прямые заданы уравнениями (4) с угловым коэффициентом, необходимое и достаточное условие их перпендикулярности заключается в том, что их угловые коэффициенты обратны по величине и противоположны по знаку, т. е.

Это условие может быть записано также в виде

k 1 k 2 = -1. (11)

б) Если уравнения прямых заданы в общем виде (6), то условие их перпендикулярности (необходимое и достаточное) заключается в выполнении равенства

A 1 A 2 + B 1 B 2 = 0. (12)

6. Координаты точки пересечения двух прямых находят, решая систему уравнений (6). Прямые (6) пересекаются в том и только в том случае, когда

1. Напишите уравнения прямых, проходящих через точку M, одна из которых параллельна, а другая – перпендикулярна заданной прямой l.