Вокруг нас существует множество вирусов, бактерий, которые способны попадать в наш организм, расти там, размножаться за счет наших клеток. Для человеческого организма их жизнедеятельность часто является губительной и приводит к различным заболеваниям. Если бы человечество не имело естественных средств защиты против бактерий, то, возможно, мы бы уже не существовали. Как уберечь свой организм от бактерий?

Работу иммунитета для нашего организма невозможно переоценить. Способность бороться с возбудителями инфекций формировалась в процессе эволюции, и сейчас человек находится в контакте с бактериями, обитающими не только вне, но и внутри него.

Главной особенностью иммунитета является его память. Клетки системы запоминают информацию о чужеродных организмах и при их появлении вновь применяют полученные навыки борьбы.

Средства гигиены против микробов

На нашей коже живет множество бактерий, и если ее регулярно не мыть, то есть большая вероятность того, что они попадут внутрь организма и станут причиной многих заболеваний.

Наиболее эффективным средством против бактерий, имеющим положительные отзывы, является антибактериальное мыло. Оно содержит в себе триклозан, который убивает бактерии и контролирует их рост, чего не содержит обычное мыло. Эффективность антибактериального мыла зависит от процента содержания триклозана и длительности контакта с кожей. Обычное мыло также убивает бактерии, только после его использования они быстро активизируются. Антибактериальное мыло содержит триклозан в количестве от 0,1 до 0,34%, на это стоит обращать внимание при покупке.

Это мыло убивает такие бактерии:

  • стафилококк;
  • кишечная палочка;
  • сальмонелла.

Антибактериальное мыло способствует контролю над бактериями. Учитывая отзывы и рекомендации специалистов, мыло с антибактериальным эффектом стоит использовать не постоянно и чередовать его с обычным мылом. Отзывы потребителей разделились в применении этого мыла для борьбы с бактериями на за и против. То есть, кроме положительных, также встречаются и отрицательные отзывы, поскольку у некоторых людей, особенно с нежной кожей, такое мыло может вызывать сухость кожных покровов.

Лекарственные препараты против микроорганизмов

Такие лекарственные препараты, как антибиотики, убивают либо тормозят развитие бактерий или опухолей и являются незаменимыми в борьбе со многими аэробными или анаэробными микроорганизмами.

В зависимости от принципа воздействия на бактерии антибиотики делят на такие группы:

  • Антибиотики, уничтожающие клеточную стенку. Многие из бактерий имеют клеточную стенку, разрушение которой приводит к их гибели. Этим свойством обладает пенициллин и препараты его группы.
  • Антибиотики, противодействующие синтезу белка. Эти антибиотики попадают внутрь клетки и блокируют процессы жизнедеятельности. Микроорганизм теряет способность к росту и размножению и погибает.
  • Препараты, проникающие внутрь клетки и растворяющие жиры, которые входят в состав мембраны.

Методы борьбы против хеликобактер

До недавнего времени причины таких заболеваний, как язва и гастрит, не до конца были изучены. Относительно недавно было обнаружено, что анаэробный микроорганизм хеликобактер пилори виновен в возникновении этих заболеваний. Особенность анаэробной бактерии хеликобактер в том, что она способна существовать в условиях высокой кислотности. Размножаясь, хеликобактер выделяет вредные токсины, разрушающие стенки желудка, что приводит к хроническим заболеваниям и даже к раку желудка. Какие методы и средства действенны в борьбе с хеликобактер?

При наличии соответствующих показателей бактерии хеликобактер эффективность лечения зависит от таких требований:

  • правильно подобранное мощное лекарство для действенной атаки на хеликобактер;
  • устойчивость препарата к кислотности желудка;
  • быстрое проникновение лекарства в слизистую с целью устранения хеликобактер;
  • локальное вмешательство лекарства;
  • невмешательство препарата в работу других органов и быстрый вывод его из организма.

Учитывая отзывы врачей, только комплексный подход к лечению приводит к положительным результатам в борьбе с хеликобактер.

Бактерии в кишечнике

Основные причины попадания микробов в организм – несоблюдение мер гигиены и санитарных норм обработки продуктов. Так, анаэробные бактерии, попадая в кишечник вместе с пищей, отравляют его токсинами, которые вызывают вздутие и колики. Способны вызвать инфекцию в кишечнике и анаэробные микроорганизмы, живущие в нем. Это происходит при нарушении микрофлоры кишечника. При сильном иммунитете организм может сам справиться с буйством кишечных микроорганизмов, человек почувствует лишь легкое недомогание либо диарею. При серьезных инфекциях в кишечнике, таких как ботулизм, дизентерия, без госпитализации, вмешательства специалистов и правильно подобранных лекарств не обойтись.

Инфекции в кишечнике, вызванные анаэробными микроорганизмами, чаще протекают в таких формах:

  • гастроэнтерит;
  • колит;
  • энтерит;
  • энтероколит.

Очень важно распознать инфекцию в кишечнике и отличить ее от пищевого отравления. Только врач может поставить правильный диагноз, назначить лечение и подобрать необходимые лекарства.

Лекарства на основе плесени против микробов

Многие сталкивались с негативным воздействием плесени:

  • испорченные продукты;
  • разрушение ткани и древесины;
  • заражение растений и семян.
  • плесень в помещениях.

Но не все знают, что из плесени делают лекарства для борьбы против микроорганизмов. Выработка плесневыми грибами метаболитов применяется в изготовлении многих антибиотиков. Самый первый и известный всем лекарственный препарат «Пенициллин» был получен на основе плесени. Антибиотики группы цефалоспорина были выделены в 1948 году из плесени Cephalosporium acremonium и применены против тифа. Выделенный из плесени циклоспорин является мощным иммунодепрессивным препаратом. Его применяют при трансплантации, пересадке органов и других операций.

Многие препараты, выделенные из плесени, являются токсичными и принимаются строго по указанию врача.

Растения-антибиотики против микроорганизмов

Последние отзывы о препаратах говорят о том, что их применение против микробов приводит к тому, что у них возникает устойчивость и невосприимчивость к ним. Лечебные растения на протяжении многих лет способны не только повышать иммунитет, но и работать как антибиотики.

Вот примеры действия на микробов лишь нескольких растений-антибиотиков:

  • масло эвкалипта (простудные инфекции);
  • алоэ (герпес, гнойные инфекции, синусит);
  • чеснок (туберкулез, дизентерия, молочница, стрептококк);
  • эхинацея (простудные инфекции);
  • солодка (малярия, холера, молочница, кишечная палочка).

В чем причина таких устойчивых антибактериальных свойств у растений? Растения имеют сложный химический состав, поэтому микробам тяжело адаптироваться под разрушающие действия растений. Если синтетические препараты имеют узкую направленность, то химические соединения у растений работают слаженно, сообща и во всех направлениях.

Чтобы уберечься от вредного воздействия бактерий, необходимо соблюдать правила гигиены, знать симптоматику их появления в организме и своевременно обращаться к врачу, который правильно подберет лекарственные препараты.

В мае этого года в работе "Mitochondria-targeted antioxidants as highly effective antibiotics", опубликованной в журнале Scientific Reports, коллектив авторов из МГУ впервые показал принципиально новый гибридный антибиотик: его действие направлено против мембранного потенциала бактерий, который обеспечивает болезнетворные клетки энергией.


Победа! — но только временная


В середине прошлого столетия человечество находилось в состоянии эйфории, связанной с невероятными успехами в лечении инфекционных заболеваний бактериальной природы. Многие бактериальные инфекции, вызывавшие ужасающие по количеству жертв эпидемии в средние века, превратились в карантинные инфекции, которые легко и эффективно вылечивались.

Этот успех стал возможен после открытия в 1920-х годах британским бактериологом Александром Флемингом первого антибиотика — пенициллина; он обнаружился в плесневых грибах Penicillium notatum . Спустя десятилетие британские ученые Говард Флори и Эрнст Чейн предложили способ промышленного производства чистого пенициллина. Все трое в 1945 году были удостоены Нобелевской премии в области физиологии и медицины.

Массовое производство пенициллина было налажено во время Второй мировой войны, что вызвало резкое уменьшение смертности среди солдат, обычно умиравших от раневых инфекций. Это позволило французским газетам накануне визита Флеминга в Париж писать, что для разгрома фашизма и освобождения Франции он сделал больше целых дивизий.

Углубление знаний о бактериях привело к появлению большого числа антибиотиков, разнообразных по механизму, широте спектра действия и химическим свойствам. Почти все бактериальные заболевания либо полностью вылечивались, либо серьезно подавлялись антибиотиками. Люди полагали, что человек победил бактериальные инфекции.

Мелкие очаги сопротивления — и поражение


Одновременно с успехами появились и первые признаки грядущей глобальной проблемы: случаи бактериального сопротивления антибиотикам. Прежде безропотно чувствительные к ним микроорганизмы вдруг становились индифферентны. Человечество ответило бурным развитием исследований и новыми антибиотиками, это привело лишь к увеличению числа препаратов и новой резистентности бактерий.

В мае 2015 года Всемирная организация здравоохранения признала кризисом бактериальное сопротивление антибиотикам и выдвинула Глобальный план борьбы с устойчивостью к противомикробным препаратам. Его следовало выполнить безотлагательно, свои действия должны были координировать многочисленные международные организации вроде защитников окружающей среды, и отрасли экономики — не только человеческая медицина, но и ветеринария, и промышленное животноводство, и финансовые институты, и общества защиты прав потребителей.

План, должно быть, так или иначе выполняется, но к несчастью, несмотря на это уже в сентябре 2016 года одна американская пациентка умерла от сепсиса. Такое бывает, и даже чаще, чем хотелось бы, но ее погубила так называемая супербактерия — Klebsiella pneumoniae , но не обычная, а устойчивая ко всем разрешенным в США 26 антибиотикам, в том числе к антибиотику "последнего резерва" колистину.

Итак, ученым стало очевидно, что бактериальные инфекции побеждают человечество, и современная медицина может быть отброшена во времена, предшествовавшие открытию антибиотиков. Одним из главных вопросов, поднятых на международной конференции ASM Microbe , проводившейся в Новом Орлеане в июне 2017 года Американским обществом микробиологов, был такой: "Может ли человечество выиграть войну с микробами?". На той же конференции, кстати, отдельного внимания удостоилось движение antimicrobial stewardship, или управление антибиотикотерапией, которое имеет своей целью максимально разумно и достаточно, в соответствии с рекомендациями доказательной медицины, назначать антибиотики. Пока что законом такое обращение с антибиотиками стало только в одном месте в мире — в штате Калифорния, США.

Стало очевидным, что бактериальные инфекции побеждают человечество, и современная медицина может быть отброшена на уровень, предшествующий открытию антибиотиков

Как работает помпа


Действие помпы можно проиллюстрировать на примере основной помпы множественной лекарственной устойчивости кишечной палочки — AcrAB-TolC . Эта помпа состоит из трех основных компонентов: (1) белка внутренней клеточной мембраны AcrB , который за счет мембранного потенциала может перемещать вещества через внутреннюю мембрану (2) адаптерного белка AcrA , связывающего транспортер AcrB с (3) каналом на внешней мембране TolC . Точный механизм работы помпы остается недостаточно изученным, однако известно, что вещество, которое помпа должна выбросить за пределы клетки, попадает на внутреннюю мембрану, где его ждет транспортер AcrB , связывается с активным центром помпы и затем за счет энергии встречного движения протона выкачивается за пределы наружной мембраны бактерии.

Антиоксиданты направляются в митохондрию


Но решение, обходящее резистентность бактерий, можно считать, найдено — российскими учеными. В мае этого года в работе "Mitochondria-targeted antioxidants as highly effective antibiotics ", опубликованной в журнале Scientific Reports, коллектив авторов из МГУ впервые показал принципиально новый гибридный антибиотик широкого спектра действия — митохондриально направленный антиоксидант.

Митохондриально направленные антиоксиданты (МНА) получили широкое распространение не только как инструмент исследований роли митохондрий в разных физиологических процессах, но и как терапевтические средства. Это конъюгаты, то есть соединения, состоящие из какого-либо хорошо известного антиоксиданта (пластохинона, убихинона, витамина Е, ресвератрола) и проникающего, то есть способного преодолеть мембрану клетки или митохондрии, катиона (трифенилфосфония, родамина и др.).

Механизм действия МНА доподлинно не известен. Известно лишь, что в митохондрии они частично разобщают окислительное фосфорилирование, метаболический путь синтеза универсального клеточного горючего — аденозинтрифосфата, АТФ, что стимулирует клеточное дыхание и снижает мембранный потенциал и может приводить к защитному эффекту при окислительном стрессе.

Предположительно это выглядит так. МНА из-за своей липофильности (тяги к липидам или сродства с ними) связываются с мембраной митохондрии и постепенно мигрируют внутрь митохондрии, где, видимо, соединяются с отрицательно заряженным остатком жирной кислоты; составив комплекс, они теряют заряд и вновь оказываются снаружи мембраны митохондрии. Там остаток жирной кислоты захватывает протон, из-за чего комплекс распадается. Захватившая протон жирная кислота переносится в обратном направлении — и внутри митохондрии теряет протон, то есть, проще говоря, переносит его в митохондрию, отчего как раз и снижается мембранный потенциал.

Один из первых МНА был создан на основе трифенилфосфония в Оксфорде — английским биологом Майклом Мерфи; это был конъюгат с убихиноном (или коферментом Q , принимающим участие в окислительном фосфорилировании). Под названием MitoQ этот антиоксидант получил значительную известность как перспективный препарат для замедления старения кожи, а также как возможное средство защиты печени при гепатитах и жировом ее перерождении.

Позднее тем же путем пошла группа академика Владимира Скулачева из МГУ: на основе конъюгата трифенилфосфония с антиоксидантом пластохиноном (участвует в фотосинтезе) был создан эффективный SkQ1 .

В соответствии с симбиотической теорией происхождения митохондрий, выдвинутой членом-корреспондентом АН СССР Борисом Михайловичем Козо-Полянским в 1920-х годах и американским биологом Линн Маргулис в 1960-х годах, между митохондриями и бактериями — много общего, и можно ожидать, что МНА будут воздействовать на бактерии. Однако несмотря на очевидную схожесть бактерий и митохондрий и десятилетний опыт работы с МНА во всем мире никакие попытки обнаружить антимикробное действие МНА не приводили к положительным результатам.

Последний рубеж пал


Колистин считается антибиотиком последнего резерва — это старый препарат из класса полимиксинов, вышедший из употребления из-за своего токсического воздействия на почки. Когда обнаружились супербактерии, которые, кроме того что сами сопротивлялись известным антибиотикам, еще и обзавелись способностью передавать друг другу генную информацию, позволяющую сопротивляться антибиотикам, выяснилось, что во-первых, колистин губителен для всех этих бактерий, а во-вторых, бактерии не могут обмениваться генами резистентности к колистину, если вдруг таковая все-таки возникнет.

Увы, но в мае 2016 года в американское Хранилище мультирезистентных микроорганизмов, которое находится в структуре Исследовательского института имени Уолтера Рида (это структура армии США), поступила-таки бактерия, которая не просто была индифферентна к колистину, но еще и оказалась способна передавать генную информацию с этой резистентностью другим бактериям. Первый такой микроорганизм еще в 2015 году был зафиксирован в Китае, долгое время была надежда, что это единичный случай, но она не оправдалась. Особенно печально, что в США этим микроорганизмом оказалась всем хорошо знакомая кишечная палочка.

Загадка двух палочек


Прорыв случился в 2015 году: впервые антибактериальное действие МНА на примере SkQ1 было показано в работе "Разобщающее и токсическое действие алкил-трифенилфосфониевых катионов на митохондрии и бактерии Bacillus subtilis в зависимости от длины алкильного фрагмента" — ее опубликовал журнал "Биохимия" в декабре 2015 года. Но то было описанием феномена: эффект наблюдался при работе с сенной палочкой (Bacillus subtilis ) и не наблюдался при работе с палочкой кишечной (Escherichia coli ).

Но дальнейшие исследования, которые легли в основу новейшей работы, опубликованной в журнале Scientific Reports , показали, что МНА SkQ1 — высокоэффективный антибактериальный агент в отношении широкого спектра грамположительных бактерий. SkQ1 эффективно подавляет рост таких надоедливых бактерий, как золотистый стафилококк (Staphylococcus aureus ) — один из четырех наиболее частых видов микроорганизмов, вызывающих внутрибольничные инфекции. Так же эффективно SkQ1 подавляет рост микобактерий, в том числе палочки Коха (Mycobacterium tuberculosis ). Более того, МНА SkQ1 оказался высокоэффективным средством против грамотрицательных бактерий, таких как Photobacterium phosphoreum и Rhodobacter sphaeroides .

И только в отношении кишечной палочки он был крайне неэффективен, а ведь именно Escherichia coli — та бактерия, которую микробиологи используют как модельный организм, что и было, по-видимому, причиной неудачных попыток ранее обнаружить антимикробное действие МНА.

Естественно, исключительная резистентность кишечной палочки вызвала весьма сильный интерес исследователей. К счастью, современная микробиология сделала большой шаг вперед в методологическом аспекте, и у ученых созданы целые коллекции микроорганизмов с делециями (отсутствием) некоторых генов, не вызывающими их гибель. Одна из таких коллекций — делеционных мутантов кишечной палочки — находится в распоряжении МГУ.

Исследователи высказали предположение, что резистентность может быть обусловлена работой какой-либо из помп множественной лекарственной устойчивости, имеющихся у кишечной палочки. Любая помпа плоха для инфицированного человека тем, что просто выбрасывает из бактериальной клетки антибиотик, он на нее не успевает подействовать.

Генов, отвечающих за действие помп множественной лекарственной устойчивости, у кишечной палочки много, и было решено начать анализ с продуктов генов, входящих в состав сразу нескольких помп,— а именно белка TolC .

Белок TolC — канал на внешней мембране грамотрицательных бактерий, он служит внешней частью для нескольких помп множественной лекарственной устойчивости.

Анализ делеционного мутанта (то есть палочки без белка TolC ) показал, что его резистентность снизилась на два порядка и стала неотличима от резистентности грамположительных бактерий и нерезистентных грамотрицательных бактерий. Таким образом, можно было заключить, что выдающаяся резистентность кишечной палочки — результат работы одной из помп множественной лекарственной устойчивости, имеющих в составе белок TolC . А дальнейший анализ делеционных мутантов по белкам — компонентам помп множественной лекарственной устойчивости показал, что только помпа AcrAB-TolC участвует в откачке SkQ1 .

Резистентность, вызванная наличием помпы AcrAB-TolC, не выглядит непреодолимой преградой: антиоксидантный конъюгат SkQ1 — также уникальное для этой помпы вещество, очевидно, можно будет найти для нее ингибитор.

В мае 2015 года Всемирная организация здравоохранения (ВОЗ) выдвинула Глобальный план действий по борьбе с устойчивостью к противомикробным препаратам, признав бактериальное сопротивление антибиотикотерапии кризисом

Бессмертие Генриетты Лакс


Линия "бессмертных" клеток HeLa получила свое название по имени негритянки Генриетты Лакс (Henrietta Lacs). Клетки были получены из раковой опухоли ее шейки матки, без ее ведома и тем более согласия в феврале 1951 года Джорджем Гаем, врачом-исследователем питтсбургской университетской больницы имени Джона Хопкинса. Генриетта Лакс умерла в октябре того же года, а доктор Гай выделил одну конкретную клетку из эндотелия ее матки и начал с нее клеточную линию. Вскоре он обнаружил, что это уникально живучая культура, и начал делиться ею с исследователями по всему миру. Клетки, произошедшие от Генриетты Лакс, помогли человечеству при создании вакцины от полиомиелита, при определении числа хромосом в человеческой клетке (46), при первом клонировании человеческой клетки, наконец, при экспериментах с экстракорпоральным оплодотворением.

Надо сказать, что происхождение клеток Джордж Гай держал в тайне — оно стало известно только после его смерти.

Не только лечить, но и чинить


Но чтобы называться антибиотиком, SkQ1 необходимо соответствовать множеству критериев, таких как (1) способность подавлять жизненные процессы микроорганизмов в малых концентрациях и (2) мало повреждать или вовсе не повреждать клетки человека и животных. Сравнение SkQ1 c известными антибиотиками — канамицином, хлорамфениколом, ампициллином, ципрофлоксацином, ванкомицином и пр.— показало, что SkQ1 действует на бактерии в таких же, как они, или даже более низких концентрациях. Более того, при сравнительном исследовании действия SkQ1 на культуру клеток человека линии HeLa выяснилось, что в минимальной бактерицидной концентрации SkQ1 не оказывает практически никакого воздействия на клетки человека — а замечают клетки SkQ1 , когда концентрация антиоксидантного конъюгата становится более чем на порядок выше необходимой для бактерицидного действия.

Механизм действия SkQ1 на бактерии оказался подобен действию МНА на митохондрии, однако общее действие на прокариотическую и эукариотическую клетку различалось. Одна из главных причин — пространственное разделение процессов генерации энергии (исключая субстратное фосфорилирование) и процессов транспорта веществ внутрь клетки, что, по-видимому, представляет собой существенное эволюционное преимущество, которое часто обходят вниманием при рассмотрении выгод от сожительства протомитохондрии и протоэукариота. Так как у бактерий генерация энергии и транспорт локализованы на клеточной мембране, то падение потенциала вызывает, по-видимому, остановку сразу обоих процессов, что приводит к смерти микроорганизма. В эукариотической клетке процессы транспорта веществ внутрь клетки локализованы на клеточной мембране, а генерация энергии происходит в митохондриях, что позволяет эукариотической клетке выживать при летальных для бактерий концентрациях МНА. Кроме того, разность потенциала на мембране бактерии и эукариотической клетки различается в пользу бактерий — и это тот самый дополнительный фактор, аккумулирующий МНА на мембране бактерий.

Рассматривая механизм действия SkQ1 на бактерии, нельзя пройти мимо другого уникального свойства этого МНА — способности лечения поврежденных бактериями эукариотических клеток за счет антиоксидантных свойств. SkQ1 , действуя как антиоксидант, снижает уровень вредных активных форм кислорода, образующихся при воспалении, вызванном бактериальной инфекцией.

Таким образом, SkQ1 может быть признан уникальным гибридным антибиотиком широчайшего спектра действия. Дальнейшая разработка антибиотиков на его основе может позволить переломить ход войны человечества против все более совершенных микробов.

Павел Назаров, кандидат биологических наук, НИИ Физико-химической биологии им. А.Н. Белозерского МГУ


Этим летом вся Европа была напугана очень маленьким существом — патогенным штаммом кишечной палочки Escherichia coli. Ее длина — всего 2-3 микрона, но она опасна и шустра. Поневоле задумаешься, кто же на нашей планете господствующий вид — человек или такие вот малютки?

Если одну кишечную палочку, которая, как известно, размножается простым бинарным делением, поместить в идеальную питательную среду и допустить, что еды у нее и ее потомков будет в достатке, то за сутки эта малышка способна образовать колонию весом около... 10 миллионов тонн!

Шокирующая цифра, не правда ли? Одноклеточные — если и не самые главные, то уж точно самые весомые, в прямом смысле, жители земного шара. Суммарная биомасса всех микроорганизмов, в том числе микроскопических грибов и водорослей, составляет 76 миллиардов тонн (в сухом остатке, без учета воды).

Все многоклеточные растения весят 55 миллиардов тонн, а масса животных, включая человека, составляет в сумме какие-то «жалкие» 500 миллионов тонн.

Да и в каждом здоровом человеческом теле наберется килограмма два бактерий, ведь человек — это симбиотический конгломерат клеток его собственного организма и бактерий. Как утверждает молодая наука метабономика, люди - это сверхорганизмы, в которых только 2-3 триллиона клеток непосредственно наши, родные.

Еще добрую сотню триллионов составляют микроорганизмы — их в человеческом теле более 500 видов. В этом сверхорганизме человеческая ДНК вовсе не является преобладающей, утверждает отец-основатель метабономики британский биохимик Джереми Николсон.

Каждый из нас обладает уникальным геномом, который складывается из собственного генетического материала и ДНК населяющих нас многочисленных одноклеточных.

КТО В ЧЕЛОВЕКЕ ЖИВЕТ?

В большинстве случаев младенцы рождаются стерильными. Однако в первые же сутки их жизни начинается создание микробиоценоза: человек колонизируется множеством микроорганизмов. Сначала это хаотический процесс, в ходе которого бактерии яростно борются за «место под солнцем» и внутри, и снаружи.

Через 2-3 дня устойчивые колонии получают пожизненную прописку в различных частях тела. Это так называемые облигатные — полезные и. более того, необходимые микробы. Можно сказать, самые близкие людям живые существа в этом мире.

На всей поверхности кожи и в ее верхнем слое уютно устроились пропионибактерии, дифтероиды и коринебактерии. Они умеют поглощать приходящих извне патогенных бактерий, держат первый рубеж обороны.

Слизистая оболочка глаз заселена стафилококками и микоплазмой, которые не дают случайным пришельцам закрепиться здесь и начать размножение, В желудке плавает дружная команда стрептококков, лакто- и бифидобактерий в окружении дрожжеподобных грибов; все они хорошо переносит кислую среду желудочного сока и дают старт процессу переваривания пищи.

В кишечнике в тесноте, да не в обиде живут более 15 основных видов анаэробных бактерий и грибов рода Candida. И среди них та самая кишечная палочка Е. соli, непатогенные штаммы котором очень нужны человеку. Именно она вырабатывает в нашем организме витамин К2, отвечающий за свертываемость крови.

"Хотя мне исполнилось уже 50 лет, но у меня очень хорошо сохранились зубы, потому что я имею привычку каждое утро натирать их солью, а после очистки больших зубов гусиным пером хорошенько протирать их еще платком" — такие слова можно прочитать в письме сторожа судебной палаты из голландского города Делфта Антони ван Левенгука (1632-1723), которое он направил в Лондонское королевское общество.

Ничего не скажешь, оригинальный способ соблюдения гигиены полости рта, но прославился Левенгук, конечно, не этим - а тем, что научил человечество видеть потаенные стороны жизни природы. У Левенгука не было «ученого» образования, зато была поистине пламенная страсть: увеличительные стекла. Он был одним из первых, кто догадался объединить несколько линз в зрительную трубу для изучения не макро-, а микромира. И получил таким образом микроскоп.

Материалы для своих исследований он выбирал бессистемно: перечный настой, волокна хрена, чешуйки кожи, глаз мухи, моллюски, выловленные в каналах Делфта. Соскоб с зубов он разбавлял водой и в волшебных стеклах наблюдал «невероятное количество маленьких животных, и притом в таком крошечном кусочке вышеуказанного вещества, что этому почти невозможно было поверить, а если не убедишься собственными глазами.

Самоучка Левенгук за 50 лет наблюдений зарисовал более 200 видов «крошечных зверьков», как он называл своих новых знакомцев. Впрочем, научной революции тогда не случилось — еще сотню лет после Левенгука микромир оставался для ученого мира эдаким «шапито в микроскопе».

ДРУЗЬЯ И ВРАГИ

Пожалуй, практически все самые привычные для нас продукты питания — хлеб, сыр, йогурт, пиво, вино, шоколад и многое другое — не что иное, как продукты брожения. Всю основную работу по их приготовлению производят анаэробные бактерии и дрожжевые грибы. Человеку остается только бережно хранить, селекционировать и культивировать закваски — колонии бактерий.

И он делает это на протяжении тысячелетий. Еще за пять тысяч лет до Рождества Христова в древнем Вавилоне умели сбраживать напитки, а три с половиной тысячи лет назад египтяне придумали дрожжевой хлеб. Так что человек уже давно приручил своих микродрузей.

Профессиональные "дрессировщики», ученые-биотехнологи, вооружившись достижениями молекулярной биологии и генной инженерии, научили микробов делать массу полезных для человека вещей. Сегодня на полях вносят в почву бактериальные удобрения, а микробные инсектициды и пестициды, подверженные биодеградации, пришли на смену опасным химическим сельскохозяйственным реагентам.

Тионовые (окисляющие серу) бактерии выщелачивают ценные металлы из рудных концентратов и повышают качество серосодержащего каменного угля. Современная фармацевтика немыслима без «рабочих лошадок» - бактерий, одноклеточных грибов и водорослей, производящих все виды антибиотиков, противоопухолевые препараты, витамины и аминокислоты.

Команда исследователей под руководством профессора Джозефа Чеппела из американского Университета Кентукки выяснила, что все запасы нефти и угля на нашей планете — результат жизнедеятельности одной-единственной микроводоросли Botryococcus braunii. Так что, если бы не она, не видать нам ни тепловой энергетики, ни автомобилей.

Кроме того, некоторые микроорганизмы — это еще и самые старательные и дотошные в мире уборщики. Подсчитано, что если бы не работа бактерий гниения, разлагающих органические вещества, то кости животных, обитавших на Земле с начала ледникового периода, покрывали бы сегодня всю сушу полутораметровым слоем.

Взаимовыгодное существование человека и микроорганизмов портит только одно обстоятельство: есть порядочное количество простейших, которые не прочь ускорить процесс превращения живого в мертвое, сократив его до пары суток.

Со времен Гиппократа и приблизительно до середины XIX века считалось, что болезни, которые мы сегодня называем инфекционными, вызываются дурным воздухом и вредными испарениями — «миазмами». Среди теоретиков патогенеза ближе всего к истине был однокашник Коперника Джироламо Фракасторо. живший за сто с лишним лет до Левенгука. Он писал о крошечных «семенах», которые передаются от человека к человеку, поселяются внутри и вызывают болезни. Однако Фракасторо и помыслить не мог, что эти «семена» живые.

Потери человечества от эпидемических инфекционных заболеваний значительно превышают число жертв военных конфликтов. На полях сражений Столетней войны (1337-1453) погибли сотни тысяч человек.

А эпидемия бубонной чумы, случившаяся как раз во время той войны и продолжавшаяся всего пять лет, унесла жизни 34 миллионов европейцев. Всего же за все время существования нашей цивилизации жертвами одноклеточных возбудителей болезней пало около полутора миллиардов человек.

Весь XIX век в научном мире не утихали споры о том, виноваты ли микроорганизмы в том, что мы болеем и умираем. С одной стороны, ученые постоянно находили патогенных возбудителей в тканях умерших от холеры, туберкулеза, дифтерии; их чистые культуры выделили первые микробиологи, все как один — лауреаты Нобелевских премий по медицине: Эмиль Беринг, Пауль Эрлих, Илья Мечников и первооткрыватель возбудителей сибирской язвы, туберкулеза и холеры Роберт Кох.

Но с другой стороны, приверженцы гигиенической теории не уставал и твердить, что все болезни происходят от грязи. Во главе гигиенистов стоял президент Баварской академии наук Макс фон Петтенкофер. Профессор прославился тем, что в 73 года в доказательство своих научных теорий в присутствии свидетелей проглотил чистую культуру холерного вибриона.

Холерой Петтенкофер не заболел, все обошлось легким расстройством желудка. Понятия «специфический иммунитет» в тот момент еще не существовало, а профессор был здоров как бык. Наверняка сработала и сила внутренней убежденности в собственной правоте.

Петтенкофер настолько дорожил собственным здоровьем и не желал болеть, что, ощутив себя в 82 года дряхлеющим стариком, предпочел застрелиться.

Сегодня мы точно знаем: такие болезни, как чума, дифтерия, холера, туберкулез и многие другие, однозначно вызываются бактериями, которые в процессе своей жизнедеятельности выделяют токсины. Оспу, корь, гепатит, полиомиелит провоцируют не бактерии, а вирусы. Вирусы намного меньше бактерий (20-500 нанометров в поперечнике), и до сих пор не вполне понятно, живые они или нет. Сам но себе вирус размножаться не способен — он производит потомство, используя ДНК клетки, в которую внедряется.

КОВАРНЕЙ КОШКИ ЗВЕРЯ НЕТ

При этом остальные рефлексы не нарушаются. Так токсоплазма контролирует свой собственный жизненный цикл, управляя переносчиком: для нее выгодно, чтобы мышь погибла, будучи съеденной кошкой.

Впрочем, подлинную роль токсоплазмы ученым еще предстоит выяснить. Пока можно сказать только одно — «другим человека» она не была никогда. В отличие от нашего симбионта — кишечной палочки Е. coli. Каким же образом незаменимый помощник превратился в убийцу? Эта детективная интрига все еще ждет своей разгадки.

Пока ученые искали преступника, перебирая всех возможных подозреваемых, начиная с испанского огурца и заканчивая пажитником из Египта, эпидемия сама собой сошла на нет. Теперь уже не определить ни «место преступления», ни какая из миллиона других видов бактерий передала часть своего генома "хорошей" кишечной палочке, после чего та приобрела неприятную особенность вырабатывать гибельные для почек токсины и разрушать эритроциты. Кроме того, новый штамм, обозначенный шифром О104:Н4, получил от какого-то другого микроорганизма удивительную стойкость к антибиотикам.

Можно сказать и о простейших. Казалось бы, все просто: одноклеточные размножаются делением или почкованием, а значит, весь геном должен передаваться от «мамы» к «дочке* в целости и сохранности. Но существует еще и так называемый горизонтальный перенос генов — процесс, отдаленно напоминающий спаривание. Происходит физический контакт, в ходе которого бактерии обмениваются генетической информацией.

Причем контактировать могут особи совершенно разных видов — и успешно. В результате возникают новые подвиды — штаммы, становящиеся звеном в непредсказуемой эволюции бактерий, эволюции гораздо более быстрой, чем у многоклеточных. Эта скорость и обеспечивает их невероятное видовое многообразие.

В 2009 году израильские микробиологи изучали палочки Paunibacillus dentintiformis и решили провести эксперимент: что будет, если начать морить их голодом? Предполагалось, что в условиях дефицита питания клетки начнут активно размножаться в целях сохранения вида. Однако все пошло совсем по-другому: бактерии не только прекратили размножаться, но и принялись убивать сородичей, избавляясь от «лишних ртов». Когда численность колонии стала соответствовать количеству питательных веществ, ситуация стабилизировалась.

Ученые пока не утверждают, что микробы обладают коллективным разумом, но существование у них примитивных социальных механизмов считают доказанным.

«У бактерий есть примитивная форма социального сознания. — полагает руководитель исследования профессор Эшел Бен-Якоб. — Они знают, как собирать информацию из окружающей среды и передавать ее друг другу. Они могут распределять задачи и хранить «коллективную память». Химический язык, с помощью которого они общаются, превращает колонии микробов в большой мозг».

Хотелось бы научиться понимать этот «большой мозг», а еще лучше - с ним дружить. Но микромир живет по своим законам, и наших знаний о нем пока слишком мало для заключения долгосрочного мирового соглашения.

Журнал Discovery ноябрь 2011

Бактерии в борьбе против человека берут верх, антибиотики не справляются. Ученым удалось разобраться в природном механизме уничтожения бактерий. Это поможет созданию новых классов препаратов против инфекций.

Текст: Галина Костина

Всемирная организация здравоохранения (ВОЗ) буквально вопиет о . Глава ВОЗ Маргарет Чен на одной из недавних европейских конференций говорила, что медицина возвращается в доантибиотиковую эру. Новые лекарства практически не разрабатываются. Ресурсы исчерпаны: «Постантибиотиковая эра в действительности означает конец современной медицины , которую мы знаем. Такие распространенные состояния, как стрептококковое воспаление горла или царапина на коленке ребенка, смогут снова приводить к смерти». По данным ВОЗ, более 4 млн детей в возрасте до пяти лет ежегодно умирают от инфекционных заболеваний.

Главной проблемой становится . В Европе бьют тревогу: уровень резистентности, например, пневмонии достиг 60% — в полтора раза больше, чем четыре года назад. В последние годы пневмония и другие инфекции, вызываемые только патогенными бактериями, ежегодно уносят жизни примерно 25 тыс. европейцев.

Многие помнят нашумевшую в 2011 году историю, когда в Германии острой кишечной инфекцией заразились более 2000 человек, более 20 человек умерли, а у 600 вследствие болезни отказали почки. Причиной стала устойчивая к ряду групп антибиотиков кишечная палочка E. coli, принесенная, а затем, как выяснилось, на проростках пажитника.

По прогнозам ВОЗ, через 10-20 лет все микробы приобретут устойчивость к существующим антибиотикам. Но оружие против бактерий есть у природы. И ученые пытаются поставить его на службу медицине.

Бактериальные надсмотрщики

Бактерии долгое время считались самой многочисленной популяцией живых организмов на Земле. Однако не так давно выяснилось, что бактериофагов (бактериальных вирусов) еще больше. Немного, конечно, странная ситуация: почему же тогда фаги не изничтожили все бактерии? Как всегда, в природе все непросто. Природа устроила микромир таким образом, чтобы популяции фагов и бактерий пребывали в динамическом равновесии. Достигается это избирательностью фагов, теснотой их общения с соответствующими бактериями, способами защиты бактерий от фагов.

Считается, что фаги почти такие же древние, как и бактерии. Открыли их почти одновременно Фредерик Творт и Феликс Д’Эрель в начале XX века. Первый, правда, не рискнул обозначить их как новый класс вирусов. Зато второй методично описал вирусы дизентерийных бактерий и назвал их в 1917 году бактериофагами — пожирателями бактерий. Д’Эрель, смешивавший бактерии и вирусы, увидел, как культура бактерий буквально растворялась на глазах. И почти сразу же французский ученый стал делать попытки использования вирусов против дизентерии в детской клинике. Любопытно, что потом француз продолжил свои эксперименты в Тбилиси и открыл там институт, который занимался почти исключительно вопросами фаговой терапии.

Вслед за Д’Эрелем фагами увлеклись многие ученые и медики. Где-то их опыты были удачными и вдохновляющими, где-то провальными. Теперь это легко объяснить: бактериофаги очень избирательны, практически каждый вирус выступает против какой-то определенной бактерии, иногда даже конкретного ее штамма. Конечно, если потчевать больного не теми фагами, то лучше ему не станет.

А в 1929 году Александр Флеминг о — пенициллин, и с начала 1940-х началась эра антибиотиков. Как часто бывает, о бактериофагах практически забыли, и только в России и в Грузии продолжали потихоньку производить фаговые препараты.

Интерес к бактериофагам возродился в 1950-х, когда их стали использовать в качестве удобных модельных организмов. «Многие фундаментальные открытия в молекулярной биологии, связанные с генетическим кодом, репликацией и другими клеточными механизмами, были сделаны во многом благодаря бактериофагам», — рассказывает руководитель лаборатории молекулярной биоинженерии Института биоорганической химии (ИБХ) им. М. М. Шемякина и Ю. А. Овчинникова РАН Константин Мирошников . Взрывное развитие микробиологии и генетики накопило огромные знания как о фагах, так и о бактериях.


Лаборатория Вадима Месянжинова ИБХ РАН, где 15 лет назад вместе работали Константин Мирошников, Михаил Шнейдер , Петр Лейман и Виктор Костюченко , занималась бактериофагами, в частности фагом Т4. «Так называемые хвостатые фаги делятся на три группы, — рассказывает Мирошников. — У одних маленький, почти символический хвостик, у других — длинный и гибкий, а у третьих — сложный, многокомпонентный сократимый хвост. Последняя группа фагов, к которой относится Т4, называется миовиридами».

На картинках Т4 напоминает фантастический летающий объект с головкой, в которой находится ДНК, с прочным хвостом и ножками — белками-сенсорами. Нащупав ножками-сенсорами подходящую бактерию, бактериофаг прикрепляется к ней, после чего наружная часть хвоста сокращается, проталкивая вперед внутренний поршень, протыкающий оболочку бактерии. За это хвост фага прозвали молекулярным шприцем. Через поршень фаг вводит в бактерию свою ДНК и ждет, когда в ней наплодится его потомство. После завершения репродуктивного цикла детки фага разрывают стенку бактерии и способны к заражению других бактерий.

на фото: Михаил Шнейдер (слева) и Константин Мирошников из ИБХ РАН («Эксперт»)

Ученые, по словам Константина Мирошникова, долго не хотели верить, что фаг использует такой примитивный метод — механическое протыкание бактерии, — ведь практически все биологические процессы построены на биохимических реакциях. Тем не менее оказалось, что так и есть. Правда, это всего лишь часть процесса. Как позже выяснилось, механически протыкается наружная оболочка бактерии — плазматическая мембрана. В составе молекулярного шприца есть фермент лизоцим, который проделывает небольшое отверстие во внутренней оболочке клетки. Наибольший интерес для ученых представлял белок «шприца» — его своеобразная игла, которая протыкает внешнюю оболочку. Оказалось, что он, в отличие от многих других белков, обладает замечательно стабильной структурой, что, видимо, необходимо для такого сильного механического воздействия.

Российские ученые вместе с коллегами из Университета Пурдью (США) построили молекулярную модель фага Т4. В дальнейшем, изучая подробности этого необычного молекулярного оружия бактериофага, ученые натолкнулись еще на одну загадку. Электронная микроскопия, выполненная Виктором Костюченко, показала, что на конце иглы есть еще один маленький белочек. И в лаборатории вновь задались вопросом: что же это за белок и зачем он нужен? Однако в то время понять это не удалось.

Один из учеников Вадима Месянжинова, Петр Лейман, работавший после ИБХ в Университете Пурдью, а затем в Швейцарском институте технологии в Лозанне (EPFL), позднее вернулся к этой теме, правда, с другой стороны — со стороны бактерий. Одним из фокусов работы новой лаборатории стали не бактериофаги, а бактерии, которые атакуют своих недружелюбных соседей при помощи машинки, очень похожей на молекулярный шприц фага. По-научному она называется системой секреции 6-го типа (СС6Т). И эта система оказалась еще более интересной.

Смерть на кончике иглы

«Система секреции шестого типа была открыта в 2006 году, — рассказывает Петр Лейман. — Однако в то время еще было не ясно, насколько она похожа на хвост бактериофага. Это открытие было сделано благодаря накопленным знаниям об отсеквенированных геномах сотен бактерий». В течение последующих трех лет исследований выяснилось, что конструктивно СС6Т — это почти то же, что и хвост бактериофага. Он также имеет внешний сокращаемый чехол, внутренний поршень и иглу с наконечником. И эта молекулярная машина пробивает дырку в оболочке бактерии.

По словам Константина Мирошникова, вполне возможно, что за миллионы лет сосуществования предприимчивая бактерия вполне могла перенять от бактериофага его оружие, для того чтобы использовать его в борьбе с другими бактериями. При этом бактерия избавилась от фаговой «головы» — чужая генетическая информация бактерии была не нужна. Зато его чудесный хвост она вставила в свой геном. Правда, бактерия его значительно модифицировала. СС6Т намного сложнее, чем молекулярный шприц бактериофага. Бактериофаг делает аккуратную дырочку, не намереваясь мгновенно убить бактерию, чтобы потом размножиться в ней. Бактерии же нужно быстро и гарантированно убить бактерию-конкурента, поэтому она сразу делает много больших дырок в теле врага.

Группа Петра Леймана в сотрудничестве с Михаилом Шнейдером из лаборатории ИБХ среди прочих задач искала в этой системе тот самый маленький белочек на конце шприца, который когда-то они увидели у бактериофага Т4. Они-то не сомневались, что он там есть и что у него должна быть важная функция в этом механизме. «Многие не верили, что на кончике иглы что-то есть и что это может быть важно, — рассказывает Петр Лейман. — А мы упорно искали. И все-таки мы его нашли!»

Ученые выяснили, что к этому маленькому белку-наконечнику могут присоединяться различные токсины, которые неминуемо убьют другую бактерию, после того как ее проткнет наконечник. В частности, выяснилось, что одним из таких токсинов может быть лизоцим, аналог того, что сидит и на молекулярном шприце фага. Но, сидя на фаге, он проделывает крохотную дырочку в клеточной стенке и не проникает внутрь бактерии, а в СС6Т он разрушает клеточную стенку бактерии, что ведет к ее гибели.

Впрочем, лизоцим не единственный токсин, который использует бактерии, их десятки и сотни. Причем, по словам Леймана, они могут проникать в чужую бактерию, как сидя на наконечнике, так и выпрыскиваясь изнутри шприца. Но и на этом хитрости не заканчиваются. Оказалось, что у бактерии есть несколько таких сменных наконечников, которые она выбирает в зависимости от того, на какого недруга собирается нападать и чем будет этого недруга потчевать. Ну и еще одна инновация бактерии: СС6Т — система не одноразовая, как молекулярный шприц бактериофага, а многоразовая. После того как она протыкает бактерию-врага и доставляет в нее токсины, та часть системы, что находится внутри нападающей клетки, распадается на элементы, из которых бактерия собирает новый «шприц» — систему СС6Т, заряженную токсинами. И снова готова к бою.

Это интересное фундаментальное открытие (посвященная ему статья опубликована недавно в Nature), однако, требует продолжения. «Пока для нас одна из самых загадочных вещей, — продолжает Лейман, — как система секреции отбирает для транспортировки сменные наконечники и токсины. У нас уже есть некоторые наработки, но мы еще в процессе». Петр Лейман не сомневается, что в ближайшие годы эти детали наконец будут прояснены. Над этим, по его словам, только в Швейцарии работают несколько лабораторий и еще десятки лабораторий во всем мире. Знание о том, как работает убийственный механизм СС6Т, может способствовать разработке нового класса лекарств, которые будут избирательно убивать болезнетворные бактерии. Медицина этого открытия очень ждет.


Время запускать фагов

Эра антибиотиков, начавшаяся в середине прошлого века и вызвавшая всеобщую эйфорию, похоже, заканчивается. И об этом предупреждал еще отец антибиотиков Флеминг. Он предполагал, что хитроумные бактерии будут все время изобретать механизмы выживания. Всякий раз, сталкиваясь с новым лекарством, бактерии словно проходят сквозь бутылочное горлышко. Выживают сильнейшие, приобретшие механизм защиты от антибиотика. Кроме того, безудержное и неконтролируемое использование антибиотиков, особенно в сельском хозяйстве, ускорило приближение конца их эры. Чем активнее применялись антибиотики, тем быстрее приспосабливались к ним бактерии. Особой проблемой стали внутрибольничные инфекции, возбудители которых чувствуют себя как дома в святая святых — стерильных отделениях клиник. Там, среди больных с ослабленным иммунитетом, даже так называемые условно-патогенные микробы, не представляющие для здорового человека никакой опасности, но приобретшие солидный спектр устойчивости к антибиотикам, становятся жестокими патогенами и добивают пациентов.

По словам Михаила Шнейдера, антибиотики, как правило, берутся из природы, как тот же пенициллин. Синтезированных антибиотиков очень мало: трудно поймать в бактериях уязвимые места, на которые можно было бы нацелиться. К тому же, сетуют медики, разработчики не очень охотно берутся за создание новых антибиотиков: мол, возни с разработками много, устойчивость к ним вырабатывается у бактерий слишком быстро, а цена на них не может быть такой высокой, как, к примеру, на антираковые препараты. По некоторым данным, к концу первого десятилетия XXI века лишь полтора десятка новых антибиотиков находились в разработках крупных компаний, да и то на очень ранних стадиях. Тут-то и стали вспоминать о природных врагах бактерий — бактериофагах, которые хороши еще и тем, что практически нетоксичны для человеческого организма.

В России терапевтические фаговые препараты делают давно. «Я держал в руках затрепанную методичку времен финской войны по применению фагов в военной медицине, фагами лечили еще до антибиотиков, — рассказывает Константин Мирошников. — В последние годы фаги широко использовали при наводнениях в Крымске и Хабаровске, чтобы предотвратить дизентерию. У нас такие препараты в промышленных масштабах много лет делает НПО "Микроген”. Но технологии их создания давно нуждаются в модернизации. И мы последние три года сотрудничаем с “Микрогеном” по этой теме».

Бактериофаги кажутся отличным оружием против бактерий. Во-первых, они высокоспецифичны: каждый фаг убивает не просто свою бактерию, но даже конкретный ее штамм. По словам Михаила Шнейдера, бактериофаги можно было бы использовать и в средствах диагностики для определения бактерий до штаммов, и в терапии: «Их можно использовать и сами по себе, и в комбинации с антибиотиками. Антибиотики хотя бы частично ослабляют бактерии. А фаги могут добить их».

Сейчас во многих лабораториях думают, как можно было бы использовать как бактериофаги, так и их компоненты против бактериальных инфекций. «В частности, американская компания Avidbiotics разрабатывает продукты на основе бактериоцинов, которые представляют собой модифицированный фаговый хвост — молекулярный шприц, направленный на уничтожение вредоносных бактерий, — рассказывает Михаил Шнейдер. — Они создали своеобразный молекулярный конструктор, у которого можно легко менять сенсорный белок, распознающий конкретную патогенную бактерию, благодаря чему можно получить много высокоспецифичных препаратов».

Сейчас в разработке компании — препараты, которые будут направлены против кишечной палочки, сальмонеллы, шигеллы и других бактерий. Кроме того, компания готовит препараты для продовольственной безопасности и заключила соглашение с компанией DuPont о создании класса антибактериальных агентов для защиты продуктов питания.

Перед Россией, казалось бы, широкая дорога для создания новых классов препаратов на основе фагов, но пока энергичных действий в этом плане не видно. «Мы не производственники, но примерно себе представляем, в какую канитель могут вылиться сертификация и внедрение современного препарата на основе фагов или бактериоцинов, — говорит Мирошников. — Ведь он должен будет пройти путь нового лекарства, а это занимает до десятка лет, потом еще нужно будет утверждать каждую деталь такого конструкторского препарата с заменяемыми частицами. Пока что мы можем давать лишь научные рекомендации, что можно было бы сделать». А в том, что делать надо, нет сомнений ни у кого из тех, кто осведомлен о катастрофе с антибиотиками.

На смену фагам вскоре могут прийти и новые технологии, которые будут использовать механизмы СС6Т. «Мы еще в процессе исследований и пока далеки от рационального использования системы секреции шестого типа, — говорит Петр Лейман. — Но я не сомневаюсь, что эти механизмы будут раскрыты. И тогда на их основе можно будет делать не только высокоспецифичные препараты против злостных бактерий, но и использовать их как средство доставки нужных организму белков, даже очень крупных, что сейчас является проблемой, а также доставки лекарств, например, в опухолевые клетки».

Несмотря на очевидные ассоциации с японской военщиной, проект сингапурских биоинженеров во главе с Чу Лу По (Chueh Loo Poh), по их словам, был «вдохновлен самой природой». Впрочем, ученые говорят о известной способности микроорганизмов «ощущать» количество присутствующих поблизости представителей своего и других видов и действовать в соответствии с ним — о так называемом « чувстве кворума ».

Например, когда патогенная синегнойная палочка (Pseudomonas aeruginosa ) обнаруживает, что какие-то другие бактерии занимают «их» место и потребляют «их» питательные вещества, они начинают активно взаимодействовать друг с другом посредством химических сигналов, и в итоге коллективно вырабатывают и выбрасывают токсин пиоцин , выводящий соперников из игры. При этом сами палочки формируют плотную пленку, которая у людей приводит к инфекции дыхательных путей.

Чу Лу По и его коллеги решили развернуть это опасное оружие синегнойной палочки против нее самой — а в качестве его носителя избрали любимый объект генетиков, кишечную палочку (Escherichia coli ). Для этого исследователи выделили из P. aeruginosa

гены, ответственные за обнаружение других представителей своего вида, и внесли из в геном E. coli . Кроме того, E. coli была вооружена геном, производящим модифицированную версию пиоцина, токсичного для самой P. aeruginosa . Объединив эти гены в единую систему, ученые получили настоящего камикадзе: кишечная палочка, обнаружившая присутствие поблизости синегнойной палочки, приступает к массовому производству модифицированного пиоцина, превращаясь в живую бомбу замедленного действия. Вскоре в действие вступает еще один искусственно добавленный компонент, «ген самоубийства». Бактерия самоуничтожается, ее клеточные оболочки разрушаются — и в окружающую среду поступает смертельный для синегнойной палочки токсин.

Испытав своих генетических камикадзе, авторы показали, что такая E. coli при совместном культивировании с P. aeruginosa успешно уничтожает до 99% ее представителей. Заметим, что из этих цифр некоторые специалисты делают пессимистичные выводы: даже оставшийся процент синегнойной палочки вполне способен вызвать серьезную болезнь. В любом случае, прежде чем дело дойдет до практического использования этой элегантной схемы для лечения больных, требуется еще огромная работа. Прежде всего, стоит заменить условно-патогенную кишечную палочку на другой, более безопасный носитель, а также показать, насколько эффективным будет модифицированный пиоцин в борьбе с синегнойной палочкой, уже успевшей сформировать стойкую к воздействиям слизистую пленку — и насколько безопасен он для человеческого организма.