3.3. Бытовые шумы и вибрация

Шум – это сочетание звуков различной интенсивности и частоты, возникающих при механических колебаниях.

В настоящее время научный прогресс привел к тому, что шум достиг настолько высоких уровней, которые являются уже не просто неприятными для слуха, но и опасными для здоровья человека.

Различают два вида шума: воздушный (от источника до места восприятия) и структурный (шум от поверхности колеблющихся конструкций). Шум в воздухе распространяется со скоростью 344 м/с, в воде – 1500, в металле – 7000 м/с. Помимо скорости распространения, шум характеризуется давлением, интенсивностью и частотой звуковых колебаний. Давление звука – это разность между мгновенным давлением в среде при наличии звука и среднем давлением при его отсутствии. Интенсивностью называют поток энергии в единицу времени на единицу площади. Частота звуковых колебаний находится в широком диапазоне от 16 до 20000 герц. Однако, основной единицей оценки звука является уровень звукового давления, измеряемый в децибелах (дБ).

За последнее время средний уровень шума в крупных городах увеличился на 10–12 децибел. Причина возникновения проблемы шума в городах состоит в противоречии между развитием транспорта и планировкой городов. Высокие уровни шума наблюдаются в жилых домах, школах, больницах, местах отдыха и т. д.; следствием этого являются повышение нервного напряжения населения, снижение работоспособности, увеличение количества заболеваний. Даже ночью в квартире тихого города уровень шума достигает 30–32 дБ.

В настоящее время считается, что для сна и отдыха допустим шум до 30–35 дБ. При работе на предприятии допускается интенсивность шума в пределах 40–70 дБ. Кратковременно шум может повышаться до 80–90 дБ. При интенсивности более 90 дБ шум вреден для здоровья и тем вреднее, чем продолжительнее его воздействие. Шум 120–130 дБ вызывает боль в ушах. При 180 дБ может быть летальный исход.

Как фактор экологического воздействия в доме источники шума можно разделить на внешние и внутренние.

Внешние – это в первую очередь шум городского транспорта, а также производственный шум от предприятий, расположенных вблизи дома. Кроме того, это могут быть звуки магнитофонов, которые на всю громкость включают соседи, нарушающие «акустическую культуру». Внешним источником шума являются также звуки, например, расположенного внизу магазина или почтового отделения, звуки взлетающих или идущих на посадку самолетов, а также электропоездов.

К внешним шумам, пожалуй, надо отнести и шум лифта и постоянно хлопающей входной двери, а также плач соседского ребенка. К сожалению, стены жилых зданий, как правило, плохо звукоизолированы. Внутренние шумы обычно непостоянны (кроме звуков, которые издает телевизор или игра на музыкальных инструментах). Из этих переменных шумов больше всего неприятен шум неправильно установленной или устаревшей сантехники и шум работающего холодильника, который с помощью автоматики включается время от времени. Если под холодильником нет звукоизолирующего коврика или внутри не закреплены полки, то этот шум может быть довольно значительным – кратковременным, но достаточно сильным для того, чтобы испортить настроение человеку. Человеку мешает шум от работающего пылесоса или стиральной машины, если конструкция этих приборов устарела и не соответствует принятым требованиям, в том числе к допустимому уровню шума.

Ремонт в вашей или в соседской квартире – это какофония звуков. Особенно неприятны звуки электродрели (современные бетонные стены очень труднопробиваемы) и резкие звуки от удара молотка. Среди внутренних шумов особенное место занимают звуки радиоприборов. Для того чтобы музыка доставляла удовольствие (какая музыка – это другой разговор), ее уровень не должен быть выше 80 дБ, а длительность – относительно кратковременной. С точки зрения экологии недопустимо, если телевизор или радио включены на большую громкость и работают долго. Знакомый автора сказал соседу, который беспрерывно о чем-то говорил, что он любит радио за то, что его всегда можно выключить. Опасным является постоянное применение плеера. Мало того, что звуки плеера нарушают работу барабанных перепонок, так они еще создают круговые магнитные поля вокруг головы, нарушая работу мозга.

Каждый человек воспринимает шум индивидуально; это зависит от возраста человека, состояния его здоровья и окружающих условий. Органы слуха могут приспосабливаться к постоянным или повторяющимся шумам, но эта приспособляемость не может защитить его от патологических изменений слуха, а лишь временно отодвигает сроки этих изменений.

Ущерб, который причиняет слуху сильный шум, зависит от высоты и частоты звуковых колебаний и характера их изменения. При ухудшении слуха человек начинает в первую очередь хуже слышать высокие звуки, а затем низкие. Воздействие шума в течение длительного времени может повлиять отрицательно не только на слух, но и вызвать другие заболевания в организме человека. Чрезмерный шум может явиться причиной нервного истощения, психической угнетенности, язвенной болезни, расстройства сердечно-сосудистой системы. Особенно сильное влияние шума ощущают люди пожилого возраста. Большее воздействие шума ощущают люди умственного труда, чем физического, что связано с большим утомлением нервной системы при умственном труде.

Бытовой шум значительно ухудшает сон. Особенно неблагоприятны прерывистые, внезапные шумы. Шум уменьшает продолжительность и глубину сна. Шум в 50 дБ увеличивает срок засыпания на час, сон становится более поверхностным, после пробуждения чувствуется усталость, головная боль и сердцебиение.

Звуковые волны, имеющие частоту ниже 16 герц, называются инфразвуком, а выше 20000 Гц – ультразвуком; их не слышно, но они также воздействуют на организм человека; например, бытовой вентилятор может быть источником инфразвука, а писк комаров – ультразвука. Звук снижает не только остроту слуха (как принято думать), но и остроту зрения, поэтому, водителем транспорта не стоит постоянно слушать музыку за рулем. Интенсивный звук повышает кровяное давление; правильно делают люди, изолирующие больных в доме от шумов. Кроме того, шум просто вызывает обычную усталость. Работа, выполняемая в условиях звукового засорения окружающей среды, требует больше энергозатрат, чем работа в тишине, т. е. становится более тяжелой. Если шум постоянен по времени и частоте, он может вызвать неврит, при этом в начале снимается чувствительность к звукам определенной частоты: при 130 дБ возникает боль в ушах, при 150 дБ – поражение слуха при любой частоте. Соседка автора практически полностью потеряла слух, проработав 25 лет на ткацкой фабрике.

Для защиты людей от вредного влияния шума необходимо нормировать его интенсивность, спектральный состав, время действия и другие шумовые характеристики.

При гигиеническом нормировании в качестве допустимого устанавливается такой уровень шума, при котором в течение длительного времени не обнаруживаются изменения в физиологических показателях организма человека.

Для людей творческих профессий рекомендуется уровень шума не более 50 дБА (дБА – это эквивалентная величина уровня звука с учетом ее частоты); для проведения высококвалифицированной работы, связанной с измерениями, – 60 дБА; для работы, требующей сосредоточенности, – 75 дБА; другие виды работ – 80 дБА.

Эти уровни определены для производства, но их не рекомендуется превышать и в домашних условиях.

Санитарные нормы допустимого шума в помещениях жилых и общественных зданий и на территории жилой застройки устанавливают нормативные уровни звукового давления и уровня звука для помещений жилых и общественных зданий, для территорий микрорайонов, больниц, санаториев, мест отдыха.

Важная роль в борьбе с шумовым загрязнением принадлежит системе контроля и методам измерения фактического уровня шума. В настоящее время в крупных городах России проводится мониторинг шума в определенных точках города, составляются шумовые карты. В помощь санитарной службе образованы специальные постоянные комиссии по борьбе с городским шумом.

Установление санитарных норм допустимых уровней и характера шума позволяют разработать технические, планировочные и другие градостроительные мероприятия, направленные на создание благоприятного шумового режима.

Наличие нормативов и знание фактического положения в отношении мест возникновения интенсивности и источников шума позволяют планировать мероприятия по борьбе с шумом и предъявлять необходимые требования к предприятиям, стройкам и различным видам транспорта.

Для измерения уровня шума в быту лучше всего рекомендовать шумомер малогабаритный ШМ-1. Этот прибор можно купить в магазине приборов или в экологических фирмах (например, в «Экосервисе»). Порядок работы с приборами приведен в сопроводительной документации.

Существует ряд возможностей для уменьшения уровня шума в городах и населенных пунктах. К общим мерам по борьбе с интенсивным шумом на производстве можно отнести конструирование маломощных машин и применение бесшумных или малошумных технологических процессов; разработку и использование более эффективных изоляционных материалов при строительстве производственных и жилых зданий; устройство шумозащитных экранов различного вида и т. д.

Большие возможности по защите населения от шума несут в себе различные градостроительные мероприятия. К ним относятся: увеличение расстояния между источником и защищаемым объектом; использование специальных шумозащитных полос озеленения; различные приемы планировки, рациональное размещение шумных и защищаемых объектов микрорайонов.

Зеленые полосы насаждений между проезжей частью и жилой застройкой способствуют концентрации уровня шума (и окислов углерода).

Борьба с бытовым шумом может быть успешной только тогда, когда человек будет проявлять максимум «акустической культуры».

Какие же способы борьбы с бытовым шумом можно рекомендовать жителям?

Так же, как и для других видов излучений, методы защиты человека от вредного влияния шума – это защита временем и расстоянием, уменьшением мощности источника звука, изоляцией и экранированием. Но здесь, как ни при каких других воздействиях, играет роль и социальная защита, вернее, соблюдение норм совместного проживания людей.

По важности способа защиты от шума, по-видимому, надо начать с уменьшения его мощности. Внешние шумы, как правило, своими силами снизить нельзя, если разве что не переехать в другой, более тихий район города. Но устраниться от шума транспорта (включая, например, шум самолетов и электричек) могут не все жители города. Легче бороться со звуковыми хулиганами (молодыми любителями громкой музыки, располагающимися обычно на детских площадках) вплоть до обращения в милицию после 11 часов вечера. Исключение – выпускной вечер, когда в конце мая в течение всей ночи по неизвестно кем установленной традиции разносятся звуки современной музыки с громкостью взлетающего лайнера (более 100 дБ). К исключению относятся взрывы петард в праздничные ночи, особенно в Новогоднюю ночь. Но тут уж обычный житель ничего сделать не сможет, как бы он ни устал за день. Единственный выход – выйти на улицу и самому пустить ракету. Шум лифта можно частично снизить, обратившись в ЖЭК с просьбой провести ремонт и профилактику силового оборудования лифта. Если жилье расположено на последнем этаже от шума и вибрации лифта можно защититься только экранированием (звукоизоляцией) стены, примыкающей к лифту. Влияние хлопанья наружной двери можно предотвратить установкой современной малошумной двери или по старинке приклеиванием к ней, например резиновых прокладок. От плача соседского ребенка или от результатов семейных разборок можно защититься тремя способами: повесить ковер на сопредельную стену (хоть это и не модно), перенести спальню в тихую комнату (т. е. создать у себя зону тихого отдыха) или применить индивидуальное средство защиты от шума – бируши (или ватные тампоны в уши). Сейчас можно купить недорогие и очень эффективные зарубежные бируши в магазинах спецодежды.

С внутренними шумами проще: электроприборы должны быть современными (т. е. тихими). Но, к сожалению, они зачастую очень дороги. Холодильник, стиральная машина и пылесос – непременные атрибуты технического прогресса – должны по возможности включаться ненадолго, на минимальную мощность и подальше от больных детей. Это защита временем, расстоянием и снижением мощности источника излучения волн. Холодильник и стиральную машину к тому же целесообразно устанавливать на резиновый коврик, что защитит жителей не только от шума и вибрации, но и будет дополнительной степенью электроизоляции. Серьезной шумовой проблемой в доме являются радиоаппараты (телевизоры, радиомагнитофоны, радио). Но здесь хозяева могут не только ослабить атаку, например, детей на свои барабанные перепонки, но и своевременно и радикально устранить источник шума выключением. Это зависит от «акустической культуры» жителей квартиры.

Некоторые пожилые люди не выносят громких резких звуков. Например, инвалид ВОВ, один из первых применивших «катюши», очень болезненно воспринимает стуки, заявляя, что он в избытке наслушался их при разрывах мин.

Что касается сантехники, то, к сожалению, краны часто текут (что наносит государству еще и экономический урон, так как в России потребление воды в 2–2,5 раза выше, чем за рубежом, и мы еще никак не можем перейти к пользованию счетчиками воды). Очень удобны зарубежные шаровые краны, которые почти не шумят и не протекают. За сантехникой хозяину необходимо тщательно следить и не допускать поломок. Шум воды в сливном бачке удачно снижается установкой резинового шланга на поплавковом регуляторе, но чаще всего его срывает струей воды, и жители, не заглядывая в бачок, удивляются, почему слив стал таким шумным, что будит домочадцев по ночам. Сильно без нужды открывать краны нецелесообразно и потому, что это шумно, и потому, что кран вибрирует, и потому перерасходуется питьевая вода. Шум в трубах здания устраняется с трудом и только специалистами и нервирует в основном жителей верхних этажей. Для решения этой проблемы иногда достаточно обратиться к сантехникам ЖЭКа, чтобы они устранили воздушные пробки в водопроводной сети.

Что касается защиты расстоянием, то холодильник целесообразно вынести в прихожую, а стиральную машину – в ванную, что, к сожалению, не всегда удается при малых размерах кухни, ванной и прихожей.

В квартире должно быть хотя бы одно помещение без излучений (включая комнату без шума) – это тихая и безопасная зона позволит увеличить срок жизни живущих в квартире людей.

Ремонт квартиры – это, конечно, форс-мажор (ЧС квартирного масштаба). Люди, у которых дома идет ремонт, заметно отличаются от других людей: они нервные, уставшие и бледные. В это состояние вносит свой вклад шум ремонта (рев и вибрация дрели, стук молотков, шум паркетных машинок). К счастью, эта чрезвычайная ситуация длится сравнительно недолго.

В отличие от других излучений, загрязняющих бытовую среду, шум может быть благоприятным и даже комфортным. Автор имеет в виду шум морских волн, ветра в лесу, пение птиц и шум дождя, если находиться в укрытии, и, конечно, музыку (негромкую, мелодичную и лучше всего классическую).

Вспоминается один педагогический эксперимент, проведенный автором в колледже. При замене урока по мировой культуре автор разрешил заниматься студентам своими делами (переписыванием конспектов, тихими разговорами, разгадыванием кроссвордов), но тихо, на 40 дБ включил магнитофон с записью симфонии Моцарта. После урока несколько студентов попросили переписать эту запись, несмотря на их любовь к поп-музыке.

В природе и на производстве существует еще одна разновидность волн – вибрация. К счастью, она для жилья не характерна, если не считать вибрации холодильника, стиральной машины или вентилятора. Значительно хуже, если рядом расположена ТЭЦ или метро мелкого залегания. Основной метод борьбы с вибрацией – применение демпферов (гасителей вибрации), в качестве которых могут использоваться ковры, паласы и резиновые коврики.

<<< Назад
Вперед >>>

Звук представляет собой звуковые волны, которые вызывают колебания мельчайших частиц воздуха, других газов, а также жидких и твердых сред. Звук может возникать только там, где есть вещество, не важно, в каком агреатном состоянии оно находится. В условиях вакуума, где отсутствует какая-либо среда, звук не распространяется, потому что там отсутствуют частицы, которые и выступают распространителями звуковых волн. Например, в космосе. Звук может модифицироваться, видоизменяться, превращаясь в иные формы энергии. Так, звук, преобразованный в радиоволны или в электрическую энергию, можно передавать на расстояния и записывать на информационные носители.

Звуковая волна

Движения предметов и тел практически всегда становятся причиной колебаний окружающей среды. Не важно, вода это или воздух. В процессе этого частицы среды, которой передаются колебания тела, также начинают колебаться. Возникают звуковые волны. Причем движения осуществляются в направлениях вперед и назад, поступательно сменяя друг друга. Поэтому звуковая волна является продольной. Никогда в ней не возникает поперечного движения вверх и вниз.

Характеристики звуковых волн

Как и любое физическое явление, они имеют свои величины, при помощи которых можно описать свойства. Основные характеристики звуковой волны - это ее частота и амплитуда. Первая величина показывает, какое количество волн образуется за секунду. Вторая определяет силу волны. Низкочастотные звуки имеют низкие показатели частоты, и наоборот. Частота звука измеряется в Герцах, и если она превышает 20 000 Гц, то возникает ультразвук. Примеров низкочастотных и высокочастотных звуков в природе и окружающем человека мире достаточно. Щебетание соловья, раскаты грома, грохот горной реки и другие - это все разные звуковые частоты. Значение амплитуды волны напрямую зависит от того, насколько звук громок. Громкость же, в свою очередь, уменьшается по мере удаления от источника звука. Соответственно, и амплитуда тем меньше, чем дальше от эпицентра находится волна. Другими словами, амплитуда звуковой волны уменьшается при удалении от источника звука.

Скорость звука

Этот показатель звуковой волны находится в прямой зависимости от характера среды, в которой она распространяется. Значимую роль здесь играют и влажность, и температура воздуха. В средних погодных условиях скорость звука составляет приблизительно 340 метров в секунду. В физике существует такое понятие, как сверхзвуковая скорость, которая всегда по значению больше, чем скорость звука. С такой скоростью распространяются звуковые волны при движении самолета. Самолет движется со сверхзвуковой скоростью и даже обгоняет звуковые волны, создаваемые им. Вследствие давления, постепенно увеличивающегося позади самолета, образуется ударная звуковая волна. Интересна и мало кому известна единица измерения такой скорости. Называется она Мах. 1 Мах равен скорости звука. Если волна движется со скоростью 2 Маха, значит, она распространяется в два раза быстрее, чем скорость звука.

Шумы

В повседневной жизни человека присутствуют постоянные шумы. Измеряется уровень шума в децибелах. Движение автомобилей, ветер, шелест листвы, переплетение голосов людей и другие звуковые шумы являются нашими спутниками ежедневно. Но к таким шумам слуховой анализатор человека имеет возможность привыкать. Однако существуют и такие явления, с которыми даже приспособительные способности человеческого уха не могут справиться. Например, шум, превышающий 120 дБ, способен вызвать ощущение боли. Самое громкое животное - синий кит. Когда он издает звуки, его можно услышать на расстоянии более 800 километров.

Эхо

Как возникает эхо? Здесь все очень просто. Звуковая волна имеет способность отражаться от разных поверхностей: от воды, от скалы, от стен в пустом помещении. Эта волна возвращается к нам, поэтому мы слышим вторичный звук. Он не такой четкий, как первоначальный, поскольку некоторая энергия звуковой волны рассеивается при движении до преграды.

Эхолокация

Отражение звука используется в различных практических целях. Например, эхолокация. Она основана на том, что с помощью ультразвуковых волн можно определить расстояние до объекта, от которого эти волны отражаются. Расчеты осуществляются при измерении времени, за которое ульразвук доберется до места и вернется обратно. Способностью к эхолокации обладают многие животные. Например, летучие мыши, дельфины используют ее для поиска пищи. Другое применение эхолокация нашла в медицине. При исследованиях с помощью ультразвука образуется картинка внутренних органов человека. В основе такого метода находится то, что ультразвук, попадая в отличную от воздуха среду, возвращается обратно, формируя таким образом изображение.

Звуковые волны в музыке

Почему музыкальные инструменты издают те или иные звуки? Гитарные переборы, наигрыши пианино, низкие тона барабанов и труб, очаровывающий тонкий голосок флейты. Все эти и многие другие звуки возникают по причине колебаний воздуха или, другими словами, из-за появления звуковых волн. Но почему звучание музыкальных инструментов настолько разнообразное? Оказывается, это зависит от некоторых факторов. Первое - это форма инструмента, второе - материал, из которого он изготовлен.

Рассмотрим это на примере струнных инструментов. Они становятся источником звука, когда на струны воздействуют касанием. Вследствие этого они начинают производить колебания и посылать в окружающую среду разные звуки. Низкий звук какого-либо струнного инструмента обусловлен большей толщиной и длиной струны, а также слабостью ее натяжения. И наоборот, чем сильнее натянута струна, чем она тоньше и короче, тем более высокий звук получается в результате игры.

Действие микрофона

Оно основано на преобразовании энергии звуковой волны в электрическую. В прямой зависимости при этом находятся сила тока и характер звука. Внутри любого микрофона расположена тонкая пластина, выполненная из металла. При воздействии звуком она начинает совершать колебательные движения. Спираль, с которой соединена пластинка, также вибрирует, в результате чего возникает электрический ток. Почему он появляется? Это связано с тем, что в микрофоне также встроены магниты. При колебаниях спирали между его полюсами и образуется электрический ток, который идет по спирали и далее - на звуковую колонку (громкоговоритель) или к технике для записи на информационный носитель (на кассету, диск, компьютер). Кстати, аналогичное строение имеет микрофон в телефоне. Но как действуют микрофоны на стационарном и мобильном телефоне? Начальная фаза одинакова для них - звук человеческого голоса передает свои колебания на пластинку микрофона, далее все по описанному выше сценарию: спираль, которая при движении замыкает два полюса, создается ток. А что дальше? Со стационарным телефоном все более-менее понятно - как и в микрофоне, звук, преобразованный в электрический ток, бежит по проводам. А как же обстоит дело с сотовым телефоном или, например, с рацией? В этих случаях звук превращается в энергию радиоволн и попадает на спутник. Вот и все.

Явление резонанса

Иногда создаются такие условия, когда амплитуда колебаний физического тела резко возрастает. Это происходит вследствие сближения значений частоты вынужденных колебаний и собственной частоты колебаний предмета (тела). Резонанс может приносить как пользу, так и вред. Например, чтобы вызволить машину из ямки, ее заводят и толкают взад-вперед для того, чтобы вызвать резонанс и придать автомобилю инерцию. Но бывали и случаи негативного последствия резонанса. К примеру, в Петербурге приблизительно сто лет назад рухнул мост под синхронно шагающими солдатами.

Для создания различных музыкальных тонов на духовых инструментах, таких, как показанный на рисунке кларнет, музыкант начинает дуть в мундштук и одновременно с этим нажимать на рычажки клапанов, чтобы открывать те или иные отверстия в боковой стенке инструмента. Открывая отверстия, музыкант изменяет длину стоячей волны, определяемую протяженностью столба воздуха внутри инструмента, и тем самым увеличивает или уменьшает высоту тона.

Играя на таких духовых инструментах, как труба или туба, музыкант частично перекрывает проходное сечение раструба и регулирует положение клапанов, изменяя тем самым длину столба воздуха.

В тромбоне воздушный столб регулируется путем перемещения скользящего изогнутого колена. Отверстия в стенках простейших духовых инструментов, таких, как флейта и пикколо, для получения аналогичного эффекта перекрываются пальцами.

Одно из древнейших творений

Утонченная конструкция кларнета, показанного на рисунке вверху, обязана своим появлением грубым бамбуковым свирелям и примитивным флейтам, которые считаются первыми инструментами, созданными человеком на заре цивилизации. Старейшие духовые инструменты опередили струнные на несколько тысячелетий. Раструб на открытом конце кларнета делает поправку на динамическое взаимодействие звуковых волн с окружающим воздухом.

Тонкий язычок в мундштуке кларнета (рисунок вверху) колеблется при поперечном обтекании воздухом. Колебания распространяются в виде волн сжатия по трубке инструмента.

Телескопические трубки

В тромбоне скользящее изогнутое трубчатое колено (цуг) плотно прилегает к основной трубке. Перемещение телескопического цуга внутрь и наружу изменяет длину столба воздуха и, соответственно, тон звука.

Изменение тона при помощи пальцев

Когда отверстия закрыты, колеблющийся столб воздуха занимает всю длину трубки, создавая самый низкий тон.

Открытие двух отверстий приводит к укорачиванию воздушного столба и созданию более высокого тона.

Открытие большего количества отверстий еще сильнее укорачивает воздушный столб и обеспечивает дальнейшее повышение тона.

Стоячие волны в открытых трубах

В трубе, открытой с обоих концов, стоячие волны формируются так, что на каждом конце трубы находится пучность (участок с максимальной амплитудой колебаний).

Стоячие волны в закрытых трубах

В трубе с одним закрытым концом стоячие волны формируются так, что у закрытого конца расположен узел (участок с нулевой амплитудой колебаний), а у открытого - пучность.

Следует учитывать, что звук может передаваться не только по воздуху, но и по конструкциям: стенам, трубам, перекрытиям. В них акустическая энергия распространяется в виде упругих колебаний (вибраций). В большинстве случаев возникновение шума происходит из-за преобразования энергии вибраций в звуковую энергию. Звук исходит от колеблющихся поверхностей машин, механизмов, перегородок и т. д. Очень хорошие источники звука - тонкостенные металлические поверхности, которые эффективно излучают звуковую энергию в окружающую среду в широком диапазоне частот.

Энергию упругих колебаний можно достаточно эффективно уменьшить с помощью так называемых вибропоглощающих покрытий. Возьмем две одинаковые по форме пластины, сделанные из металла и пластмассы, подвесим их на нити и ударим чем-нибудь твердым. В пластмассовой пластине колебания утихнут быстро, а металлическая будет "звенеть" еще некоторое время. В пластмассе акустическая энергия эффективно преобразовалась в тепловую. Для уменьшения излучения звука поверхности на нее наносят вибропоглощающее покрытие, в котором колебания затухают, как в пластмассовой пластине. Вибропоглощающее покрытие должно обладать большой жесткостью и высокими внутренними потерями акустической энергии. Чем больше жесткость покрытия, тем бoльшая часть энергии колебаний будет затрачена на его деформацию, а чем больше внутренние потери, тем больше энергии перейдет в тепло.

Вибропоглощающие покрытия широко применяются в автомобилестроении - для внутренней облицовки кузовов машин, в авиастроении - для нанесения на внутренние части фюзеляжей самолетов и т. д. Но не всегда использование того или иного вибропоглощающего покрытия дает положительный результат. Так, например, для снижения шума и вибрации отбойного молотка вибропоглощающее покрытие неэффективно.

Другой способ борьбы с вибрацией - виброизоляция. Для ее создания используется тот же принцип, что и для звукоизоляции: требуется такое препятствие, чтобы от него отразилось как можно больше энергии. С этой целью применяют упругие вставки (амортизаторы). Их устанавливают между работающей машиной или механизмом и его фундаментом. Обычно амортизаторы делают из резины, или они представляют собой стальные пружины. Важно правильно выбрать амортизатор, иначе виброизоляция может оказаться малоэффективной, а в ряде случаев вибрация даже усилится.

Защититься от шума можно и с помощью индивидуальных средств защиты. Прежде всего, это ушные протекторы. Первый тип протектора - тампон или заглушка из мягкого материала, предназначенная для разового применения. Если просто заткнуть ухо кусочком ваты, то эффект звукоизоляции будет мал, поскольку вата обладает небольшой плотностью и слишком пористая. В аптеках можно купить специально сконструированные утяжеленные вставки в ухо "Беруши" из волокнистого материала. Они обладают хорошими звукоизолирующими свойствами и гигиеничны. Иногда в продаже встречаются специальные пластмассовые заглушки-пробки разных размеров.

Но все же гораздо более эффективно предохраняют от шума наружные ушные протекторы, или наушники. В числе их недостатков - неудобство и неприятные ощущения, возникающие при длительном ношении. Зато наушники обеспечивают хорошую звукоизоляцию, а с помощью жидкого уплотнения в специальных валиках - амбушюрах - достигается плотное прилегание к уху. При очень высоком уровне шума - выше 130 дБ (например, на стендах для испытаний авиационных реактивных двигателей) - недостаточны и наушники. В этом случае для защиты от шума приходится использовать специальные звукоизолирующие шлемы.

Сегодня озвучка театральных пьес и кинофильмов относительно проста. Большинство необходимых шумов существует в электронном виде, недостающие записываются, обрабатываются на компьютере. Но еще полвека назад для имитации звуков использовались удивительной хитроумности механизмы.

Тим Скоренко

Эти удивительные шумовые машины выставлялись на протяжении последних лет в самых разных местах, впервые — несколько лет тому назад в Политехническом музее. Там мы подробно рассмотрели эту занимательную экспозицию. Дерево-металлические устройства, удивительным образом имитирующие звуки прибоя и ветра, проезжающего автомобиля и поезда, цокот копыт и звон мечей, стрекотание кузнечика и кваканье лягушки, лязг гусениц и разрывы снарядов — все эти удивительные машины разработал, усовершенствовал и описал Владимир Александрович Попов — актер и создатель шумового оформления в театре и кино, — которому и посвящена выставка. Наиболее интересна интерактивность экспозиции: приборы не стоят, как нередко у нас принято, за тремя слоями пуленепробиваемого стекла, а предназначены для пользователя. Подходи, зритель, притворись звукооформителем, посвисти ветром, пошуми водопадом, поиграй в поезд — и это интересно, действительно интересно.


Фисгармония. «Для передачи шума танка используется музыкальный инструмент фисгармония. Исполнитель нажимает одновременно несколько нижних клавиш (и черных, и белых) на клавиатуре и при этом накачивает воздух с помощью педалей» (В.А. Попов).

Шумовых дел мастер

Владимир Попов начинал карьеру в качестве актера МХАТа, причем еще до революции, в 1908 году. В своих воспоминаниях он писал, что с детства увлекался звукоимитацией, пытался копировать различные шумы, природные и искусственные. С 1920-х годов он окончательно уходит в звуковую отрасль, проектируя разнообразные машины для шумового оформления спектаклей. А в тридцатых его механизмы появились и в кино. Например, с помощью своих удивительных машин Попов озвучивал легендарную картину Сергея Эйзенштейна «Александр Невский».

Он относился к шумам как к музыке, писал партитуры для звукового фона спектаклей и радиопостановок — и изобретал, изобретал, изобретал. Некоторые машины, созданные Поповым, сохранились до сих пор и пылятся в подсобках различных театров — развитие звукозаписи сделало его хитроумные механизмы, требующие определенных навыков обращения, ненужными. Сегодня шум поезда моделируется электронными методами, в поповские же времена целый оркестр по строго заданному алгоритму работал с различными устройствами, чтобы создать достоверную имитацию приближающегося состава. В шумовых композициях Попова порой было задействовано до двадцати музыкантов.


Шум танка. «Если танк появляется на сцене, то в этот момент вступают в действие четырехколесные приборы с металлическими пластинами. Прибор приводится в действие вращением крестовины вокруг оси. Получается сильный звук, очень похожий на лязг гусениц большого танка» (В.А. Попов).

Итогами его работы стали книга «Звуковое оформление спектакля», вышедшая в 1953 году, и полученная тогда же Сталинская премия. Можно привести здесь много различных фактов из жизни великого изобретателя — но мы обратимся к технике.

Дерево и железо

Важнейшим моментом, на который далеко не всегда обращают внимание посетители выставки, является тот факт, что каждая шумовая машина — музыкальный инструмент, на котором нужно уметь играть и который требует определенных акустических условий. Например, «громовая машина» во время спектаклей всегда ставилась на самый верх, на мостки над сценой, чтобы раскаты грома разносились по всему зрительному залу, создавая ощущение присутствия. В небольшой же комнате она производит не такое яркое впечатление, звук ее не столь естественен и находится значительно ближе к тому, чем является на самом деле, — к лязгу железных колес, встроенных в механизм. Впрочем, «ненатуральность» некоторых звуков объясняется тем, что многие из механизмов не предназначены для «сольной» работы — только «в ансамбле».

Иные машины, напротив, идеально имитируют звук независимо от акустических свойств помещения. К примеру, «Перекат» (механизм, издающий шум прибоя), огромный и неповоротливый, настолько точно копирует удары волн о пологий берег, что, закрыв глаза, можно легко вообразить себя где-то у моря, на маяке, в ветреную погоду.


Конный транспорт №4. «Прибор, воспроизводящий шум пожарного обоза. Чтобы в начале действия прибора дать слабый шум, исполнитель отводит ручку регулятора влево, благодаря чему происходит смягчение силы шума. При перемещении оси в другую сторону шум возрастает до значительной силы» (В.А. Попов).

Попов делил шумы на ряд категорий: батальные, природные, индустриальные, бытовые, транспортные и т. д. Некоторые универсальные приемы могли использоваться для имитации различных шумов. Например, подвешенные на определенном расстоянии друг от друга листы железа различной толщины и размеров могли сымитировать и шум приближающегося паровоза, и лязг производственных машин, и даже гром. Универсальным устройством Попов называл также огромный барабан-ворчун, способный работать в разных «отраслях».

Но большинство подобных машин достаточно просты. Специализированные же механизмы, предназначенные для имитации одного и только одного звука, заключают в себе весьма занимательные инженерные мысли. Например, падение капель воды имитируется вращением барабана, боковую сторону которого заменяют натянутые на разных расстояниях веревки. При вращении они приподнимают неподвижно укрепленные кожаные хлыстики, которые хлопают по следующим веревкам — и это действительно похоже на капель. Ветры различной силы также имитируются с помощью барабанов, трущихся о всевозможные ткани.

Кожа для барабана

Пожалуй, самая замечательная история, связанная с реконструкцией машин Попова, случилась во время изготовления большого барабана-ворчуна. Для огромного, диаметром почти в два метра, музыкального инструмента требовалась кожа — но оказалось, что приобрести выделанную, но не выдубленную барабанную кожу в России невозможно. Музыканты отправились на настоящую скотобойню, где купили две свежеснятые с быков шкуры. «В этом было что-то сюрреалистическое, — смеется Петр. — Подъезжаем мы на машине к театру, а у нас в багажнике — окровавленные шкуры. Мы затаскиваем их на крышу театра, там мездрим, сушим — неделю на всю Сретенку запах стоял…» Но барабан в итоге удался на славу.

Каждый прибор Владимир Александрович в обязательном порядке снабжал подробной инструкцией для исполнителя. Например, устройство «Мощный треск»: «Сильные сухие разряды грозы выполняются с помощью прибора «Мощный треск». Встав на площадку станка прибора, исполнитель, подавшись грудью вперед и положив обе руки поверх зубчатого вала, обхватывает его и повертывает по направлению к себе».

Стоит заметить, что многие из машин, использованных Поповым, были разработаны до него: Владимир Александрович лишь усовершенствовал их. В частности, ветровые барабаны применялись в театрах еще во времена крепостного права.

Изящная жизнь

Одним из первых фильмов, целиком озвученным с помощью механизмов Попова, была комедия режиссёра Бориса Юрцева «Изящная жизнь». Помимо голосов актёров, в этом фильме, вышедшем на экраны в 1932 году, нет ни одного записанного с натуры звука — всё сымитировано. Стоит заметить, что из шести полнометражных фильмов, снятых Юрцевым, этот — единственный сохранившийся. Попавший в опалу в 1935 году режиссёр был сослан на Колыму; его фильмы, кроме «Изящной жизни», были утеряны.

Новая инкарнация

После появления звуковых библиотек про машины Попова почти забыли. Они отошли в разряд архаизмов, в прошлое. Но нашлись люди, заинтересованные в том, чтобы техника прошлого не только «восстала из пепла», но и вновь стала востребованной.

Идея сделать музыкальный арт-проект (тогда еще не оформившийся как интерактивная выставка) давно теплилась в сознании московского музыканта, пианиста-виртуоза Петра Айду — и вот наконец нашла свое материальное воплощение.


Прибор «лягушка». Инструкция к прибору «Лягушка» значительно сложнее, нежели аналогичные указания к прочим устройствам. Исполнитель квакающего звука должен был хорошо владеть инструментом, чтобы итоговая звукоимитация получилась достаточно натуральной.

Команда, работавшая над проектом, частично базируется в театре «Школа драматического искусства». Сам Петр Айду — помощник главного режиссера по музыкальной части, координатор производства экспонатов Александр Назаров — руководитель театральных мастерских и т. д. Впрочем, в работе над выставкой принимали участие десятки людей, не связанных с театром, но готовых помогать, тратить свое время на странный культурологический проект — и все это было не зря.

Мы беседовали с Петром Айду в одной из комнат с экспозицией, в страшном грохоте и гаме, извлекаемом из экспонатов посетителями. «В этой экспозиции множество пластов, — говорил он. — Некий исторический пласт, поскольку мы подняли на свет историю очень талантливого человека, Владимира Попова; интерактивный пласт, поскольку люди получают удовольствие от происходящего; музыкальный пласт, поскольку по окончании выставки мы планируем использовать ее экспонаты в наших спектаклях, причем не столько для озвучки, сколько как самостоятельные арт-объекты». В то время, как Петр говорил, за его спиной работал телевизор. На экране сцена, где двенадцать человек слаженно играют композицию «Шум поезда» (это фрагмент спектакля «Реконструкция утопии»).


«Перекат». «Исполнитель приводит прибор в действие мерным ритмическим покачиванием резонатора (корпуса прибора) вверх и вниз. Тихий прибой волн выполняется медленным ссыпанием (не до конца) содержимого резонатора с одного его конца в другой. Прекратив ссыпание содержимого в одну сторону, быстрым движением приводят резонатор в горизонтальное положение и сейчас же отводят его в другую сторону. Мощный прибой волн выполняется медленным ссыпанием до конца всего содержимого резонатора» (В.А.Попов).

Автоматы изготовлялись по оставленным Поповым чертежам и описаниям — сохранившиеся в коллекции МХАТа оригиналы некоторых машин создатели выставки увидели уже после окончания работ. Одной из основных проблем было то, что легко добываемые в 1930-х годах детали и материалы сегодня нигде не используются и в свободной продаже не водятся. Например, латунный лист толщиной 3 мм и размерами 1000x1000 мм найти практически нереально, потому что нынешний ГОСТ подразумевает разрезку латуни только 600x1500. Проблемы возникали даже с фанерой: требуемая 2,5-миллиметровая по современным стандартам относится к авиамодельной и достаточно редка, разве что из Финляндии выписывать.


Автомобиль. «Шум автомобиля производится двумя исполнителями. Один из них вращает ручку колеса, а другой нажимает рычаг подъёмной доски и приоткрывает крышки» (В.А. Попов). Стоит заметить, что с помощью рычагов и крышек можно было значительно варьировать звук автомобиля.

Была и еще одна сложность. Сам Попов неоднократно замечал: чтобы сымитировать какой-либо звук, нужно абсолютно точно представлять себе, чего хочешь добиться. Но, например, звук переключения семафора 1930-х годов никто из наших современников никогда не слышал в живую — как же удостовериться в том, что соответствующий прибор изготовлен правильно? Никак — остается только надеяться на интуицию и старые кинофильмы.

Но в общем и целом интуиция создателей не подвела — им все удалось. Хотя изначально шумовые машины предназначались для людей, умеющих с ними обращаться, а не для потехи, в качестве интерактивных экспонатов музея они очень хороши. Вращая рукоять очередного механизма, глядя на транслируемый на стену немой кинофильм, ты ощущаешь себя великим звукорежиссером. И чувствуешь, как под твоими руками рождается не шум, но музыка.