Гликозиды, получаемые в чистом виде, представляют собой кристаллические вещества, легко растворимые в воде, труднее - в спирте; горькие на вкус; многие из них ядовиты. Для лечебных целей применяются в малых дозах. Очень близки к гормонам.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Гликозиды, характеристика, классификация применение лекарственных растений, продуктов переработки сырья, содержащего гликозиды

Гликозиды, характеристика, классификация применение лекарственных растений, продуктов переработки сырья, содержащего гликозиды


ВВЕДЕНИЕ


1 ГЛИКОЗИДЫ

1.1 Понятие и характеристика гликозидов

1.2 Общая классификация гликозидов

1.3 Распространенность и функции гликозидов


2 ЗАГОТОВКА И ПУТИ ИСПОЛЬЗОВАНИЯ СЫРЬЯ


3 ХАРАКТЕРИСТИКА ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, СОДЕРЖАЩИХ ГЛИКОЗИДЫ

3.1 Лекарственные растения, содержащие цианогенные гликозиды

3.2 Лекарственные растения, содержащие тиогликозиды

3.3 Лекарственные растения, содержащие сердечные гликозиды

3.4 Лекарственные растения, содержащие сапонины


ВЫВОДЫ


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

Гликозиды - вещества растительного происхождения, состоят из двух компонентов: сахара и несахарной части - агликона. Они широко распространены в растительном мире и могут содержаться во всех частях растений. В присутствии воды, ферментов (энзимов) легко расщепляются на сахар и агликон. Лечебное действие гликозидов обусловлено главным образом агликоном, но сахар также оказывает терапевтический эффект, влияя на растворимость и всасывание агликона.

В связи с тем что гликозиды очень быстро расщепляются ферментами, в свежесрезанных растениях они начинают быстро распадаться и, таким образом, теряют свои лечебные свойства. Поэтому при сборе трав, содержащих гликозиды, их следует сушить быстро и хранить в абсолютно сухом месте, не допуская отсыревания сырья. В сухом материале активность ферментов незначительна и они не проявляют своего выраженного разрушающего действия.

Гликозиды, получаемые в чистом виде, представляют собой кристаллические вещества, легко растворимые в воде, труднее - в спирте; горькие на вкус; многие из них ядовиты. Для лечебных целей применяются в малых дозах. Очень близки к гормонам.

В связи с нестойкостью гликозиды до настоящего времени редко применялись в чистом виде, чаще использовались в виде различных извлечений. Сейчас широко используются чистые препараты, такие, как строфантин, гликозиды наперстянки, эризимин и др.

Наибольшее значение имеют сердечные гликозиды. До настоящего времени среди всех лекарственных средств, применяемых для лечения сердечно-сосудистых заболеваний, большую часть составляют растительные препараты. К растениям, образующим в своих клетках гликозиды сердечного действия, относятся: различные виды наперстянки, ландыш, горицвет, желтушник серый, кендырь коноплевый, лук морской.

Именно этим обусловлена актуальность данной работы.

Цель работы : изучение понятия и характеристики гликозидов а также лекарственных растений как сырья для их получения.

Задачи работы :

Изучить понятие и характеристику гликозидов;

Рассмотреть классификацию гликозидов;

Рассмотреть заготовку и пути использования сырья;

Изучить некоторые лекарственные растения, содержащие гликозиды, условия сбора и заготовки сырья.

Предмет изучения : гликозиды.

Объект изучения : лекарственные растения, содержащие гликозиды.


1 ГЛИКОЗИДЫ

1.1 Понятие и характеристика гликозидов

Гликозиды, группа углеводсодержащих веществ, образующихся при реакции конденсации циклических моно- и олигосахаридов со спиртами, фенолами, тиолами и аминами, широко представленных в живых организмах, особенно в растениях. Синтезировано также множество гликозидов, не имеющих природных аналогов. Для гликозидов характерна способность к гидролизу (т.е. расщеплению в реакции с водой) с образованием одного или нескольких остатков сахаров и вещества неуглеводной природы, так называемого агликона. Гидролиз осуществляется в теплой воде в присутствии специфических ферментов или при кипячении с разбавленными кислотами. Некоторые типы гликозидов гидролизуются также при нагревании с разбавленными растворами щелочей.

Термин «гликозид» происходит от греч. «гликос», означающего «сладкий». Иногда ошибочно этот класс называют глюкозидами, но глюкозидами являются лишь те из гликозидов, при гидролизе которых освобождается только глюкоза (декстроглюкоза, или декстроза) в качестве единственного сахарного компонента. Названия природных гликозидов имеют суффикс -ин, а корень производится от научного или народного названия растения или растительного продукта, в котором этот гликозид был впервые обнаружен: например, гитагин от Agrostemma githago (куколь), хедерин от Hedera helix (плющ).

1.2 Общая классификация гликозидов

Обычно гликозиды классифицируют по типу агликона. Основные классы гликозидов перечислены ниже.

Тиольные гликозиды (тиоцианатные, изотиоцианатные, сульфо- и неорганические агликоны) в основном встречаются в растениях семейства крестоцветных (Cruciferae): например, синигрин, выделенный из семян черной горчицы и корней хрена, синальбин из семян белой горчицы и глюкотропеолин из садовой настурции.

Цианогенные гликозиды (циангидрин, синильная кислота) обнаружены в сотнях видов растений: амигдалин из горького миндаля, дуррин из сорго и лотузин из Lotus arabicus. [ 18 , с.1 95 ]

Фенольные гликозиды, при гидролизе которых образуются различные типы фенолов: арбутин (образуется гидрохинон), салицин (орто-гидроксибензиловый спирт), хелицин и спиреин (салициловый альдегид), геин (эвгенол) и т.д.

Антрагликозиды, которые включают гликозиды гидроксиантрахинонов и антрахинонов, встречаются во многих видах растений, применяемых как слабительное и в качестве сырья для получения красителей. Примерами служат барбалоин из алоэ, франгулин из коры крушины, полигонин из Polygonum sieboldi (горца), реохризин из корней китайского ревеня.

Пигментные гликозиды объединяют гликозиды антоксантина, антоциана, флавона, флавонола и других пигментов растений: например, пуницин из плодов граната, мальвин из дикой мальвы (просвирника), генистеин из дрока красильного, идеин из клюквы.

Сердечные гликозиды используются при лечении различных сердечных заболеваний. Наиболее важными среди них являются гликозиды из наперстянки (Digitalis) – дигитоксин, гитоксин и гиталин. Строфантины – гликозиды из семян растений рода Strophanthus – задолго до их использования в современной кардиологии применялись в неочищенном виде африканскими племенами как яды для стрел. [ 11 , с. 380 ]

Сапониновые гликозиды (сапонины) – класс веществ, подобно мылу образующих пену при встряхивании их водных растворов. Отсюда их название: «sapo» по-латыни означает «мыло». Как правило, сапонины – аморфные, растворимые в воде и спирте, нейтральные вещества с раздражающим едким вкусом. При гидролизе они дают агликоны (сапогенины) с довольно большой молекулярной массой и относительно много сахаров. Сапонины широко распространены в растительном мире, особенно среди растений семейств розоцветных и гвоздичных (мыльнянка рода Saponaria). [ 16 , с. 261 ]

Сапонины действуют на организм характерным образом: 1) попадая на слизистую носа, вызывают чихание; 2) вызывают образование гематом (гемолиз); 3) являются смертельным ядом для рыб и низших животных; 4) заметно понижают поверхностное натяжение в жидкостях, которые служат им растворителем. Сапонины и сапонинсодержащие материалы широко применяются в фармации, медицине и технике. Они используются как моющие средства, особенно для шелка и других ценных тканей, как яды для рыб и насекомых, в огнетушителях (для стабилизации пены). Примерами сапонинов являются дигитонин из наперстянки, сарсапонин из сарсапарили (смилакс лекарственный или смилакс китайский) и триллин из триллиума (вороний глаз, растение из семейства лилейных).

Другие классы гликозидов включают гликозиды галловой кислоты, стеринов, кумаринов, пуринов и пиримидинов (нуклеозиды), меркаптанов, алкалоидов, терпенов, сфингозинов (цереброзиды и ганглиозиды) и некоторых антибиотиков.

1.3 Распространенность и функции гликозидов

Гликозиды встречаются в коре, плодах, корнях, клубнях, цветках и других частях растений. Иногда в одном растении содержится несколько разных гликозидов. Они образуются там, где активно идет биосинтез, например в листьях и зеленых стеблях, и в растворенном виде переносятся к местам накопления – корням и семенам. Большинство растительных пигментов – это гликозиды. Многие таннины также являются гликозидами. Первоначально предполагалось, что гликозиды образуются только в растениях, однако теперь известно, что они могут возникать и в организме животных в процессе пищеварения, когда некоторые вредные организму вещества, соединяясь с глюкуроновой кислотой (которая родственна глюкозе и играет ту же роль, что и глюкоза в растительных гликозидах), экскретируются с мочой. [ 17 , с. 368 ]

Из нескольких теорий, предложенных для объяснения роли гликозидов в физиологии растений, следующие три наиболее правдоподобны. 1) В незрелых фруктах гликозиды, благодаря их горькому вкусу, служат для защиты от поедания животными. По мере созревания фруктов бесцветные горькие гликозиды расщепляются, выделяя пигменты, придающие плодам привлекательный цвет, ароматические вещества, сообщающие им аромат, и сахара, делающие их сладкими. Все это привлекает различных животных, птиц и насекомых, что ведет к эффективному распространению семян. 2) Согласно другой теории, гликозиды являются средством удаления ядовитых веществ путем их связывания и превращения в инертные формы (детоксикация). 3) Третья теория утверждает, что гликозиды представляют собой форму сохранения сахаров как резерва питания. Их расщепление – быстрый путь обеспечения растения сахарами.

Гликозиды проявляют нейтральные или слабокислотные свойства. Они растворимы в воде и разбавленном водном спирте и могут экстрагироваться этими растворителями. При экстракции нужно позаботиться об инактивации или разрушении ферментов, чтобы предупредить гидролиз гликозидов. Этого можно достичь, применяя горячие растворители. Для исключения возможности кислотного гидролиза поддерживают нейтральную реакцию, например, прибавляя мел. [ 13 , с. 465 ]

Гликозиды распознают, идентифицируя продукты их расщепления – сахара и агликоны. Для этого применяют обычные методы разделения и идентификации органических соединений: различные виды хроматографии, масс-спектрометрию, спектроскопию ядерного магнитного резонанса и т.п. Для количественной оценки содержания гликозидов в сырье проводится определение свободных сахаров до и после гидролиза: прирост количества свободных сахаров соответствует количеству разрушенных гидролизом гликозидных связей. Зная состав гликозидов, можно оценить их содержание в образце.


2 ЗАГОТОВКА И ПУТИ ИСПОЛЬЗОВАНИЯ СЫРЬЯ

В зависимости от органа растения сырье заготавливают в фазу максимального накопления гликозидов. Листья толокнянки и брусники собирают за сезон дважды; рано весной, до цветения растений и осенью - во время плодоношения до сентября - октября. Листья трилистника водяного - после цветения, траву череды трехраздельной - в фазу бутонизации. При заготовке соблюдают охранные мероприятия, чередуя места сбора между административными районами, оставляя часть хорошо развитых растений на заросли. При сборе соцветий, трав не следует повреждать подземные органы, их собирают после обсеменения растений и на место корней засыпают семена (кроме солодки, у которой БАВ накапливаются в фазу цветения). Сырье, содержащее гликозиды, необходимо собирать в сухую, солнечную погоду, лучше в полуденные часы. Собранное сырье не должно долго лежать в таре (оно самосогревается, и в присутствии тепла и влаги активизируются ферменты). Сушка должна быть быстрая, желательно искусственная при температуре 55-60°С или на чердаках под железной или шиферной крышей, раскладывать сырье нужно тонким слоем, ворошить. Медленная сушка вызывает ступенчатый распад гликозидов (сердечные гликозиды).

Хранить сырье следует в хорошо упакованной таре, в сухих, хорошо проветриваемых складских помещениях, на подтоварниках. .[ 10 , с. 346 ]

При сборе, сушке, упаковке и хранении сырья следует учитывать свойство гликозидов легко подвергаться гидролизу под действием ферментов, поэтому необходимо четко соблюдать правила для каждого вида сырья, предусмотренные в инструкции по заготовке.

Сырье используется для приготовления различных препаратов:

1) Из безрецептурного отдела аптек листья толокнянки, брусники, трава хвоща полевого, зверобоя, плоды жостера, черемухи, черники, подземные органы змеевика, лапчатки, кровохлебки, семена льна и т. д. отпускаются населению для изготовления в домашних условиях настоев и отваров;

2) Изготовление настоев и отваров производится и в аптеках по рецептам врачей (настой горицвета весеннего);

3) На фармацевтических фабриках готовят настойки, концентраты, экстракты, таблетки (настойка пустырника, жидкий экстракт горца перечного, таблетки "Адонисбром", концентрат - листья наперстянки пурпуровой);

4) На химико-фармацевтических заводах готовят суммарные препараты, выделяют индивидуальные гликозиды (дигитоксин, гранулы мать-и-мачехи, бессмертника). Сборы (потогонный, мочегоный, желудочный); брикеты (трава зверобоя, пустырника, полевого хвоща и др.). [ 3 , с. 88 ]


3 ХАРАКТЕРИСТИКА ЛЕКАРСТВЕННЫХ РАСТЕНИЙ, СОДЕРЖАЩИХ ГЛИКОЗИДЫ

3.1 Лекарственные растения, содержащие цианогенные гликозиды

Цианогенные гликозиды, содержащие в составе агликона синильную кислоту, довольно часто встречаются в растительном мире. Большее их число (амигдалин, пруназин, прулауразин, самбунигрин и др.) в качестве второго компонента содержат бензальдегид. В некоторых гликозидах синильная кислота образует соединения с ацетоном (линамарин) или с метилэтилкетоном (лотаустралин). Цианогенные гликозиды наиболее характерны для растений семейства розоцветных и прежде всего подсемейства сливовых, где они локализуются в основном в семенах. Из цианогенных гликозидов в медицинской практике нашел применение амигдалин, открытый еще в 1830 г. Робике. [ 9 , с. 234 ]

Семя горького миндаля (Semen Amugdali amarae)

Растение. Миндаль обыкновенный (разновидность — горький) — Amygdalus communis L. var. amara; семейство розоцветные — Rosaceae подсемейство сливовые — Prunaceae.(рис.1)

Рис.1 Миндаль обыкновенный.

В семенах горького миндаля до 3 % гликозида амигдалина, распадающегося при гидролизе на глюкозу, синильную кислоту и бензальдегид. Около 92 % заготавливаемого миндального семени потребляет пищевая промышленность, 6 % — медицина и около 2 % — парфюмерия.

В современной медицине применяют семена и масло. Масло, получаемое холодным прессованием из семян горького и сладкого миндаля, отличается приятным вкусом и высоким качеством. Используется как растворитель для инъекционных растворов, в масляных эмульсиях, в составе мазей, а самостоятельно — внутрь как слабительное средство. Миндальные отруби после отжатия масла потребляются с косметической целью для смягчения кожи. Из жмыха горького миндаля раньше получали горько-миндальную воду, которая содержала до 0,1 % синильной кислоты и применялась в виде капель в качестве успокаивающего и обезболивающего средства.

3.2 Лекарственные растения, содержащие тиогликозиды

Тиогликозиды особенно характерны для растений семейства Craciferae (горчица, хрен, редька, редис и др.), но они содержатся также и в некоторых растениях других семейств, например Liliaceae (Allium), Tropaeolaceae (Tropaeolum) и др. [ 16 , с. 259 ]

Тиогликозиды обладают одним общим свойством — при гидролизе раздражающе действовать на слизистые оболочки и кожу. Благодаря этому свойству некоторые растения, содержащие тиогликозиды, издавна используются в качестве сырья для получения лекарств, оказывающих местное раздражение или отвлекающее действие.

Семя горчицы сарептской (Semen Sinapis jHnceae)

Растение. Сарептская горчица — Brassica juncea Czern. (Syn. Sinapis jun-cea L.); семейство крестоцветные — Craciferae. Однолетнее травянистое растение с ветвистым стеблем высотой 50—60 см. Листья очередные, голые, нижние— лировидные, рассеченные, средние — ланцетовидные, выемчатые, верхние — цельнокрайниё. Нижние листья зеленые, верхние — Сизоватые. Соцветие — щитковидная кисть. Цветки мелкие, венчик четырехмерный; чашелистики отстоящие, венчик золотисто-желтый. Стручки линейные, тон-кие, бугорчатые, отклоненные от стебля. Семена почти шаровидные, диаметром около 1 мм, черно-сизые, коричневые или светло-желтые (в зависимости от сорта), ясно ячеистые.(рис.2)

Рис.2 Сарептская горчица.

В семенах сарептской (а также и черной) горчицы содержится гликозид синигрин, представляющий собой двойной эфир аллилизо-тиоцианата с бисульфатом калия и глюкозой. В присутствии воды при оптимальной температуре 50—60 °С ферменты, содержащиеся в семенах горчицы, расщепляют гликозид на свои компоненты. Гидролиз идет в два этапа: вначале с помощью фермента миросульфатазы (сульфатазы — специфические эстеразы, расщепляющие сложные эфиры, образуемые неорганическими кислотами) от синигрина отщепляется бисульфат калия. Затем с помощью другого фермента — тиоглюкозидазы расщепляется глюкозидная связь у атома серы и образуются глюкоза и аллилизотиоцианат (иначе называемый горчичным эфирным маслом). [ 11 , с. 302 ]

Семена горчицы богаты жирным маслом (до 40%), белками и слизистыми веществами.

Семена сарептской горчицы являются промышленным пищевым сырьем для получения горчичного жирного масла. Последнее получают прессованием из предварительно обрушенных семян, т. е. более или менее освобожденных от семенной оболочки с помощью обдирочных вальцовых машин. Остающийся жмых представляет собой фармацевтическое сырье. После измельчения в виде тонкого порошка его используют для приготовления горчичников, а также для получения эфирного масла. Подлинность жмыха устанавливают по жгучему вкусу и образованию при растирании порошка жмыха с теплой водой характерного эфирного^ масла, пары кото­рого сильно раздражают слизистые оболочки. [ 12 , с.1 92 ]

3.3 Лекарственные растения, содержащие сердечные гликозиды

Сердечные гликозиды - обширная и весьма важная в медицинском отношении группа природных гликозидов.

Сердечными гликозидами называются гликозиды, агликоном которых являются производные циклопентанопергидрофенантрена, содержащие в положение 17 ненасыщенное пятичленное или шестичленное лактонное кольцо и оказывающие специфическое действие на сердечную мышцу. Сердечные гликозиды пока не имеют себе равных синтетических заменителей; растения служат единственным источником их получения.

Растения, содержащие сердечные гликозиды, довольно широко распространены в природе. Они встречаются во флоре всех континентов мира. Сердечные гликозиды накапливаются во всех представителях растительного мира - кцустарниках, лианах, травянистых растениях.

Известно около 45 ботанических родов, в которых обнаружены сердечные гликозиды, из них до 20 произрастает в нашей стране. [ 14 , с. 134 ]

Ландыш майский . - Convallaria Mayalis L . Семейство спаржевые - Asparagaceae.

Растение. Многолетние травянистое растение высотой 15 - 20см. Корневище горизонтальное, ползучие, ветвистое, в узлах с многочисленными корнями. Листья крупные, овально-ланцетовидные или продолговато-эллиптические, в числе 2 - 3, на верхушке заостренные, цельнокрайние, длиной около 20см, шириной 4 - 8см, с дугонервным жилкованием, ярко-зеленые, с верхней стороны с сизоватым налетом. Цветочная стрелка с 3 - 6 чешуевидными фиолетово-розовыми недоразвитыми листьями при основании, заканчивается кистью душистых, желтовато-белых круглоколокольчатых цветков. Цветки на изогнутых цветоножках, окруженные у основания пленчатыми прицветниками. Околоцветник простой, венчиковидный, колокольчатый с 6 зубцами. Тычинки в числе 6, на коротких нитях; завязь верхняя, столбик с расширенным рыльцем. Запах слабый. Плод - красная шаровидная ягода.(рис.3)

Рис.3 Ландыш майский.

Лекарственным сырьем являются трава, листья и цветки. Сбор проводят только в сухую погоду, после высыхания росы. Траву и цветки собирают в фазу цветения, листья - до цветения и в начале цветения. При сборе траву и листья растения срезают ножом или серпом на высоте 3 - 5см от почвы. Запрещается обрывать или выдергивать растения. При заготовке цветков (соцветий) цветочные кисти срезают, отступя примерно 3см от нижнего цветка соцветия. Чтобы сохранить заросли, необходимо оставлять нетронутыми не менее одного растения на 1кв.м., а также строго следить, чтобы при сборе растения не обрывались, а срезались. Срезанные растения рыхло укладывают в корзины или мешки из редкой ткани и немедленно доставляют к месту сушки. Задержка с сушкой сырья приводит к значительной потере его биологической активности. Сырье следует сушить в сушилках при температуре 50 - 60 С, или в тени под навесом, на сквозняке. Сырье раскладывают тонким слоем, часто ворошат. Соцветия раскладывают слоем толщиной не более 1см и не переворачивают, чтобы не измельчать. .[ 10 , с. 328 ]

Растение содержит до 20 сердечных гликозидов, среди которых основными являются конваллатоксин, конваллатоксол, конваллозид. Кроме сердечных гликозидов, из цветков выделены фарнезол и ликопин, обнаружены также флавоноиды и кумарины. Сердечные гликозиды содержаться во всех органах ландыша.

Трава горицвета (адониса) (Herba Fdonidis vernalis)

Растение. Горицвет (адонис) весенний - Adonis vernalis; семейство лютиковые - Ranunculactat.

Рис.4 Трава горицвета.

Растение. Многолетнее травянистое растение с коротким корневищем. Стебли их несколько прямостоячие, простые или ветвящиеся, густоолиственные, с прижатыми ветвями. Листья в очертании широко-яйцевидные, пальчаторассеченные; сегментики узкие, линейные, цельнокрайные. Цветки на концах побегов одиночные. Лепестков 10 - 20, ярко-желтые. Плод - многоорешек. [ 11 , с. 117 ]

Горицвет - одно из первых весенних растений. Цветет одновременно с появлением листьев в апреле - мае. Произрастает в лесостепной и степной зонах Европейской части России, на Украине, на Северном Кавказе, а также в Сибири. Растет главным образом в разнотравных степях, по опушкам степных дубрав и лесов. В связи с распашкой степей заросли адониса сократились.

Специфическим карденолидом горицвета является адонитоксин, который гидролизуется на адонитоксигенин и L- рамнозу. Известно также содержание в горицвете цимарина. Установленно также наличие в горицвете К-строфантина.

В траве горицвета имеется незначительное количество других сердечных гликозидов и сапонинов. Найден флавоновый гликозид адонивернит. [ 8 , с. 488 ]

Лекарственное сырье - надземная часть. Заготавливают от начала цветения до полного осыпания плодов. Траву срезают ножом или серпом. Категорически запрещается вырывать растение, поскольку при этом обрываются почки возобновления, заложенные на 2 - 3 года, что ведет к уничтожению зарослей. Собранную траву во избежание разложения гликозидов быстро сушат на воздухе в тени или в сушилках при температуре 50 - 60 градусов С. Высушенное сырье - густоолиственные стебли длинной 10 - 30см, с цветками и часто плодами. Стеблевые листья у основания полустеблеобъемлющие, очередные, сидячие, голые, в очертании широкояйцевидные, пильчаторассеченные на 5сегментов, из них 2нижних сегмента короче, а 3 остальных сегмента почти одинаковой длины. Нижние сегменты перисторассеченные, остальные - дваждыперисторассеченные на узколинейные сегментики, на верхушке шиловидно- заостренные. Цветки ярко-желтые, в поперечнике до 3,5см (в сухом сырье), одиночные, правильные. Чашечка зеленая, 5 - 8-листовая, опушенная; чашелистики яйцевидные с немногими редкими зубцами. Лепестки продолговатые, мелкозазубренные. Тычинок много. Плод овальной формы, состоит из многочисленных мелких зеленоватых орешков с загнутыми книзу крючковатым столбиком; поверхность плодиков петлисто-ячеистая, опушенная. Запах слабый, характерный. Вкус горький.

Горицвет издавна применяется в народной медицине в качестве средства против водянки. В настоящее время это одно из важнейших сердечных средств. Препараты горицвета не обладают кумулятивным действием. Основным показателем к их применению являются хроническая недостаточность сердечной деятельности и невроз сердца. Кроме того, в сочетании с бромом их назначают при повышенной нервной возбудимости, бессонице, эпилепсии. Назначают в виде препарата новой галеники - адонизида и водного настоя. Сухой экстракт горицвета входит в состав таблеток "Адонисбром", таблеток по прописи Бехтерева и других комплексных сердечных средств. Траву горицвета и препараты хранят по списку Б. .[ 4 , с. 2 43]

Род растений Digitalis насчитывает до 36 видов, из которых в СССР произрастает 7 видов. Наперстянки — многолетние травянистые растения, в первый год жизни они образуют розетку прикорневых листьев, а на втором году развивается высокий прямой стебель с однобокой кистью крупных цветов.

Наперстянка пурпуровая — Digitalis purpurea L.; наперстянка крупноцветковая — Digitalis grandiflora Mill. (syn. D. ambiqua Murr.), наперстянка шерстистая — Digitalis lanata Ehrb.; наперстянка ржавая — Digitalis ferruginea L.; наперстянка реснитчатая — Digitalis ciliata Trantv.; семейство норичниковые — Scrophulariaceae.(рис.5)

Рис.5 Наперстянка пурпуровая.

Помимо гликозидов типа карденолидов, в листьях всех видов наперстянки обнаружены стероидные гликозиды, известные под названием дигитанол-гликозидов. В этих соединениях претерпело изменение боковое пятичленное лактонное кольцо. Этерифицированы они сахарами дигинозой, дигиталозой и олеандрозой.

Из других веществ, присутствующих в наперстянках, следует указать на флавонц, обладающие диуретическим свойством, и на стероидные сапонины дигитонин и гитонин в листьях наперстянки шерстистой и реснитчатой.

Сырьем наперстянки являются листья, и только от наперстянки реснитчатой собирают траву. Сушку листьев начинают немедленно после сбора при температуре 60—70°С и заканчивают в короткий срок во избежание разложения гликозидов. Сушат в тепловых сушилках или в сухих, хорошо проветриваемых помещениях. .[ 3 , с. 89 ]

Препараты наперстянки пурпуровой широко используются в медицине как важнейшие средства, регулирующие деятельность сердца и кровеносных сосудов. Препараты применяются при нарушении кровообращения II и III степени, вызванного расстройством компенсации, при клапанных пороках сердца, мерцательной аритмии и гипертонической" болезни.

Гликозиды наперстянки избирательно действуют на сердце: усиливают систолу и углубляют диастолу, замедляют ритм сердечной деятельности, обладают выраженной способностью к кумуляции. Это действие характеризуется тем, что гликозиды, медленно выделяясь, накапливаются в организме и обыкновенной дозой при продолжительном применении вызывают отравление. Вследствие этого рекомендуется чередовать наперстянку с другими, менее опасными, но медленнее действующими сердечными средствами. Наличие в наперстянке сапонинов способствует повышению растворимости и всасыванию гликозидов.

Препараты наперстянки ржавой применяются в тех же случаях сердечной недостаточности и с такими же показаниями и противопоказаниями, как и наперстянки пурпуровой. Препараты наперстянки ржавой обладают более выраженными кумулятивными свойствами, чем наперстянка пурпуровая.

У наперстянки реснитчатойой высокая биологическая активность, чем у наперстянки пурпуровой и ржавой; применяется при острой сердечной недостаточности с тяжелым нарушением кровообращения.

Препараты наперстянки шерстистой применяют в тех же случаях, что и наперстянки пурпуровой, но отличительными особенностями являются их более быстрое действие на сердце, лучшая переносимость и менее выраженные кумулятивные свойства. Особенно интересно действие гликозида дигиланида С. Он действует и выделяется из организма быстрее других гликозидов наперстянки шерстистой, менее токсичен и по своему действию занимает промежуточное положение между дигитоксином и строфантином.

3.4 Лекарственные растения, содержащие сапонины

Все сапонины, являясь по своей химической природе гликозидами. состоят из агликонов (сапогенинов) и углеводной части.

Стероидные сапонины типичны для представителей семейств лилейных, меллисовых, диоскорейных растений, в том числе из некоторых имеющих лекарственное значение. .[ 11 , с. 376 ]

Диоскорея ниппонская —Dioscorea nipponica Makino (Dioscorea polystachya Turcz., диоскорея кавказская (D. caucasica Lipsky); семейство диоскорейные— Dioscoreaceae (рис. 6).

Рис.6 Диоскорея ниппонская.

У диоскореи горизонтальное, сильно разветвленное, коричневато-бурое плотное корневище длиной до 1,5—2 м и толщиной до 2 см и более, несущее на всем протяжении тонкие жесткие корни и остатки отмерших стеблей. Стебли простые, голые. Листья очередные или почти супротивные, черешковые; у диоскореи ниппонской они в очертании широкосердцевидные, 3—7-лопастные, длиной 6—10 см, а у диоскореи кавказской — сердцевидно-яйцевидные со слегка выемчатым краем, длиной до 16 см. Цветки однополые, двудомные, мелкие, зеленоватые, с глубоко 6-раздельным околоцветником. Тычиночные цветки, собранные по 3—7 в полузонтики, образуют простые, реже ветвистые пазушные кисти; пестичные цветки собраны в простую кисть. Плод — коробочка с 3 перепончатыми крыльями длиной 1,5—2,5 см; семена также окаймлены крылом. Цветет в мае—июле. Оба вида введены в культуру.

В корневищах обоих видов диоскореи содержатся сапонины (до 10%), в числе которых стероидный сапонин диосцин (1—1,15%), при гидролизе освобождающий сапогенин диосгенин, глюкозу и 2 молекулы рамнозы.

Собирают корневища с корнями весной не во время фазы цветения и осенью, режут на куски и сушат. Сырье представляет собой куски корневищ разной длины со шнуровидными корнями толщиной от 0 до 4 см.

Препарат диоснонин (Diosponinum), представляющий собо сухой очищенный экстракт корневищ диоскореи. Содержит водорастворимые стероидные сапонины, предложен для применения при атеросклерозе.


ВЫВОДЫ

Лечебные свойства растений обусловлены содержанием в них активно действующих веществ, способных оказывать определенное влияние на организм в целом, на его органы и системы. Количество активных веществ не постоянное, оно меняется в зависимости от фазы развития растения, от почвы, на которой оно растет, правил заготовки, обработки и хранения.

Как показывают проведенные исследования, среди действующих активных веществ растений наибольший лечебный эффект имеют алкалоиды, гликозиды, сапонины, полисахариды, эфирные масла, органические кислоты, флавониды, фитонциды, витамины, химические элементы, пигменты, смолы, жирные масла.

Гликозиды - это органические вещества растительного происхождения, состоящие из сахаристой части - гликона и несахаристой - агликона, на которые они распадаются при кипячении и под действием ферментов. Гликозиды, получаемые в чистом виде, обычно горькие кристаллические вещества, хорошо растворимые в воде. В лечебной практике наиболее часто используются сердечные гликозиды, представителями которых являются строфантин, эризимин, гликозиды наперстянки. Гликозидсодержащими растениями являются адонис весенний, желтушник серый, кендырь коноплевый, ландыш майский, диоскорея ниппонская, морской лук, наперстянка пурпурная и многие другие.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Алтымышев А. А. Природные целебные средства. — М.: Профиздат, 2002. — 272 с.
  2. Анисимов М. М., Чирова В. Я. О биологической роли тритерпеновых гликозидов // Успехи современ. биол.—2000.—Т. 90.—Вып. 3/6/. — С. 351—354.
  3. Антонова В. И., Суслова Т. А. Ресурсы лекарственного растительного сырья и возможности его заготовки в Вологодской области // Проблемы природопользования в условиях севера европейской части СССР.— Вологда, 2003. – С. 86—95.
  4. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. - М.:Медицина,2003.
  5. Биология. / Н.П.Соколова, И.И.Андреева и др. - М.: Высшая школа, 2004.
  6. Гаммерман А.Ф., Гром И.И. Дикорастущие лекарственные растения СССР. М., 2006. 286 с.
  7. Георгиевский В. П. и др. Биологически активные вещества лекарственных растений. — Новосибирск: Наука, Сиб. отделение, 2001,—216 с.
  8. Искандеров Г.Б. Стероидные сапогенины Tribulusterrestris // Химия природн. соед. 2000. №4. С.488-489.
  9. Ковалева Н.Г. Лечение растениями. - М.: Медицина, 2001.
  10. Кондрашенко П. Г., Кур С. Д., Рожко Ф. М. Заготовка, выращивание и обработка лекарственных растений.— М.: Медицина, 2005—346 с.
  11. Корсун В.Ф., Ситкевич А.Е., Ефимов В.В. Лечение препаратами растительного происхождения. – Минск, 2005. – 383 с.
  12. Кузнецова М. А. Лекарственное растительное сырье и препараты: Справ. пособие для хим.-технол. техникумов, фарм. и мед. Училищ.—2-е изд. перераб. и доп.- М.: Высш. шк., 2004.—191 с.
  13. Машковский М.Д. Лекарственные средства: в 2–х томах. Т.2.–9–е изд. – М.: Медицина, 2004.
  14. Муравьев Д.А. Фармакогнозия. - М.: Медицина,2001 - 560 с.
  15. Пастушенков Л.В., Пастушенков А.Л., Пастушенков В.Л. Лекарственные растения: Использование в народной медицине и быту. Л., 2003. 382 с.
  16. Перепелица Э. Д., Кинтя П. К. Химическое изучение стероидных гликозидов Tribulusterrestris. IV. Стероидные сапонины. Химия природн. соединений, 2005, N 2. С.260-261.
  17. Соколов С.Я. Фитотерапия и фитофармакология: Руководство для врачей. М.: Медицинское информационное агенство, 2000. 976 с.
  18. Чекман И. С. Биохимическая фармакодинамика. - К., 2001, 201 с.
  19. Чиков П.С. Лекарственные растения – путь к здоровью. – М.: 2002, - 489 с.

Другие похожие работы, которые могут вас заинтересовать.вшм>

3199. Фармакогностический анализ сырья лекарственных растений, содержащих эфирные масла, на примере мяты перечной и мелиссы лекарственной 2.31 MB
Провести фармакогностический анализ и сделать сравнительную характеристику лекарственного растительного сырья Мяты перечной производства фирм ООО «Фитофарм» и ОАО «Красногорск Лек Средства» и сырья Мелиссы лекарственной двух производителей - ЗАО «Здоровье» и ООО «Фитофарм»
956. Народнохозяйственное значение переработки плодов и овощей в различные виды продуктов. Методы переработки 39.56 KB
Классификация показателей качества товарного зерна. Прорастание и старение зерна при хранении и мероприятия предупреждающие эти явления. Классификация показателей качества товарного зерна. Вещества входящие в состав зерна распределены очень неравномерно.
2637. Аппликационные лекарственные препараты. Общая характеристика. Классификация. Основные требования. Технология нанесения адгезивов на подложку при производстве аппликационных лекарственных препаратов 64.04 KB
Аппликационные лекарственные препараты – пластыри мозольные лейкопластыри перцовые пластыри кожные клеи – жидкие пластыри пленки ТТС и др. Общая характеристика и классификация пластырей Пластыри Emplstr лекарственная форма для наружного применения обладающая способностью прилипать к коже оказывающая действие на кожу подкожные ткани и в ряде случаев общее воздействие на организм. Пластыри одна из старейших лекарственных форм известная с очень древних времен прародители современных препаратов четвертого поколения...
12120. Способы геотехнологической переработки природного и техногенного сульфидсодержащего сырья 19.49 KB
В результате проведенных экспериментов моделирующих длительное взаимодействие искусственных геохимических барьеров с сульфатными растворами никеля и меди и с использованием метода термодинамического моделирования программный комплекс Селектор было показано что термоактивированные хвосты обогащения медноникелевых руд смеси активного кремнезема и карбонатита серпофита и карбонатита являются перспективным материалом обогащаемого слоя при реализации физикохимических геотехнологий как для доизвлечения ценных компонентов так и для...
17748. Диоксины и безопасность продовольственного сырья и продуктов питания 57.47 KB
Диоксин и родственные соединения непрерывно и во все возрастающих масштабах генерируются цивилизацией в последние полвека, выбрасываются в природную среду и накапливаются в ней. Этот процесс не знает ни пределов насыщения, ни национальных границ
12010. Технология получения возобновляемого растительного сырья – биомассы культивируемых клеток высших растений 17.6 KB
При отсутствии природного растительного сырья получают культуру клеток данного вида растения которую можно выращивать в биореакторах значительных объемов вплоть до десятков куб.м и таким образом получать биомассу культур клеток ценных лекарственных растений представляющую собой возобновляемое растительное сырье. Культура клеток оказывается незаменимой в случае редких исчезающих или тропических видов лекарственных растений.
9495. Классификация, характеристика ассортимента пушно-мехового сырья и пушно-мехового полуфабриката, строение пушно-меховой шкуры, строение волоса и разновидность его форм, технология изготовления пушнины 1.05 MB
Меховые пластины полосы определенной формы сшитые из подобранных выделанных шкурок и предназначенные для раскроя на детали меховых изделий. К зимним видам пушного сырья относятся шкурки и шкуры пушных зверей добыча которых производится преимущественно в зимнее время когда качество шкурок особенно высоко. СТРОЕНИЕ И ХИМИЧЕСКИЙ СОСТАВ ШКУРОК ПУШНОМЕХОВОГО и овчинношубного СЫРЬЯ ПОНЯТИЕ О ТОПОГРАФИИ ШКУРКИ Шкуркой называют наружный покров животного отделенный от его тушки и состоящий из кожной ткани и волосяного покрова. У...
5956. Классификация болезней растений 17.14 KB
Симптомы болезней растений. Иммунитет растений к инфекционным заболеваниям. Симптомы болезней растений.
15134. Применение метода комплексонометрия в анализе лекарственных средств 44.37 KB
Приготовление оттитрованного раствора для проведения комплексонометрического титрования. Общие понятия Титриметрический анализ Титриметрический анализ титрование - методы количественного анализа в аналитической и фармацевтической химии основанные на измерении объёма раствора реактива известной концентрации расходуемого для реакции с определяемым веществом. По количеству пошедшего на титрование рабочего раствора рассчитывают результаты анализа Виды титриметрического анализа Титриметрический анализ может быть основан на различных типах...
12941. Общая характеристика рецепторов растений 22.16 KB
Рецепторы растений – это молекулы или молекулярные комплексы воспринимающие внешние или внутренние сигналы физической механической химической электрохимической осмотической или иной природы трансформирующие эти сигналы и передающие их структуре обеспечивающей формирование ответной реакции. Рецепторы растений можно охарактеризовать по крайней мере двумя особенностями. Рецепторные системы растений и животных Рецепторная система Растения Животные Специализированные рецепторные клетки нет есть Гликокаликс на внешней поверхности клетки...

Сапонины- безазотистые гликозиды, которые при взбалтывании в воде образуют стойкую пену. Сапонины получили своё название от латинского «sapo», что в переводе означает мыло. Первые сапонины были выделены в 1819 г из мыльнянки, принадлежащей к семейству гвоздичных. Молекула сапонина,как и все , состоит из углеродной части- моносахарида и агликона, называемого сапогенином. Они хорошо растворимы в воде и спирту и не содержат серы.

Распространение сапонинов

.

Сапонины встречаются как в растительном, так и в животном мире. Растения содержат сапонины в корнях на примере , синюхи, первоцвета, диоскореи, в листьях наперстянки и в цветках коровяка, в растворённом состоянии в клеточном соке. Среди животного мира на сапонины богаты пиявки, пчёлы и очковые змеи.

Классификация сапонинов

.

По химическому строению агликона сапонины делятся на стероидные и тритерпеновые.
Стероидные сапонины.
Стероидные сапонины принадлежат к группе природных гликозидов, которым характерна значительная гемолитическая активность. Стероидные сапонины находятся в разных растениях, но главным образом в растениях семейства бобовых, лютиковых, лилейных, диоскорейных. При изучении биологического действия стероидных сапонинов выявлено значительную фунгицидное, противоопухолевое, цитостатическое действие. Они понижают артериальное давление, нормализуют сердечный ритм, замедляют и углубляют дыхание. Препарат полиспонин, изготовленный из диоскореи, используют для больных на . Стероидные сапонины являются исходным материалом для синтеза стероидных гормонов.
Тритерпеновые сапонины.
Большинство тритерпеновых сапонинов оказывают гемолитическое действие. Они разрушают оболочку эритроцитов и освобождают гемоглобин. Тритерпеновые сапонины обладают горьким вкусом, раздражают слизистую оболочку глотки, желудка и кишок, вызывают рвоту и увеличивают секрецию бронхов. Назначают сапонины при сухом кашле для разрежения мокроты. Тритерпеновые сапонины различных растений оказывают различное фармакологическое действие. Сапонины солодки голой обладают эстрогенной активностью, сапонины элеутерококка увеличивают сопротивляемость организма, панаксозиды корня женьшеня имеют адаптогенное действие. Тритерпеновые сапонины олеиновой кислоты, находящиеся в корнях аралии маньчжурской используют для снятия стресса, усиливает сокращение миокарда, употребляют при астеноневротических состояниях.
Тритерпеновые сапонины очень широко используют в пищевой и лёгкой промышленности. Корень солодки используют для производства пива и шипучих напитков, а также для мочения яблок и брусники, и изготовления халвы. Пена тритерпеновых сапонинов не содержит щелочей и тому широко используется для стирки белья, которые не теряют структуру и цвет. Текстильная промышленность использует тритерпеновые сапонины для фиксации цвета, а пожарная для образования пены в противопожарных средствах.

Растительные гликозиды, обладающие способностью образовывать с водой мыльную пену, получили название сапонинов. При гидролизе они образуют агликоны типа спиростанола-β, дигитогенина. При попадании в кровь высокотоксичны – вызывают гемолиз эритроцитов при разведении 1:50 000. Получают стероидные сапонины из наперстянки, диоскореи, аралии, сои и других растений путем экстракции их водой или водными растворами этанола. Индивидуальные соединения выделяют с помощью адсорбционно-хроматографических методов или методом противоточного распределения.

Применяют для синтеза стероидных гормонов, для получения антиатеросклеротических и венотонизирующих препаратов. Многие настойки содержат сапонины, обладающие мочегонным и отхаркивающим действием.

Технология производства стероидных сапонинов

Первые новогаленовые препараты, содержащие стероидные сапонины, стали вырабатываться из диоскореи.

Диоспонин (Diosponinum). Сухой очищенный экстракт из корней и корневищ диоскореи кавказской, содержит сумму водорастворимых стероидных сапонинов.

Сырье экстрагируют 8% этиловым спиртом в батарее по принципу противоточной мацерации.

Извлечение упаривают под вакуумом до 1/10 объема вытяжки.

К кубовому остатку добавляют алюмокалиевые квасцы для осаждения смолистых веществ.

После фильтрации вытяжку направляют вадсорбционную колонку с окисью алюминия. Реадсорбцию проводят обессоленной водой.

Вытяжку дополнительно очищают жидкостной экстракцией хлороформом .

После этого следует экстракция суммы сапонинов селективным экстрагентом – хлороформно-спиртовой смесью.

После удаления под вакуумом экстрагента получают препарат в виде порошка.

Применяется как гипохолестеринемическое средство при атеросклерозе.

Выпускается в таблетках по 0,1 г.

Препараты на основе сапонинов

Полиспонин – сухой экстракт из диоскореи ниппонской с содержанием суммы сапонинов не менее 17% . Форма выпуска – таблетки по 0,1 г. Назначение то же, что и диоспонина.

Трибуспонин – таблетки по 0,1г, содержащие сумму стероидных сапонинов из травы якорцев стелющихся. Показания к применению те же, что и для диоспонина и полиспонина.

Слизистые водорастворимые полисахариды

К этой группе полисахаридов относятся углеводы, образующие густые слизистые растворы. В состав слизей входят пентозаны и гексозаны. От крахмала они отличаются отсутствием характерных зерен и реакции с раствором йода, от пектиновых веществ – отсутствием полигалактуроновых кислот и желирующей способностью, от камедей – осаждаемостью нейтральным раствором свинца ацетата.

В химическом отношении слизи трудно отличить от камедей. Основным отличием является значительное преобладание пентозанов (их количество может доходить до 90%) над гексозанами.

Водорастворимые полисахариды водорослей представлены в основном в виде солей альгиновой кислоты.

Из физических свойств для слизей характерна полная растворимость в воде, в то время как для ряда камедей свойственно только набухание.

По характеру образования слизей сырье различают следующим образом:

    сырье с интерцеллюлярной слизью (льняное семя, блошное семя и др.);

    сырье с внутриклеточной слизью (клубни ятрышника, корень и листья алтея, листья подорожника, листья мать-и-мачехи и др.);

Выделяют слизистые водорастворимые полисахариды методами дробной мацерации в сочетании с кипячением и противоточной экстракцией в батарее перколяторов, очистку проводят, как правило, этанолом с последующей фильтрацией и сушкой.

text_fields

text_fields

arrow_upward

Сапонины (сапонизиды) — гликозиды (гетерозиды), производные стероидов и тритерпеноидов, обладающие гемолитической и поверхностной активностью и токсичностью для холоднокровных животных.

Название «сапонин» (от лат. «sapo» — мыло) впервые появилось в 1819 г., когда из мыльнянки (растения семейства гвоздичных) было выделено вещество, образующее с водой обильную пену.

Классификация сапонинов

text_fields

text_fields

arrow_upward

Сапонины по строению их агликона (сапогенина) делятся на две группы: стероидные и тритерпеновые.

Стероидные сапонины

Сапогенины этих сапонинов являются производными циклопентанпергидрофенантрена, как и агликоны кардиотонических гликозидов. Однако стероидные сапонины не оказывают кардиотонического действия, так как не имеют лактонного кольца при С 17 и ряда других функциональных групп.

Сапогенины всех стероидных сапонинов имеют:

  • у С 3 кольца А – гидроксильную (-ОН) группу;
  • в положении 16-17 — спирокетальную группировку за счет окисления боковой цепи;
  • в положении 5-6 — двойную связь (-CH=CH-);
  • в положениях С 10 и C 13 — метильные (-СН 3) группы.

Углеводная часть молекулы стероидных сапонинов присоединяется в положении С 3 агликона и может содержать от 1 до 9 моносахаридов (глюкоза, галактоза, рамноза, галактуроновая кислота и др.). Моносахариды могут образовывать как линейные, так и разветвленные цепи. Например, стероидный сапонин диосцин (диоскорея ниппонская – Dioscorea nipponica, якорцы стелющиеся – Tribulus terrestris) состоит из агликона диосгенина, к которому присоединяется разветвленная триоза:

Стероидные сапонины встречаются редко, преимущественно в растениях тропического климата. В семействах диоскорейных, норичниковых, спаржевых, амариллисовых стероидные сапонины часто встречаются совместно с кардиотоническими гликозидами (наперстянка, ландыш и др.).

Тритерпеновые сапонины имеют общую формулу (С 5 Н 8) 6 и, в зависимости от количества колец в структуре агликона, делятся на пентациклические и тетрациклические.

а) Тетрациклические — содержат в структуре агликона 4 кольца и подразделяются на производные даммарана (даммарандиол), циклоартана (циклоартенол), зуфана. В основе этой группы лежит даммаран. Производные даммарана легко окисляются с образованием гетероциклов (панаксдиол и панакстриол). Соединения подобного строения обнаружены в женьшене (Panax ginseng), заманихе высокой (Oplopanax elatus), березе (Betula spp.).

б) Пентациклические содержат в структуре агликона 5 колец. Среди этой группы выделяют производные урсана (альфа -амирин), олеанана (бета -амирин), лупана (лупеол), гопана. С медицинской точки зрения, наиболее важными являются производные урсана и олеанана, которые отличаются друг от друга расположением заместителей – метильных (-СН 3) групп в положениях 19 и 20 кольца Е.

Альфа- амирин лежит в основе различных соединений, которые найдены в ортосифоне тычиночном, или почечном чае (Orthosiphon stamineus), лапчатке прямостоячей (Potentilla erecta) и других. Наиболее важным представителем является кислота урсоловая (28-карбокси-альфа -амирин). Кислота урсоловая обнаружена во многих растениях (бруснике — Vaccinium vitis-idaea, клюкве болотной — Oxycoccus palustris и др.), причем встречается как в виде гликозидов, так и свободного агликона.

Бета -амирин лежит в основе следующих соединений:

  • кислота олеаноловая (28-карбокси-бета -амирин). Кислота олеаноловая и ее производные являются агликонами сапонинов аралии высокой (Aralia elata), синюхи голубой (Polemonium caeruleum), конского каштана (Aesculus hippocastanum), первоцвета весеннего (Primula veris), календулы лекарственной (Calendula officinalis), патринии средней (Patrinia intermedia) и др.
  • кислота глицирретиновая (11-оксо-29-карбокси-бета -амирин). Кислота глицирретиновая является агликоном кислоты глицирризиновой (в С 3 положении присоединяется углеводная цепь из двух молекул глюкуроновой кислоты). Кислота глицирризиновая содержится в солодке голой (Glycyrrhiza glabra) и солодке уральской (G. uralensis).

Углеводная часть тритерпеновых сапонинов может присоединяться к агликону в различных положениях:

  • в С 3 положении за счет гидроксильной (-ОН) группы;
  • в С 28 положении за счет карбоксильной (-СООН) группы (при этом связь агликона с сахаром называется ацилгликозидной);
  • с сапогенином могут быть связаны две углеводные цепи (за счет гидроксильной группы в С 3 положении и карбоксильной группы в С 28 положении). В этом случае сапонины относятся к дигликозидам.

Тритерпеновые сапонины могут быть нейтральными и кислыми. Кислотные свойства обусловлены наличием карбоксильных групп сапогенина и углеводной части молекулы. Гидроксильные группы могут быть ацилированы уксусной, тиглиновой, пропионовой, ангеликовой и другими кислотами.

Углеводная часть тритерпеновых сапонизидов может содержать от 1 до 11 моносахаридов (глюкоза, галактоза, рамноза, арабиноза, фруктоза, глюкуроновая и галактуроновая кислоты). Она может быть линейной и разветвленной (например, у аралозидов — сапонинов аралии высокой). Разветвление углеводной цепи происходит от первого сахарного остатка, связанного с агликоном.

Распространение сапонинов в растительном мире

text_fields

text_fields

arrow_upward

Распространение сапонинов в растительном мире, локализация в растениях. Влияние условий обитания и онтогенеза на накопление сапонинов

В растительном мире более широко распространены тритерпеновые сапонины. Они обнаружены в растениях почти 70 семейств. Наиболее богаты тритерпеновыми сапонинами представители семейств аралиевых (Araliaceae), гвоздичных (Caryophyllaceae), синюховых (Polemoniaceae), бобовых (Fabaceae), истодовых (Polygalaceae), сложноцветных (Asteraceae), губоцветных (Lamiaceae) и др.

Стероидные сапонины встречаются значительно реже и обнаружены, главным образом, в растениях семейств диоскорейных (Dioscoreaceae), лилейных (Liliaceae), норичниковых (Scrophulariaceae), парнолистниковых (Zygophyllaceae), лютиковых (Ranunculaceae), амариллисовых (Amaryllidaceae). Стероидные сапонины часто сопровождают в растениях кардиотонические гликозиды (виды наперстянки, ландыша, адонис весенний).

Растения, накапливающие тритерпеновые сапонины, не содержат стероидные, и наоборот.

В растениях сапонины обычно находятся в клеточном соке почти всех органов в растворенном виде.

Сапонины найдены во всех органах растений:

  • в траве (астрагал шерстистоцветковый — Astragalus dasyanthus, хвощ полевой — Equisetum arvense, якорцы стелющиеся — Tribulus terrestris);
  • в листьях (почечный чай — Orthosiphon stamineus);
  • в семенах (конский каштан — Aesculus hippocastanum);
  • в подземных органах (диоскорея ниппонская — Dioscorea nipponica, синюха голубая — Polemonium caeruleum, заманиха высокая — Oplopanax elatus, солодка голая — Glycyrrhiza glabra и с. уральская — G. uralensis, женьшень — Раnах ginseng, аралия высокая (а. маньчжурская) — Aralia elata). В подземных органах накапливается наибольшее количество сапонинов.

Предположительно, сапонины принимают участие в биохимических процессах в растениях:

  • в малых концентрациях они ускоряют прорастание семян, рост и развитие растений, а в больших, наоборот, тормозят. Таким образом, сапонины играют роль гормонов роста растений;
  • сапонины оказывают влияние на проницаемость мембран растительных клеток, что связано с их поверхностной активностью.

На накопление сапонинов влияют стадии онтогенеза растений. Максимальное количество сапонинов в сырье содержится в фазы:

  • бутонизации и начала цветения (ортосифон тычиночный и астрагал шерстистоцветковый);
  • в конце вегетации, когда биомасса лекарственного растительного сырья максимальна (солодки, синюха, заманиха, аралия, женьшень, диоскорея);
  • в период плодоношения (конский каштан).
  • дикорастущая синюха голубая достигает максимальной продуктивности к 5-6-му году жизни, а в культуре — к 2-3-му году. При этом содержание сапонинов в подземных органах находится на одном уровне;
  • культивируемый женьшень рекомендуется собирать на 5-6-ой год, т.к. корни быстро растут до 3-х лет и далее их рост замедляется, а с 13 лет наблюдается уменьшение биомассы корней. Это связано с постепенным отмиранием боковых корней.

Влияние факторов внешней среды на накопление сапонинов строго специфично. Среди них трудно выявить общие закономерности для всех растений. Отметим лишь отдельные моменты:

  • растения семейства аралиевых являются эндемиками Дальнего Востока, где сложился особый климатический и почвенный режим;
  • зависимость накопления глицирризиновой кислоты от типа почвы и ее засоленности характерна для солодки. Чем больше засоленность, тем меньше глицирризиновой кислоты содержат корни солодки. Повышение влажности почвы способствует накоплению глицирризиновой кислоты.

Сырьевая база растений, содержащих сапонины

text_fields

text_fields

arrow_upward

Синюха голубая растет по опушкам и вдоль лесных дорог в лесной и лесостепной зонах европейской части России и Западной Сибири.

Женьшень, заманиха, аралия, диоскорея ниппонская встречаются в лесах Дальнего Востока (Приморский, Хабаровский края).

Солодки голая и уральская часто образуют сплошные заросли в поймах и долинах рек в степных и пустынных районах европейской части России и Сибири. В этих же регионах, как сорняк, встречаются якорцы стелющиеся.

Синюха голубая не образует крупных зарослей, пригодных для промышленных заготовок, в связи, с чем ее культивируют. Женьшень культивируют на Дальнем Востоке.

Ортосифон тычиночный импортируют из стран тропической Азии.

В последние годы перспективным является метод культуры тканей. Он заключается в выращивании на определенных питательных средах биомассы сырьевой части лекарственных растений. Полученная таким образом биомасса используется в дальнейшем для получения лекарственных препаратов.

В России метод культуры тканей был разработан и освоен на примере женьшеня. Культура тканей женьшеня под названием «Биоженьшень» используется для получения настойки.

Физические свойства сапонинов

text_fields

text_fields

arrow_upward

Физические свойства сапонинов

Сапонины — бесцветные или желтоватые аморфные вещества. В кристаллическом состоянии выделены гликозиды, имеющие в углеводной цепи до 4 моносахаридов. Оптически активны.

Гликозиды растворимы в воде. Растворимость увеличивается с возрастанием количества моносахаридов в углеводной цепи. В разведенных (60-70 %) спиртах растворяются на холоду; в более крепких (80-90 %) спиртах — только при нагревании, а при охлаждении выпадают в осадок. Нерастворимы в органических растворителях (ацетон, хлороформ, бензол).

Свободные сапогенины не растворяются в воде и хорошо растворимы в органических растворителях.

В зависимости от рН водных извлечений сапонины делят на:

  • нейтральные — стероидные и тетрациклические тритерпеновые сапонины;
  • кислые — пентациклические тритерпеновые сапонины. Их кислотность обусловлена наличием карбоксильных (-СООН) групп в структуре агликона или присутствием уроновых кислот в углеводной цепи.

Специфическим свойством сапонинов является их способность снижать поверхностное натяжение жидкостей (воды) и давать при встряхивании стойкую обильную пену. Такая поверхностная активность связана с наличием в молекулах сапонинов одновременно как гидрофильного, так и липофильного остатков.

Химические свойства сапонинов

text_fields

text_fields

arrow_upward

Химические свойства обусловлены структурой агликона, наличием отдельных функциональных групп, а также присутствием гликозидной связи.

Сапонины гидролизуются под влиянием ферментов и кислот. Производные кислот олеаноловой и глицирретиновой гидролизуются под воздействием щелочей.

При взаимодействии с кислотными реагентами (сурьмы (III) хлорид, сурьмы (V) хлорид, железа (III) хлорид, кислота серная концентрированная и др.) образуют окрашенные продукты.

Кислые сапонины образуют нерастворимые комплексы с солями тяжелых металлов (Ва, Рb, Cu).

Сапонины способны образовывать комплексы с белками, стеринами, липидами, фенольными соединениями. В составе комплексов сапонины не обладают гемолитической и поверхностной активностью.

Сапонины, имеющие в своей основе стероидное ядро, вступают в специфическую реакцию Либермана–Бурхарда.

Биологические свойства сапонинов

text_fields

text_fields

arrow_upward

Сапонины обладают гемолитической активностью. Они способны растворять липидную часть оболочки эритроцитов. В результате этого оболочка из полупроницаемой становится проницаемой. Гемоглобин свободно поступает в плазму крови и растворяется в ней. Образуется красный прозрачный раствор — «лаковая» кровь.

Гемолитической активностью обладают только гликозиды. В связи с этим сапонины не применяются для внутривенного введения, т.к. вызывают анемию. При приеме внутрь, после гидролиза в желудочно-кишечном тракте до агликонов, сапонины теряют гемолитическую активность.

Гемолиз эритроцитов вызывают не все сапонины. Этим свойством не обладают сапонины солодки.

Сапонины токсичны для холоднокровных животных (рыбы, лягушки, круглые черви). Они нарушают функцию жабр, которые являются не только органом дыхания, но и регулятором солевого осмотического давления в организме. Сапонины парализуют или вызывают гибель холоднокровных животных даже в больших разведениях (1:1 000000).

Агликоны сапонинов для холоднокровных животных не токсичны.

Оценка качества сырья, содержащего сапонины. Методы анализа

text_fields

text_fields

arrow_upward

Наличие сапонинов в лекарственном растительном сырье можно установить при помощи качественных реакций, которые проводят непосредственно с сырьем или с водным извлечением из него.

Качественные реакции

Качественные реакции на сапонины основаны на их физических, химических и биологических свойствах.

Государственная фармакопея XI издания (вып. 2) рекомендует использовать качественные реакции для подтверждения подлинности для трех видов сырья.

  1. Корневища с корнями синюхи голубой. С водным извлечением проводят реакцию пенообразования, основанную на способности сапонинов снижать поверхностное натяжение жидкости (воды) и давать в отваре стойкую обильную пену после встряхивания.
  2. Корни аралии маньчжурской (а. высокой). Метанольное извлечение хроматографируют в тонком закрепленном слое силикагеля (на пластинках «Силуфол») в системе растворителей хлороформ-метанол-вода (61:32:7). В качестве свидетеля используют раствор сапарала. Хроматограмму проявляют 20 % раствором кислоты серной и нагревают в сушильном шкафу (t = 105 °C) в течение 10 мин. Появляются пятна вишневого цвета.
  3. Корни женьшеня.

а) Реакция с порошком корней женьшеня (на гликозиды). При нанесении кислоты серной концентрированной на порошок корней женьшеня через 1-2 минуты появляется кирпично-красное окрашивание, переходящее в красно-фиолетовое, а затем — в фиолетовое.

б) Наличие панаксозидов доказывают при помощи разделения извлечения из корней женьшеня в тонком слое силикагеля и последующего проявления полученной хроматограммы раствором кислоты фосфорно-вольфрамовой при нагревании. Панаксозиды проявляются в виде розовых пятен.

Kоличественноe определениe

Общих методов количественного определения сапонинов в лекарственном растительном сырье нет. Чаще всего используют методы:

  1. Потенциометрический метод . Метод основан на определении изменения электродвижущей силы (ЭДС) в результате титрования. Метод используется для определения суммы аралозидов в корнях аралии маньчжурской (а. высокой).

Этапы определения:

  • подготовительный;
  • экстракция аралозидов метиловым спиртом и их кислотный гидролиз;
  • очистка от сопутствующих веществ — осаждение кислоты олеаноловой в результате смены растворителя (разбавление спиртового извлечения водой и охлаждение);
  • растворение кислоты олеаноловой в горячей смеси метилового и изобутилового спиртов (1:1,5);
  • количественное определениетитрование раствором натрия гидроксида (0,1 моль/л) в смеси метилового спирта и бензола:

Точку эквивалентности определяют потенциометрически.

  1. Спектрофотометрический метод . Метод основан на способности сапонинов и их окрашенных комплексов поглощать монохроматический свет при определенной длине волны. Метод предложен для определения содержания сапонинов в следующих видах сырья:

а) корневища с корнями диоскореи ниппонской. Проводят кислотный гидролиз сапонинов с последующим проведением реакции свободного агликона (диосгенин) с реактивом (пара -диметиламинобензальдегид). Образуется окрашенный комплекс;

б) корни солодки. Проводят осаждение кислоты глицирризиновой концентрированным раствором аммиака. Осадок растворяют и определяют оптическую плотность полученного раствора.

  1. Гравиметрический метод — определение экстрактивных веществ. Метод основан на определении сухого остатка после высушивания суммы веществ, извлеченных из сырья соответствующим экстрагентом. Метод предложен для оценки качества сырья женьшеня, почечного чая, синюхи голубой, солодки.

В сырье астрагала шерстистоцветкового и заманихи высокой количественное содержание биологически активных веществ не определяют.

Особенности сбора, сушки и хранения сырья, содержащего сапонины

text_fields

text_fields

arrow_upward

Заготовку сырья, содержащего сапонины, проводят в период их максимального накопления по правилам заготовки гликозидсодержащего сырья. Особенностями заготовки и сушки являются:

  • корни солодки заготавливают с марта по ноябрь;
  • корни солодки, корневища с корнями диоскореи ниппонской, траву якорцев стелющихся допускается сушить на солнце.

Хранится сырье по общему списку, сроки хранения индивидуальны для каждого вида сырья. При переработке сапонинсодержащего сырья следует принимать меры предосторожности, поскольку при вдыхании возможно возникновение аллергических реакций.

Пути использования сырья, содержащего сапонины

text_fields

text_fields

arrow_upward

Лекарственное растительное сырье, содержащее сапонины, используется для получения разнообразных лекарственных форм и препаратов.

I. Экстемпоральные лекарственные формы (отпускают без рецепта врача, приказ МЗСР РФ № 587 от 13.09.05).

  1. Настои:
  • листья почечного чая;
  • трава астрагала шерстистоцветкового.
  1. Отвары:
  • корневища с корнями синюхи голубой;
  • корни солодки.
  1. Порошок корней солодки сложный.
  2. Сборы:
  • сбор отхаркивающий № 2;
  • сбор «Арфазетин» (входят корни аралии или корневища с корнями заманихи);
  • сборы мочегонные, противоязвенные и т.д.

II. Экстракционные (галеновые) препараты.

  1. Настойки:
  • женьшеня, биомассы женьшеня;
  • заманихи;
  • аралии.
  1. Экстракты:
  • сухой экстракт корней солодки;
  • густой экстракт корней солодки (входит в состав грудного эликсира).

III. Препараты, содержащие сумму сапонинов.

  1. «Сапарал» — сумма аммонийных солей аралозидов.
  2. «Полиспонин» — сумма сапонинов диоскореи ниппонской.
  3. «Трибуспонин» — сумма сапонинов якорцев стелющихся.
  4. IV. Препараты индивидуальных сапонинов.
  5. «Глицирам» — аммонийная соль глицирризиновой кислоты.
  6. «Глидеринина мазь» (глидеринин выделен из экстракта корней солодки).
  7. V. Полусинтетические препараты.
  8. «Кортизон» (гормон коры надпочечников) — получают на основе стероидного сапогенина диосгенина.
  9. VI. Комплексные препараты.
  10. «Амтерсол» (сироп, в состав входит экстракт корней солодки).
  11. Грудной эликсир.
  12. Настойка биоженьшеня с витаминами и минеральными солями.
  13. «Сафинор» (в состав входит сапарал).

VII. Препараты на основе других групп биологически активных веществ.

  1. «Ликвиритон» — спазмолитическое, противовоспалительное, антацидное средство.
  2. «Флакарбин» — спазмолитическое, противовоспалительное, капилляроукрепляющее средство.

Оба препарата получены на основе флавоноидов корней солодки. Применяются при язвенной болезни желудка и двенадцатиперстной кишки, а также при гиперацидных гастритах.

Сапонины используют также в пищевой промышленности, в технике (для изготовления огнетушителей), в парфюмерии (как мягкие моющие средства).

Медицинское применение сырья и препаратов, содержащих сапонины

text_fields

text_fields

arrow_upward

Сапонины обладают широким спектром фармакологического действия.

  1. Гипохолестеринемическое и противосклеротическое действие. Сапонины обладают способностью снижать уровень холестерина в крови, что приводит к снижению склеротических изменений в кровеносных сосудах, уменьшению их ломкости и т.д. Действие характерно для стероидных сапонинов диоскореи ниппонской и якорцев стелющихся.
  2. Тонизирующее , стимулирующее , адаптогенное действие. Характерно для сапонинов женьшеня, заманихи высокой, аралии высокой. Их препараты применяют при переутомлении, усталости, гипотонии, как иммуномодуляторы.
  3. Отхаркивающее действие. Сапонины повышают секрецию желез верхних дыхательных путей. Это ведет к разжижению мокроты, что облегчает ее эвакуацию. Такое действие характерно для сапонинов солодки и синюхи голубой.
  4. Диуретическое действие характерно для сырья почечного чая и астрагала шерстистоцветкового, которые применяются при отеках сердечного происхождения.
  5. Легкое слабительное действие характерно для корней солодки.
  6. Кортикотропное действие (подобное действию кортизона и других гормонов коркового слоя надпочечников). Регулируется водно-солевой обмен, проявляется противовоспалительное и антиаллергическое действие. Характерно для сырья солодки, применяют при астме, экземе, дерматитах.
  7. Седативное действие характерно для сырья синюхи голубой.
  8. Гипотензивное действие при начальных стадиях сердечно-сосудистой недостаточности проявляют биологически активные вещества астрагала шерстистоцветкового.
  9. Противоязвенное действие проявляется у сбора, в состав которого входит сырье синюхи голубой и сушеницы топяной.

ГЛИКОЗИДЫ (гетерозиды ) широко распространенные в природе, особенно в растительном мире, вещества, в молекулах которых остатки сахаров (гликозильные остатки) связаны через атом кислорода, серы или азота с молекулой вещества, не являющегося сахаром и называемого агликоном. Соответственно различают О-(I), S-(II) и N-(III) гликозиды. Термином «C-гликозиды» обозначают соединения, в которых гликозильный остаток связан непосредственно с атомом агликона (IV):

К Г. принадлежат многие лекарственные вещества, в т. ч. оказывающие избирательное действие на сердечную мышцу. Наибольшее значение и распространение в природе имеют О- и N-гликозиды.

Г. делятся на пиранозиды и фуранозиды в зависимости от наличия шести- или пятичленного кольца в остатке сахара (см. Моносахариды), а также на альфа-гликозиды и бета-гликозиды в зависимости от альфа- и бета-конфигурации C-атома, связанного через кислород с агликоновой частью молекулы.

O-Гликозиды

O-Гликозиды можно рассматривать как производные сахаров, в полуацетальном гидроксиле которых атом водорода заменен радикалом алифатического, карбоциклического или гетероциклического соединения. Хотя во многих O-гликозидах гликоновой частью молекулы являются остатки простых сахаров, однако ею могут быть и остатки олигосахаридов (ди-, три-и т. д. сахаридов). Встречающиеся в природе O-гликозиды в большинстве случаев являются бета-гликозидами. Наконец, в зависимости от природы сахарной компоненты различают пентозиды (О-гликозиды пентоз), напр, ксилозиды (O-гликозиды ксилозы), арабинозиды (O-гликозиды арабинозы) и др.; гексозиды (O-гликозиды гексоз), напр, глюкозиды (производные глюкозы), галактозиды (производные галактозы), фруктозиды, а также биозиды (O-гликозиды биоз - дисахаридов), напр, мальтозиды, лактозиды и т. д. По типу гликозидов построены олигосахариды (см.) и высшие полисахариды (см.).

По характеру агликона О-гликозиды делят на ряд групп, в т. ч. на цереброзиды (см.) - галактозиды сфингозина; стероидные О-гликозиды, напр, сердечные гликозиды (см.), сапонины (см.) и др.; азотсодержащие O-гликозиды, напр, амигдалин, индикан; гликоалкалоиды, соединения, в которых сахарная компонента соединена O-гликозидной связью с остатком алкалоида (соланин, демиссин) и др.

O-гликозиды могут быть получены синтетически или же выделены из природных источников. Так, алкилгликозиды получают при взаимодействии сахара с избытком спирта в присутствии каталитически действующего сухого хлористого водорода или ферментов альфа- и бета-глюкозидаз. Многие природные O-гликозиды сложного строения (флавонгликозиды, стероидные гликозиды и др.) экономически выгодно выделять из природных источников. Биосинтез O-гликозидов в растениях происходит преимущественно путем переноса гликозильного остатка с нуклеозиддифосфатсахара на фенол или спирт, напр, уридиндифосфатглюкоза + гидрохинон -> уридинфосфат + гидрохинон-бета-D-глюкозид (арбутин) .

О-Гликозиды представляют собой твердые кристаллические вещества, чаще всего обладающие разнообразным специфическим вкусом. Подавляющее большинство О-гликозидов не гидролизуется щелочами; исключение составляют лишь некоторые Г., агликонами которых являются фенолы, енолы и спирты, содержащие в β-положении отрицательно заряженные группы (напр., СО; NO 2). O-Гликозиды обычно не обладают восстанавливающей способностью, за исключением Г., чувствительных к щелочам, а также тех Г., агликоны которых сами обладают восстанавливающими свойствами.

Г. гидролизуются к-тами, причем фуранозиды гиролизуются во много раз быстрее пиранозидов. Характер агликона, а также конфигурация всех асимметрических атомов остатка сахара оказывают влияние на скорость гидролиза, альфа- и бета-гликозиды гидролизуются специфическими ферментами - альфа- и бета-глюкозидазами (см. Глюкозидазы).

Многие O-гликозиды находят применение В медицине как ценные лекарственные Средства, (см. ниже); некоторые имеют токсикол. значение (сапонины, соланин) или применяются как витамины (рутин - витамин P).

S-Гликозиды

S-Гликозиды (тиогликозиды) представляют собой производные циклических форм I-тиосахаридов, в меркаптогруппе (-SH) которых атом водорода замещен радикалом.

S-Гликозиды можно получить взаимодействием ацетатов гликозилбромидов с тиофенолами в присутствии щелочи с последующим омылением ацетильных групп образовавшегося S-гликозидяого ацетил производного. S-Гликозиды очень стойки по отношению к кислотному гидролизу, но Крепкие щелочи расщепляют их с образованием тиосахаров.

Важнейшим природным S-гликозидом является Г. черной горчицы - синигрин, расщепляющийся ферментом тиоглюкозидазой (мирозиназой, синигриназой; К Ф 3.2.3.1) с образованием аллилового горчичного масла; известно св. 40 природных S-гликозидов, близких синигрину.

N-Гликозиды

N-Гликозиды (вторичные или третичные гликозиламины) рассматриваются как производные гликозимина (первичного гликозиламина); они образуются в результате замещения одного или двух атомов водорода в аминогруппе остатками соединений алифатического или гетероциклического ряда.

Как и O-гликозиды, N-гликозиды могут быть построены как пиранозиды или фуранозиды и иметь альфа-(I) и бета-форму (II). В отличие от О-гликозидов, N-гликозиды в р-рах могут находиться частично в виде ациклических таутомерных форм (типа оснований Шиффа), являющихся промежуточными (III):

Впервые кристаллические N-гликозиды были получены взаимодействием анилина и сахаров, многие N-гликозиды получают непосредственным взаимодействием сахара и амина на холоду или при нагревании в спиртовой, спиртово-водной или водной среде, в отсутствие или в присутствии катализаторов - уксусной или соляной к-ты, хлористого аммония и т. д.

Свойства N-гликозидов зависят в значительной степени от природы агликонов. Алкил- и арил- N-гликозиды (напр., пурин- и пиримидин-N-гликозиды) устойчивы к действию к-т и щелочей.

К N-гликозидам принадлежат исключительно важные в обмене веществ продукты расщепления нуклеиновых к-т и нуклеопротеидов (нуклеотиды и нуклеозиды), некоторые важнейшие коферменты (см.), аденозинтрифосфорная кислота (см.), уридинтрифосфат, никотинамидадениндинуклеотид, никотинимидадениндинуклеотидфосфат (НАД и HАДФ), некоторые антибиотики и т. п.

Искусственно синтезированы N-гликозиды сульфонамидных препаратов: «глюкострептоцид», N-глюкозид сульфидина, норсульфазолглюкозид, отличающиеся от исходных агликонов гораздо большей растворимостью, меньшей токсичностью и иногда видоизмененным характером действия.

N-Гликозиды алифатических аминов с длинной цепью (додецил- и октадециламинов) применяются в текстильной промышленности.

N-Гликозиды некоторых ароматических аминов предложены в качестве антиоксидантов каучука.

C-Гликозиды

C-Гликозиды встречаются в природе (бергенин, псевдоуритин) и могут быть получены синтетически; отличаются от всех других групп Г. неспособностью к гидролизу.

Лекарственные гликозиды

Лекарственные гликозиды не являются единой фармакол, группой: спектр их действия весьма широк, что обусловлено строением как агликона, так и гликоновой части их молекулы. Гликоновая часть усиливает и ускоряет действие агликона, увеличивает его растворимость, способствует лучшему его проникновению в клетки организма, придает стабильность молекуле Г. и обусловливает соответствующую особенность действия.

Из обширного класса О-гликозидов наибольшее значение имеют стероидные Г., и в первую очередь производные циклопентапергидрофенантрена, относящиеся к группе сердечных гликозидов (см.). Другие стероидные Г. применяют для лечения атеросклероза (диоспонин и др.), заболеваний вен (асцин, эсфлазид и др.). Получены препараты Г. противовоспалительного, гормонального, нейротропное, тонизирующего и гонадотропного действия (аралозиды, АВС-сапорал, панаксозиды из корня жень-шеня и др.). Среди О-гликозидов следует отметить также препараты слабительного и мочегонного действия, а также биофлавоноиды (см.).

Для лечения некоторых заболеваний сосудов применяются Г. кумаринов и хромонов (эскулин, келлозид).

Ряд лекарственных Г. оказывает антимикробное, антивирусное и цитопатическое действие. К таким Г. относятся некоторые антибиотики, получаемые из Strep tomyces (см. Стрептомицины) и других источников, амигдалин и др. Есть сведения, что синтетические N-гликозиды, имеющие в качестве гликоновой части или в ее составе рибозу и дезоксирибозу, обладают широким спектром лекарственного действия и применяются в качестве стимуляторов обмена веществ, иммунодепрессантов (см. Иммунодепрессивные вещества), химиотерапевтических средств и др.

S-и С-гликозиды содержатся в ряде растений (горчица, черногорка, боярышник и др.). Многие лекарственные Г. обладают горьким вкусом, поэтому растения, их содержащие (золототысячник, полынь и др.), используют в качестве горечей (см.).

Лекарственные Г. в большинстве случаев относятся к сильнодействующим препаратам и применяются в небольших дозах.

Гликозиды в судебно-медицинском отношении

Идентификация Г. имеет большое значение при случайных отравлениях.

Чаще всего наиболее токсичными оказываются сердечные Г. Интоксикация может развиться даже при применении терапевтических доз. При суд.-мед. установлении отравлений Г. большое значение имеют особенности клин, картины: сильная слабость, судороги, коматозное состояние, брадикардия; нарушение проводимости и возникновение возбуждения сердечной деятельности, что может вызвать тахиаритмию желудочков сердца. Полное прекращение сердечной деятельности может наступить преимущественно в стадии диастолы. При отравлениях Г. могут наблюдаться нарушения функции ц. н. с. и жел.-киш. тракта, а также олигурия. При исследовании трупа специфические изменения органов не обнаруживают, иногда отмечают нек-рое их полнокровие.

Для доказательства смертельных отравлений Г. большое значение имеют данные суд.-хим. исследования трупного материала, а также остатков препаратов, послуживших предположительно причиной смерти.

Г. из организма человека выделяются преимущественно с желчью и частично с мочой. Для суд.-хим. экспертизы особое значение имеет исследование желчи и желчного пузыря, а также участков печени, прилегающих к желчному пузырю и тканей с места инъекций.

Сохраняемость Г. в трупном материале в течение 1 года достигается консервированием этанолом, к-рое должно производиться непосредственно после взятия объектов исследования.

Схема судебно-хим. определения Г. включает несколько основных стадий: экстрагирование трупного материала 70% этанолом при pH 7,0; осаждение в экстракте белков; очистку экстрагированием четыреххлористым углеродом; экстрагирование олеандрина и ланатозидов хлороформноспиртовой смесью 9:1 (т, к. строфантин является сильно гидрофильным соединением, то в этих условиях он не извлекается); очистку извлеченной фракции олеандрина и ланатозидов от сопутствующих веществ щёлочью; качественно-количественное определение и пр.; экстрагирование строфантина спиртово-хлороформной смесью (8:2); осаждение строфантина из водной фазы сульфатом аммония при полном насыщении, растворение осадка, повторное осаждение и экстрагирование строфантина с последующим качественно-количественным определением его.

Качественное обнаружение строфантина производится методом хроматографии на бумаге, олеандрина и ланатозидов - методом тонкослойной хроматографии (см.). Пятна строфантина специфически проявляются 3,5-динитробензойной к-той, мета-динитробензолом и 2,4-динитродифенилсульфоном; олеандрин проявляется еще кроме указанных реагентов, концентрированной серной к-той, содержащей следы железа.

Количественное определение Г. в элюатах производится, в основном, фотоколориметрированием окрашенных р-ров после реакции с 2,4-динитродифенилсульфоном в щелочной среде.

Описанная схема исследования позволяет открывать 30- 50 мкг Г. на 100 г влажного веса ткани.

Библиография: Власенко Л. М. К вопросу систематического судебно-химического определения сердечных гликозидов, в кн.: Вопр. суд. мед., под ред. В. И. Прозоровского, с. 233, М., 1971; ВотчалБ. Е. и С луцкийМ. К. Сердечные гликозиды, М., 1973; Кочетков Н. К. и др. Химия углеводов, М., 1967; Савицкий H. Н. Фармакодинамика сердечных гликозидов. Л., 1974, библиогр.; Степаненко Б. Н. Углеводы, Успехи в изучении строения и метаболизма, М., 1968.

Б. Н. Степаненко; Я. И. Хаджай (фарм.), А. Ф. Рубцов (суд.).