Введение

Данное руководство предназначено для интернов и ординаторов 1 года. В руководстве содержатся необходимые для самостоятельного проведения ретиноскопии теоретические знания и пояснения. Для обучения рекомендуется онлайн-симулятор ретиноскопии (http://www.eyedocs.co.uk/ophthalmology-learning/articles/optics-and-refraction/1508- retinoscopy-simulator ) , однако он не заменяет практику в «полевых условиях» и призван подготовить исследователя к последним. Необходимо знание основ физиологической оптики и правил записи рефракции.

Информация по данной теме: Воронцов А.А. (https://vk.com/ophthalmica?w=wall-38116404_11914 ) .

Если по какой-либо причине симулятор недоступен, вы можете обратиться ко мне по e-mail адресу [email protected] или на странице Вконтакте http://vk.com/rodionlxlnest . Также приветствуются любые идеи по доработке и улучшению руководства.

Кратко об истории

Наблюдения, которые привели к созданию методики ретиноскопии были описаны еще в 1859, когда Sir William Bowman с помощью плоского зеркала и освещения от обычной свечи наблюдал за рефлексом с глазного дна. Первым кто предложил метод был французский врач Ferdinand Cuignet (1873). Cuignet предложил качественную оценку рефракции (миопия, гиперметропия, астигматизм). В 1875 году открытия в оптике объяснили это явление, и оно было названо “shadow test”, что в переводе означает «тест с тенью». В 1880 H. Parent назвал этот тест «ретиноскопией» и внедрил методику количественной оценки аметропий (с линзами).

Определение и суть методики

Ретиноскопия – техника объективного исследования клинической рефракции пациента. Синонимы: скиаскопия, папиллоскопия, скотоскопия, умбраскопия.

Техника заключается в наблюдении исследователем за движением отраженного от глазного дна пациента света (рефлекса ) и путем приставления линз разной преломляющей силы нейтрализации этого движения.

Ретиноскопы

Ретиноскопы подразделяют на зеркальные (с отдельным источником света, например, обычной лампой) и ретиноскопы со встроенным источником света (штриховые streak и точечные spot).

Рис. 1. A - Зеркальный ретиноскоп, B – ретиноскоп со встроенным источником света

При скиаскопии зеркальным офтальмоскопом используется обычное плоское зеркало с отверстием в центре (Рис. 1). Принципы использования как зеркальных Р., так и Р. со встроенным источником света абсолютно идентичны, за исключением некоторых нюансов, например, наличия у некоторых моделей последних регулятора изменения хода лучей, так называемого рукава* (дивергирующие лучи - плоское зеркало; конвергирующие – вогнутое; и промежуточное положение - параллельные лучи). Соответственно положение ручки-регулятора нужно установить в положение дивергирующих лучей, т.е. плоского зеркала**.

Преимущества и недостатки каждого из ретиноскопов описаны в таблице 1.

*регулятор конвергенции-дивергенции лучей необходим для приблизительной и быстрой оценки высоких аметропий **при положении рукава в режиме плоского зеркала свет от ретиноскопа более размыт, чем в противоположном положении

Таблица 1. Преимущества и недостатки отдельных видов ретиноскопов.

Зеркальный ретиноскоп*

Ретиноскоп со встроенным источником света

Достоинства

Достоинства

Дешевизна

Мобильность

Недостатки

o Независимость от источника света

Необходимость наличия

o Возможность изменить интенсивность и

источника света

Определение оси цилиндра

o Простота в определении оси

более сложное

астигматизма

o Интенсивность и тип не

Недостатки

могут быть изменены

Дороговизна

Аккумулятор (может разрядиться в

неподходящий момент)

*по своей сути они все зеркальные. Любой ретиноскоп представляет собой ни больше ни меньше как источник света и зеркало

Методика

Для исследования необходим зеркальный Р. с источником света (лампой) или Р. со встроенным источником света и набор скиаскопических линеек, который представляет собой 2 рамки с вмонтированными в них положительными и отрицательными линзами. Скиаскопические линейки можно заменить обычными линзами из набора по подбору очков (иногда использовать их даже предпочтительней Рис. 2). Самым удобным вариантом является фороптер, однако доступен он далеко не всем.

Рис. 2. A – скиаскопические линейки, B – пробный набор линз

I этап Проверка движения рефлекса без линзы

1. Пациент находится от исследователя на расстоянии

0,67м или 1м.

Расстояние между пациентом и исследователем может существенно повлиять на результат ретиноскопии, поэтому от исследования к исследованию старайтесь соблюдать одинаковое расстояние. Измерьте длину своей вытянутой руки метром и с учетом этого проводите Р.

В данном руководстве используется значение

2. Пациент фиксирует отверстие ретиноскопа/переносицу исследователя при циклоплегии или смотрит мимо уха исследователя (со стороны ретиноскопа) если циклоплегия не проводилась (за исключением динамической ретиноскопии)

3. Исследователь направляет свет в зрачок пациента, при этом он должен увидеть рефлекс с глазного дна в виде полосы.

Круглый рефлекс будет виден при ретиноскопии с обычным зеркальным ретиноскопом без накладки, полоса – при штрих-скиаскопии

Варианты движения рефлекса на первом этапе (без линзы)

Движение обратное

Правило: если движение обратное, то миопия более 1.50D (и более 1.00D при расстоянии 1м)

2. Поставьте поправку на расстояние между исследователем и пациентом 1.50D (Именно это значение соответствует расстоянию в 0,67м, поправка расстояния в 1м будет равняться 1.00D).

3. Движением мыши определите, что рефлекс двигается в обратном от ретиноскопа (мыши) направлении.

Движение прямое

Правило: если движение прямое, то у пациента либо эметропия, миопия до 1.50D или гиперметропия.

1. Поставьте гиперметропию, например, 1.00D.

2. Убедитесь, что поправка на расстояние составляет 1.50D.

3. Движением мыши определите, что рефлекс двигается в ту же сторону, что и ретиноскоп (мышь).

Движение нейтрализовано

Правило: если движение нейтрализовано (т.е. его направление почти невозможно уловвить), то рефракция пациента равна миопии равной поправке на расстояние, т.е. 1.50D (1.00D при расстоянии 1м)

1. Поставьте в симуляторе миопию силой 1.50D.

2. Удостоверьтесь, что поправка равна 1.50D.

3. Движением мыши определите, что рефлекс нейтрализован.

Проверка движения в вертикальном меридиане Чтобы проверить движение рефлекса в вертикальном меридиане при штрих-ретиноскопии нужно

развернуть штрих на 90 путем вращения регулятора угла штриха на ретиноскопе или вращением самого ретиноскопа (при зеркальной штрих-скиаскопии).

Поставь заведомо бό льшую линзу, чтобы движение было «прямое»

Добавляй «+» пока не «обратно» или «нейтрализовано»

Добавь к предыдущему

Значение

значению меньшую линзу

III этапВычитание. Поправка на расстояние

Правило: после определения значения нейтрализующей линзы необходимо вычесть из него 1.50D (при расстоянии 0.67м).

Является заключительным этапом определения рефракции.

Вычитание необходимо производить из обоих значений меридианов.

Если значение -1.50D, то после вычитания получается -3.00D.

Если значение, например, +2.50D, то после вычитания получается +1.00D.

Если значение «0», т.е. движение «нейтрализовано», то рефракция в меридиане равна -1.50D.

1. Поставьте миопию в 4.00D.

2. Убедитесь в правильности поправки на расстояние.

3. Определите направление рефлекса в 2 меридианах.

4. Добейтесь прямого движения рефлекса путем приставления заведомо большей линзы.

5. Уменьшением минусовой линзы (добавлением «+») найдите значение нейтрализации.

6. При данных значениях нейтрализация будет на линзе -2.50D.

7. Произведите вычитание -2.50-1.50D=-4.00D.

На желтом поле указано схематическое расположение фокусов меридианов

Астигматизм. Ось цилиндра

1. Выставьте значения sph-2.00cyl-2.50x25°.

2. Попробуйте определить направление рефлекса. Вы заметите, что рефлекс будет двигаться под углом. Чтобы продолжить исследование, нужно определить этот угол.

3. Нажмите на кнопку, где показан угол штриха. Затем измените угол так, чтобы он совпадал с углом рефлекса.

4. Определите силу нейтрализующей линзы по общим правилам.

5. Определите силу нейтрализующей линзы для перпендикулярного меридиана.

6. Выполните вычитание с учетом расстояния.

7. Получены сферы -4.50x25° и -2.00x115°. От одной из сфер отсчитывается цилиндр (т.е. разница между 1 и 2 сферами). Например, если берется сфера -2.00D, то цилиндр равен -2.50D. Если берется сфера -4.50. то цилиндр равен +2.50D.

Найденная рефракция: sph-2.00cyl-2.50Dx25° sph-4.00cyl+2.50Dx115° транспозиция

Эти данные также можно увидеть в окне FORMULA.

В данном случае был использован метод определения цилиндра с помощью одних сферических линз, однако также существуют методы использования сферы и цилиндра и только цилиндров. В данном руководстве эти методы не рассматриваются.

Цилиндрические линзы

Еще в 1873 году ученым Кюнье был предложен метод измерения , который позднее получил

Во время проведения обследования применяют специальный аппарат (скиаскоп), который состоит из зеркала с рукояткой. Одна поверхность его выпуклая, а другая – плоская. В центре же зеркала располагается отверстие, сквозь которое доктор производит замеры и наблюдает за глазом обследуемого.

При скиаскопии непосредственно в глаза пациента направляют пучок света, в результате чего в этой области появляется световое пятно, называемое рефлексом. Если несколько повернуть скиаскоп, то пятно сместится. Направление движения определяется свойствами поверхности зеркала (вогнутое или прямое), зависит от величины рефракции пациента и от расстояния, на котором расположен скиаскоп от глаза.

Видео о методике проведения скиаскопии

Помимо прибора для проведения обследования необходима обычная электрическая лампа, набор специальных скиаскопических линеек. Последние состоят из двух рамок: одна с положительными линзами, вторая с отрицательными в диапазоне 1-9 диоптрий. Имеется и дополнительная насадка, в которую входят линзы 0,5 и 10 дптр, при помощи которых можно увеличить диапазон или уменьшить шаг.

Скиаскоп и лампу можно заменить ретиноскопом, а линейки – линзами из стандартного набора для подбора очков.

Врач садится напротив обследуемого на расстоянии метр или 67 см. Это расстояние необходимо соблюдать, так как от него будет зависеть результат исследования. Лампу помещают с левой стороны от пациента на уровне его уха. Перед непосредственным исследованием обычно выполняют медикаментозную циклоплегию. Сначала доктор использует плоское зеркало скиаскопа и освещает зрачок пациента. Врач поворачивает зеркало вокруг вертикальной, а после этого вокруг горизонтальной оси, при этом наблюдая за движением пятна.

Результаты скиаскопии

Если пятно движется вместе с поворотом зеркала в ту же сторону, то у испытуемого имеется гиперметропия, миопия слабой степени (при расстоянии 0,67 метров – 1,5 дптр, 1 метр – 1 диоптрия) или эмметропия.

При движении рефлекса в сторону противоположную перемещению зеркала, имеется миопия более 1,5 дптр (при расстоянии 67 см), 1 дптр (при расстоянии метр).

Только в том случае, если имеется миопия, равная 1,5 и 1 дптр, соответственно, движение пятна прекращается и зрачок становится полностью освещенным или полностью затемненным.

Если же врач использует вогнутое зеркало, то все эти показатели будут соотноситься наоборот.

Если имеется аметропия, то исследование продолжают до тех пор, пока рефлекс не остановится. Для этого используют одну из двух линеек. Последняя должна находиться на расстоянии примерно 12 мм от края . Если же при использовании нескольких различных линз, рефлекс не движется, то вычисляют среднее значение. Определив оптическую силу той линзы, при которой пятно не движется, необходимо сделать поправку на расстояние. Для этого применяют формулу:

P=C-1/Д (Р – исследуемая рефракция, С – рефракция линзы, Д – расстояние до объекта в метрах).

При результаты скиаскопии менее точны. Поэтому в некоторых случаях выполняют штрих-скиаскопию. Для этого необходимо использовать специальный скиаскоп, который снабжен щелевым источником света, перемещаемым в разных плоскостях. Разместив полоску света в необходимом положении, повторяют все действия, совершаемые при стандартной скиаскопии.

Еще одном методом является цилиндроскиаскопия. Вначале выполняют стандартную скиалоскопию, при которой стараются выявить расположения главных меридианов и оптическую силу линз, при которой рефлекс остается неподвижным. Далее надевают на глаза пробную оправу с цилиндрическими и сферическими линзами. Последние должны нейтрализовать движение рефлекса в обоих меридианах. После этого выполняют скиаскопию и уточняют локализацию оси цилиндра и степень коррекции нарушения рефракции в главных меридианах, добиваясь неподвижности рефлекса. Коррекция сферической части производится с учетом расстояния от пациента до врача.

Скиаскопия с широким зрачком

Для более точного определения рефракции (чаще у детей) используют методику исследования с широким зрачком (при этом закапывают короткодействующие мидриатики - Тропикамид, Ирифрин, Мидриацил). Это позволяет более точно определить истинную рефракцию.

Несмотря на достаточно приемлемые диагностические результаты скиаскопии, если есть возможность, рекомендуется проводить более совершенный метод определения рефракции глаз - рефрактометрию (в т.ч. автоматическую).

13486 0

Как и другие объективные методы определения рефракции, скиаскопия основана на свойстве глазного дна не только поглощать, но и отражать падающий на него свет. При этом, если оптическая система глаза наведена на какую-то точку пространства, то лучи света, отраженные от глазного дна, вернутся обратно в эту же точку. По этой причине зрачок человека всегда представляется черным: ведь чтобы увидеть свет, отраженный от глазного дна, источник света должен находиться в глазу наблюдателя, что в обычных условиях невозможно.

В середине прошлого века немецкий физик Гельмгольц изобрел такой способ освещения. Глаз исследуемого освещается светом от лампы, находящейся сбоку от его головы. При этом световой пучок отражается зеркалом, находящимся перед глазом проводящего исследования. В центре этого зеркала имеется отверстие. Через него зрачок исследуемого глаза представляется исследующему не черным, а красным. Однако такое свечение наблюдается только тогда, когда луч отражается от участка зеркала, ближайшего к отверстию, что бывает лишь при строго определенном положении зеркала. При малейшем его повороте свечение исчезает.


На этом свойстве основан способ измерения рефракции глаза, предложенный в 1873 г. французским врачом Кюнье и названный скиаскопией (буквально «наблюдение тени»).

Это название утвердилось в большинстве стран Европы, в том числе у нас. В англоязычных странах чаще используют термин «ретиноскопия» («наблюдение сетчатки»). Однако оба этих названия нельзя признать удачными: на самом деле исследование сводится к наблюдению светового рефлекса в зрачке глаза пациента.

Мы уже говорили, что свет, направленный в глаз из сопряженной с глазным дном (исследуемого) точки, возвращается в эту точку. Если эта точка находится у отверстия зеркала, то исследующий видит зрачок красным, если не у отверстия, то черным. При повороте зеркала зрачок внезапно освещается, а затем также внезапно «гаснет».




Что же происходит, если исследуемый глаз не сопряжен с источником света и отверстием зеркала? При этом идущий от глазного дна пучок света сходится на поверхности зеркала уже не в точку, а в пятно. При повороте зеркала это пятно как бы проплывает через отверстие и исследующий будет видеть постепенное прохождение светлого круглого пятна через зрачок исследуемого глаза. При этом направление движения пятна будет зависеть от оптической установки исследуемого глаза относительно зеркала. Если глаз исследуемого сфокусирован на точку, находящуюся за зеркалом, то пятно будет двигаться в том же направлении, что и зеркало; если на точку, находящуюся между зеркалом и глазом, то в обратном направлении.


Это связано с фокусировкой светового пучка. В фокусе пучок как бы перекрещивается: его правый край переходит налево, и направление видимого движения пятна меняется на противоположное. Таким образом, это направление зависит от того, где находится фокусная точка пучка.

Очевидно, в первом случае она находится за зеркалом и глазом исследующего и пучок не успевает «перекреститься», а во втором — между глазным дном исследуемого глаза и зеркалом и пучок «перекрещивается».

Очевидно, в первом случае в исследуемом глазу имеется либо гиперметропия, либо эмметропия, либо слабая миопия (степень миопии обратно пропорциональна расстоянию от глаза до зеркала в метрах), во втором случае миопия выше данной степени. И лишь при миопии, соответствующей расстоянию до зеркала, движение светлого пятна исчезает и зрачок мгновенно освещается и темнеет.

Следует отметить, что если взять не плоское, а вогнутое зеркало, то картина будет обратной, так как пучок света фокусируется еще один раз на пути от зеркала до исследуемого глаза. Однако пользоваться таким зеркалом для практических целей не рекомендуется.

Таким образом, характер движения светового пятна прямо связан с рефракцией исследуемого глаза, видом зеркала и расстоянием от зеркала до глаза. Это явление и лежит в основе скиаскопии.

Для ее проведения необходимы источник света — электрическая лампа мощностью 60—100 Вт с прозрачным или матовым баллоном, скиаскоп — плоское зеркальце с рукояткой и отверстием в центре и набор скиаскопических линеек. Последний обычно состоит из двух линейных рамок, содержащих набор линз; одна с положительными, другая — с отрицательными линзами от 1 до 9,0 дптр. Каждая линейка имеет насадку, содержащую линзы 0,5 и 10 дптр. Благодаря насадкам линейки позволяют устанавливать перед исследуемым глазом комбинацию линз от ±0,5 дптр до ±19 дптр.

Вместо линеек можно использовать линзы из пробных наборов для подбора очков. Вместо зеркала и лампы применяют электрический скиаскоп, имеющий внутри источник света.

Методика скиаскопии

Исследующий сидит напротив пациента, обычно на расстоянии 0,67 м или 1 м. Лампа находится на уровне головы пациента со стороны его левого уха.

Исследующий освещает зрачок исследуемого глаза скиаскопом и, поворачивая его сначала вокруг вертикальной, а затем вокруг горизонтальной оси, следит за характером движения светового пятна в области зрачка. Если при этом пятно движется в ту же сторону, что и зеркало, то в исследуемом глазу имеется гиперметропия, эмметропия или миопия слабой степени (при расстоянии 67 см — до 1,5 дптр, при расстоянии 1м — до 1,0 дптр). Если пятно движется в сторону, противоположную движению зеркала, то в исследуемом глазу имеется миопия выше 1,5 или 1,0 дптр.

Наконец, если пятно не движется, а зрачок сразу засвечивается и так же сразу темнеет, то имеет место миопия данной (т. е. определенной расстоянием исследования) степени.

Таким образом определяют вид рефракции. Для установления ее степени применяют нейтрализацию движения пятна с помощью линз. В зависимости от характера движения перед исследуемым глазом помещают одну из двух скиаскопических линеек и двигают ее сверху вниз до тех пор, пока перед.глазом не окажется линза, с которой движение пятна исчезнет. Вычитая из ее значения поправку на расстояние, с которого велось исследование (1,5 или 1,0 дптр), получают значение рефракции исследуемого глаза:

Р = С — (1/Д)

Где Р — рефракция исследуемого глаза, дптр (миопия — со знаком «—», гиперметропия — со знаком «+»);
С — рефракция линзы, нейтрализующей движение пятна, дптр;
Д — расстояние, с которого производилось исследование, м.

Для получения более точных данных при скиаскопии можно рекомендовать:
— использовать по возможности электроскиаскоп, а при его отсутствии — плоское зеркало и лампу накаливания с прозрачным баллоном (меньше площадь источника света);
— скиаскопировать с расстояния 67 см, которое практически легче соблюдать в течение всего времени исследования и при котором линейка может находиться в руке исследующего;
— при исследовании глаза в условиях циклоплегии просить пациента смотреть на отверстие зеркала, а при исследовании в условиях нерасслабленной аккомодации— мимо уха врача на стороне исследуемого глаза;
— держать линейку на стандартном расстоянии от глаза (примерно в 12 мм от вершины роговицы), при пользовании дополнительной насадкой 10 дптр обращать ее к исследуемому глазу;
— если при смене ряда линз световое пятно в зрачке остается неподвижным, то за показатель нейтрализации принимав среднее арифметическое силы этих линз.

Наименее точные результаты скиаскопия дает при астигматизме. Для улучшения ее показателей в этом случае предложены специальные модификации.

Штрих-скиаскопия, или полосчатая скиаскопия, осуществляется с помощью специальных скиаскопов, имеющих источник света в виде полоски, которая может устанавливаться исследующим в разных положениях.



а — полоска вне глазного меридиана астигматического глаза; б — полоска в главном меридиане; в — аметропия в исследуемом меридиане нейтрализована


Установив световую полоску прибора в нужном положении (так, чтобы при переходе ее изображения с радужки исследуемого глаза на его зрачок она не «ломалась», т. е. ее направление не изменялось), скиаскопируют по общим правилам в каждом из найденных главных меридианов, добиваясь нейтрализации движения полоски: в этот момент полоска на зрачке исчезает, и при движении зеркала свечение всего зрачка сразу же сменяется чернотой.

Другим методом, уточняющим данные скиаскопии, является цилиндроскиаскопия. Вначале производят обычную скиаскопию с линейками, ориентировочно определяют положение главных меридианов астигматического глаза и силу линз, нейтрализующих движение пятна в каждом из них. Надевают пациенту пробную оправу, и устанавливают в гнезде против исследуемого глаза сферическую и астигматическую линзы, которые должны давать одновременную нейтрализацию движения пятна в обоих главных меридианах. Производят скиаскопию в обоих меридианах. Если при этом движение пятна в обоих случаях исчезает, то достигнута нейтрализация аметропии.

Если движение пятна исчезает в направлении оси цилиндра и не исчезает в направлении его деятельного сечения, то цилиндрическую линзу ослабляют или усиливают до исчезновения движения. Если движение пятна не исчезает в обоих направлениях, то добиваются сначала нейтрализации в направлении оси цилиндра путем подбора сферической линзы, а затем в перпендикулярном направлении путем подбора цилиндрической линзы.

Если пятно движется не по направлению оси цилиндрической линзы или ее деятельного сечения, а между ними (чаще всего примерно под углом 45° к ним), то ось цилиндрической линзы стоит неправильно. При этом следует повернуть цилиндрическую линзу в оправе так, чтобы направление движения совпало с направлением оси.

Добиваются нейтрализации движения пятна в обоих главных сечениях. Затем ослабляют сферическую линзу, т. е. уменьшают положительную или усиливают отрицательную линзу в соответствии с расстоянием, с которого производилась скиаскопия: при расстоянии 1 м на 1,0 дптр, 67 см на 1,5 дптр, 50 см на 2,0 дптр. Полученная сфероцилиндрическая комбинация соответствует рефракции данного глаза.

Зрение – одно из чувств восприятия, с помощью которого мы получаем информацию о внешних свойствах предметов и их расположении в пространстве. Особенно важно наличие хорошего зрения для детей, поскольку снижение остроты зрения в той или иной степени препятствует полноценному развитию ребёнка.

Причины нарушения зрения

Все причины нарушения функции глаз можно разделить на: наследственные (передающиеся по наследству), врождённые (появившиеся во внутриутробном периоде) и приобретённые (возникшие после рождения под воздействием различных внешних факторов). Но это деление относительно, т.к. та или иная патология может относиться сразу к трём группам, например близорукость (миопия), может передаваться по наследству от родителей, может возникать во время внутриутробного развития, а также может быть приобретённой вследствие ускоренного роста глаза.
Нарушение зрения может быть и не только вследствие заболеваний самого глаза. При сердечно-сосудистой патологии, при заболеваниях почек, лёгких, ЛОР-органов, центральной нервной системы (головного и спинного мозга), эндокринной системы (сахарный диабет, заболевания щитовидной железы), при заболеваниях крови, заболеваниях соединительной ткани (ревматизм), при нарушениях обмена веществ, авитаминозах, различных инфекционных заболеваниях (корь, коклюш, скарлатина, ветрянка, эпидемический паротит, дифтерия, дизентерия др.) - при всех этих заболеваниях может отмечаться нарушение зрения.

Диагностика нарушения зрения у детей

Первый осмотр новорожденного офтальмологом может быть проведён ещё в родильном доме. Это в первую очередь касается недоношенных детей, родившихся с весом менее 2 кг, со сроком гестации (беременности) менее 34 недель. Для этих детей велик риск развития ретинопатии недоношенных. Под этим термином подразумевают аномальный рост сосудов сетчатки, который впоследствии может привести к полной отслойке сетчатки и, соответственно, к слепоте. Риск развития заболевания повышается, если ребёнку длительное время (около 1 месяца) проводилась кислородотерапия либо он находился на искусственной вентиляции лёгких. Чем раньше эта патология будет выявлена, тем лучше прогноз для зрения ребёнка.

При наличии показаний первое обследование офтальмолога ребенок проходит в 1 месяц. Это дети с врождёнными пороками, перенесенными родовыми травмами, перенесенной асфиксией, недоношенные дети, а также дети с упорным слезотечением или слизисто-гнойным отделяемым. Обследование включает в себя

  • наружный осмотр,
  • определение фиксации взглядом предметов,
  • определение реакции на свет,
  • офтальмоскопия.

Острота зрения при рождении около 0,1, но в таком возрасте обычно офтальмологи её не проверяют. У здорового новорождённого глазные щели узкие, одинаковой формы. Роговица прозрачная, склера голубоватого цвета. При наружном осмотре можно выявить периодическое косоглазие, что характерно для детей этого возраста из-за несовершенства нервной системы. При наличии гнойного отделяемого или слёзотечения можно судить о нарушении проходимости слёзных путей.

Для определения фиксации взгляда ребёнку показывают яркую игрушку, при этом он задерживает на ней взгляд в течение нескольких секунд. При внезапном освещении у здорового ребёнка присутствует реакция зрачка на свет (сужение), при этом, как правило, ребёнок начинает смыкать веки, увеличивается его общая двигательная активность.

Методом офтальмоскопии пользуются для осмотра глазного дна, оценивается прозрачность сред глаза для исключения врождённой катаракты. Для этого используется прибор – офтальмоскоп. При этом можно увидеть структуры, расположенные на глазном дне. Для более детального осмотра глазного дна необходимо расширить зрачок, что достигается закапыванием в глаз таких препаратов (на выбор), как атропин или тропикамид. Картина глазного дна новорождённого несколько отличается от картины взрослого. На фоне бледно-розовой сетчатки расположен сероватый диск зрительного нерва со слегка стушёванными контурами с четкой прямолинейной сетью сосудов.

Проверка зрения в 3 месяца

По плану первый осмотр офтальмолога ребёнок проходит в 3 месяца. Проводятся:

  • наружный осмотр глаза,
  • определение фиксации взгляда и слежения за предметом,
  • скиаскопия,
  • офтальмоскопия.

При наружном осмотре в норме ещё может определяться небольшое периодическое косоглазие, но в большинстве случаев косоглазие к этому времени полностью исчезает. Ребёнок уже должен достаточно хорошо фиксировать взгляд, следить за предметами. Также при этом проверяется подвижность глазных яблок. Подвижность глазных яблок вверх, вниз, вправо и влево должна быть полной и одинаковой на обоих глазах.

Скиаскопия (теневая проба) - суть ее заключается в наблюдении за характером движения тени в области зрачка, создаваемой зеркалом офтальмоскопа, при его покачивании. Для определения степени аметропии к глазу подставляются поочерёдно определённые линзы и скиаскопия проводится через них. Врач отмечает линзу, при которой тень перестаёт двигаться и, сделав некоторые расчёты устананавливает степень аметропии и выставляет точный диагноз. Для более точного определения диагноза и его степени перед проведением скиаскопии необходимо в течение 5 дней закапывать в глаза атропин.
Посредством скиаскопии в этом возрасте уже можно определить остроту зрения. Для детей в целом в норме характерно наличие гиперметропии. Нормой гиперметропии для этого возраста, считается рефракция +3,0Д - +3,5 Д. Это обусловлено коротким передне-задним размером глаза, который с возрастом увеличивается, и гиперметропия исчезает.

Картина глазного дна ещё может соответствовать картине месячного ребёнка.

Проверка зрения в 6 месяцев

Следующий осмотр назначен на 6 месяцев. Также проводятся наружный осмотр, определение подвижности глазных яблок, скиаскопия, офтальмоскопия.

Косоглазие в этом возрасте в норме уже отсутствует. Подвижность глазных яблок полная. Результаты скиаскопии сравнивают с предыдущими результатами. Степень гиперметропии может несколько уменьшиться или ещё остаться на прежнем уровне. Картина глазного дна становится как у взрослого. Сетчатка розового цвета, диск зрительного нерва приобретает бледно-розовую окраску и чёткие контуры, соотношение колибра артерий и вен равно 2:3.

Проверка зрения в 1 год

Проводится:

  • определение остроты зрения,
  • скиаскопия или авторефрактометрия (с помощью последнего метода можно достаточно точно определить степень близорукости, дальнозоркости или астигматизма),
  • офтальмоскопия.

Об остроте зрения в первые годы можно судить по расстоянию, с которого ребёнок узнаёт игрушки. В 1 год она равна 0,3-0,6. Результаты скиаскопии (или авторефрактометрии) снова сравнивают с предыдущими результатами. В норме степень гиперметропии должна уменьшиться до +2,5 Д-+3,0Д.

Картина нормального глазного дна: сетчатка розового цвета, диск зрительного нерва бледно-розовой окраски с чёткими контурами, соотношение колибра артерий и вен равно 2:3.

Проверки зрения повторяют в возрасте 2 лет, перед оформлением ребёнка в детский сад, это, как правило, в 3 года, в 4 года, в 6 лет, перед оформлением в школу и каждый год во время учёбы в школе.

Острота зрения у ребенка

С 3-летнего возраста остроту зрения проверяют при помощи таблицы. Норма остроты зрения в 2 года – 0,4-0,7; в 3 года – 0,6-0,9; в 4 года – 0,7-1,0; 5 лет - 0,8-1,0, в 6 лет и старше – 0,9-1,0.

До 3 лет происходит интенсивный рост глаза, гиперметропия к этому возрасту значительно снижается. Но глазное яблоко продолжает расти ещё до 14-15 лет. Так, в 2 года гиперметропия может составлять +2,0Д-+2,5Д, в 3 года – +1,5Д - +2,0Д, в 4 года - +1,0Д - +1,5Д, к 6-7 годам – до +0,5Д. К 9-10 годам гиперметропия должна полностью исчезнуть. Как видно, с возрастом происходит снижение гиперметропии, что связано с ростом глаза.

Эти показатели гиперметропии, соответствующие определённому возрасту ещё называются запасом дальнозоркости. У новорожденных он равен примерно 3 диоптриям, которые расходуются во время роста глаза. Степень дальнозоркости должна строго соответствовать выше приведённым цифрам в определённой возрастной категории. Так, например, если у годовалого ребёнка будет определена рефракция +1,5Д, вместо положенных +2,5Д-+3,0Д (это низкий запас дальнозоркости), то очень велик риск развития близорукости. А раннее развитие близорукости может привести к быстрой утрате зрения. Напротив, при рефракции +5,0Д у годовалого ребёнка – это высокий запас близорукости, который не сможет полностью израсходоваться при росте глаза – возможно развитие патологической дальнозоркости. При этом могут возникнуть косоглазие и амблиопия. Но, если у ребёнка в 1 год был большой запас дальнозоркости, а в 3 года низкий, то это говорит об ускоренном росте глаза. Как следствие, развивается близорукость, которая со временем прогрессирует, так как глаз ребёнка всё ещё продолжает расти. В этом случае рекомендуется усиленное внимание к зрению - витамины и профилактическая гимнастика для глаз.

При ускоренном росте глазного яблока сетчатка не успевает расти за внешней оболочкой, нарушается её трофика (кровоснабжение), сосуды растягиваются и становятся ломкими – всё это приводит к дистрофическим изменениям стекловидного тела, сетчатки, кровоизлияниям, а впоследствии - к отслойке стекловидного тела и сетчатки; и, соответственно, к слепоте.

При обнаружении патологии рефракции, необходимо регулярное (каждые 6 месяцев) диспансерное наблюдение, целью которого являются контроль лечения и своевременное выявление осложнений.

Нарушение остроты зрения может быть в любом возрасте. Современная офтальмология оснащена высокоточным оборудованием, которое позволяет провести диагностику и коррекцию зрения как у взрослых, так и у совсем маленьких пациентов. Однако, наравне с новейшими приборами, существуют методы исследования функционального состояния зрительных органов, разработанные очень давно и основанные на опытности и профессионализме офтальмолога. Речь идёт о скиаскопии, или теневой пробе.

Что такое теневая проба и для чего проводится

Скиаскопия позволяет проверить состояние глаз человека, определить самую удалённую точку чёткого видения. Суть метода лежит в определении клинической рефракции глаза посредством направленной освещённости зрачка. Рефракция - это способность к преломлению световых лучей оптическими структурами органа зрения.

Синонимы скиаскопии - ретиноскопия и кератоскопия.

Оптическая система включает в себя роговицу, переднюю камеру, наполненную жидкостью, хрусталик и желеобразное содержимое стекловидного тела. Пройдя все эти участки, свет попадает на сетчатую оболочку, которая способна преобразовывать световые частицы в импульсы, попадающие в головной мозг, где складывается изображение. Единицами измерения остроты зрения являются диоптрии.

Клиническая рефракция - это местоположение главного фокуса, то есть точки, в которой пересекаются световые лучи, по отношению к сетчатой оболочке. Если этот задний фокус расположен на сетчатке, значит, зрение стопроцентное, то есть абсолютно нормальное - эмметропия. В случае изменения положения фокуса острота зрения нарушается. Так, при дальнозоркости месторасположение точки пересечения - позади сетчатой оболочки глаза, а при близорукости - перед ней.

Скиаскопия определяет клиническую рефракцию, которая представляет собой расположение точки пересечения преломлённых световых лучей по отношению к сетчатке

Скиаскопия позволяет объективно оценить степень нарушения рефракции практически у любого человека, включая самых маленьких детей. Особенно это важно, если нет возможности определить зрение посредством визометрии (с помощью таблиц) или провести рефрактометрию (оценить остроту зрения, используя специальное оборудование).

Скиаскопия может проводиться в условиях циклоплегии (искусственного выключения мышцы, ответственной за аккомодацию, с помощью медикаментов) или действующей аккомодации (приспособительной способности глаза фокусировать взгляд, чтобы видеть одинаково ясно объекты, расположенные далеко или близко).

Проведение исследования показано при различных нарушениях остроты зрения:

  • дальнозоркости, когда человек плохо видит близкорасположенные предметы;
  • близорукости, при которой пациент хорошо видит вблизи, но дальние объекты для него размыты;
  • астигматизме - патологии, при которой присутствует сразу несколько фокусов, при этом в одном глазу могут сочетаться различные типы рефракции (+ или -).

Теневая проба является ценным диагностическим методом обследования малышей, у которых ещё невозможно провести рефрактометрию с помощью аппарата и осуществить диагностику, используя офтальмологические таблицы. Метод применяют для постановки диагноза, для оценки эффективности проводимой терапии и на этапе диспансерного наблюдения.

Аппаратная рефрактометрия проводится с помощью приборов, которые нельзя применить по отношению к совсем маленьким детям

Противопоказаниями к проведению процедуры являются:

  • непереносимость циклоплегиков - препаратов, применяемых для временного паралича цилиарной (ресничной) мышцы, ответственной за аккомодацию;
  • глаукома - прогрессирующее заболевание, протекающее с повышением внутриглазного давления и приводящее к слепоте;
  • фотофобия - боязнь яркого света, проявляющаяся повышенной слезоточивостью;
  • психические нарушения с неадекватным поведением пациента;
  • состояние опьянения (алкоголем или наркотическими средствами).

В настоящее время исследование рефракции проводят не только посредством теневой пробы, но и с помощью компьютерных аппаратов - рефрактометров. Оба этих метода - объективны, достоверны и легкодоступны для оценки преломляющей способности оптической системы глаз.

Преимуществом скиаскопии является то, что её можно проводить самым маленьким пациентам, которых нельзя усадить за аппарат, а достоинство автоматической рефрактометрии - в более точном определении степени астигматизма у человека. К плюсам рефрактометрии можно отнести более быстрое её проведение в сравнении со скиаскопией, а также возможность проведения визометрии непосредственно после процедуры благодаря отсутствию слепящего воздействия, которое оказывает на глаза скиаскоп при выполнении ретиноскопии.

Проведение теневой пробы требует от офтальмолога определённых профессиональных навыков, а данные, которые получают во время этой манипуляции, могут иметь минимальные погрешности, как и при обследовании посредством аппарата.

Как проводится ретиноскопия

Подготовка к процедуре заключается в проведении циклоплегии. Для того чтобы отключить на время ресничную мышцу, в оба глаза закапывают раствор атропина в определённой возрастной дозировке двукратно в течение трёх дней и утром четвёртого дня. Теневую пробу можно начинать через час после последнего закапывания. При спорных результатах атропинизацию продлевают до 7 или 10 дней. Стандартную трёхдневную циклоплегию проводят перед первой скиаскопией у детей, а также у взрослых в сложных случаях. Применение атропина имеет определённый недостаток - после закапывания пациент долгое время испытывает трудности при зрительной работе на небольшом расстоянии, например, чтении.

Перед скиаскопией проводят циклоплегию - закапывают в глаза препараты, вызывающие временный паралич цилиарной мышцы, ответственной за аккомодацию

В последнее время для расслабления аккомодации офтальмологи используют препараты мягкого и короткого действия - растворы скополамина, гоматропина, циклоборина, амизила или готовые лекарства - Тропикам, Мидриацил, Цикложил. Их закапывают по 1 капле с промежутком в 10 минут и проводят теневую пробу через 45 минут. Такие препараты офтальмологи используют при повторных процедурах ретиноскопии у детей и при необходимости отключения аккомодации у взрослых. Пациентам старше 40 лет препараты для циклоплегии применяют после обязательного измерения глазного давления и только в тех ситуациях, когда без них невозможно обойтись. Это связано с тем, что такие лекарства могут у предрасположенных к глаукоме людей спровоцировать приступ.

Классическая циклоплегия заключается в закапывании в глаза раствора атропина

Циклоплегия необходима для полноценного обследования пациента - зрачок расширяется, и врач имеет возможность видеть не только центральную область глазного дна, но и периферические участки.

Теневую пробу проводят в затемнённом кабинете. Обследуемого усаживают на стул, сбоку от которого размещается источник света - на уровне уха пациента. Чаще всего это обычная лампа накаливания. Свет не должен падать на лицо того, кому проводят скиаскопию. Офтальмолог усаживается напротив, соблюдая расстояние в 67 см или 1 метр. Для проведения процедуры нужен скиаскоп - прибор, представляющий собой вогнутое с одной стороны и ровное с другой круглое зеркало с отверстием посередине и ручкой. Врач берёт в руку устройство и направляет отражённый от лампы луч света в глаз обследуемого так, чтобы он через зрачок попал на глазное дно.

Скиаскопия проводится с помощью скиаскопа - зеркала с отверстием посередине

Если предварительно была проведена циклоплегия, пациенту даётся указание смотреть в центр скиаскопа, при сохранённой аккомодации - мимо уха офтальмолога на стороне осматриваемого глаза.

Затем врач начинает медленно двигать прибор вокруг вертикальной и горизонтальной оси ручки, при этом область освещения глазного дна сдвигается, образуется тень (тёмное пятно). Обычно для обследования используют плоскую зеркальную сторону скиаскопа, так как в этом случае пятно более чёткое и выраженное, его перемещение легче оценить. Исходя из того, в какую сторону передвигается участок затемнения, офтальмолог делает вывод о характере рефракции пациента.

При проведении скиаскопии врач может находиться от пациента на расстоянии 1 метра или 67 см

После определения вида нарушения зрения врач проводит более точные измерения преломляющей силы оптической структуры глаз, для чего использует приспособление - скиаскопические линейки. Они представляют собой рамки, между которыми зафиксированы линзы разной оптической силы, на каждом инструменте расположены только отрицательные или лишь положительные стёкла.

Применяется метод нейтрализации перемещения тёмного пятна. Линейку с нужными линзами дают в руку обследуемому, при этом она должна располагаться вертикально не ближе 12 мм от роговицы глаза. Врач направляет луч в зрачок через линзы начиная с самой меньшей диоптрии (0,5) и постепенно, продвигаясь к самым сильным стёклам, определяет ту, при которой тёмное пятно пропадает. Нейтрализация тени происходит тогда, когда глаз находится в самом центре фокуса лучей, отражённых от глазного дна.

После определения типа рефракции офтальмолог проводит измерение степени миопии или гиперметропии с помощью скиаскопических линеек

Вместо скиаскопических линеек иногда применяют линзы с разной оптической силой, которые вставляются в специальную оправу. Такая методика требует временных затрат, однако она имеет преимущества - большую точность в сравнении с линейками и возможность диагностики при астигматизме посредством цилиндрических линз (цилиндроскиаскопии). Перед данным исследованием врач может применить полосчатую, или штрих-скиаскопию. При этом используются специальные насадки на скиаскоп, имеющие не отверстие, а прорезь в форме полоски.

Видео: проведение процедуры

Интерпретация результатов обследования

Если при проведении обследования с использованием плоского скиаскопа тёмное пятно передвигается в ту же сторону, в которую врач поворачивает зеркало, то это говорит о том, что у человека эмметропия (зрение в норме), дальнозоркость или слабая близорукость (при размещении врача на расстоянии одного метра от пациента - 1,0 д, на расстоянии 0,67 м - 1,5 д).

Если тень скользит в сторону, противоположную повороту скиаскопа, это говорит о близорукости выше 1,0 диоптрии (или выше 1,5 диоптрии в случае расстояния 67 см).

Если отсутствует передвижение тёмного пятна во время скиаскопии, врач делает вывод: у пациента близорукость в 1,0 д, то есть точка самого чёткого видения совпадает со скиаскопом, находящимся на расстоянии 1 метра (1,5 д при расстоянии 0,67 метра).

По направлению движения тени во время движения скиаскопа врач делает вывод о характере рефракции

Затемнение может двигаться разнонаправленно при сложном астигматизме. Такое явление называется симптомом ножниц и требует дополнительных обследований.

На втором этапе ретиноскопии с помощью скиаскопических линеек врач определяет величину миопии или гиперметропии с точностью от 0,25 до 0,5 диоптрий. Для вычисления рефракции к силе линзы, на которой остановилось обследование (нейтрализовалась тень), прибавляют 1,0 д при близорукости и отнимают 1,0 д при дальнозоркости. Наиболее правильные результаты пробы можно получить только после отключения аккомодации.

Особенности скиаскопии у детей

Первый осмотр у офтальмолога должен проводиться в 1 месяц (не позднее трёхмесячного возраста). Помимо стандартного обследования, врач может определить рефракцию органов зрения ребёнка с применением теневой пробы. В полгода и в год проводятся повторные осмотры с контролем динамики рефракции глаза. В этом возрасте в норме у малышей рефракция составляет от +1 до +3 диоптрий (дальнозоркость). Повторное проведение скиаскопии применяется ввиду того, что у новорождённых тяжело вызвать полноценное расслабление аккомодации даже сильнодействующими средствами.

Скиаскопия - объективный метод исследования рефракции у маленьких детей

Современные аппараты позволяют исследовать рефракцию и осматривать глазное дно с узким зрачком. Однако у детей раннего возраста чаще применяют скиаскопию, причём обязательно с расширенным зрачком, так как многие патологические изменения на периферии глазного дна могут остаться вне видимости врача. Детям, как правило, закапывают в глаза препараты короткого действия - Мидриацил (Тропикамид) или раствор атропина.

Для циклоплегии у маленьких детей применяют препараты короткого действия, такие как Мидриацил

Ещё одной особенностью проведения скиаскопии у малышей до года является размещение врача от пациента на расстоянии 67 см, при этом скиаскопические линейки окулист держит и перемещает сам. С четырёх-пяти лет детям уже можно определять рефракцию с помощью аппаратов и офтальмологических таблиц.

Несмотря на то что метод исследования рефракции глаза с помощью скиаскопа был разработан почти 150 лет назад, он до сих пор успешно применяется офтальмологами. Высокая точность и объективность теневой пробы позволяет вовремя выявить нарушения зрения у взрослых и детей и своевременно провести оптическую коррекцию.