Выполнила студентка группы БМИ-107 Бубякина О.В.

Диагностические биочипы

Введение

Биологические микрочипы являются одним из наиболее быстро развивающихся экспериментальных направлений современной биологии. Существует два основных типа биочипов. Первый тип- это микроматрицы различных соединений, главным образом биополимеров, иммобилизованных на поверхности стекла, в микрокаплях геля, в микрокапиллярах. Другим типом биочипов являются миниатюризованные "микролаборатории". Эффективность биочипов обусловлена возможностью параллельного проведения огромного количества специфических реакций и взаимодействий молекул биополимеров, таких как ДНК, белки, полисахариды, друг с другом и низкомолекулярными лигандами. Удается в достаточно простых параллельных экспериментах собрать и обработать на отдельных элементах биочипа огромное количество биологической информации. В этом заключается фундаментальное информационное сходство биочипов с электронными микрочипами. Однако между ними имеется и ряд принципиальных различий.

Что такое биочип?

Биологические микрочипы — это совокупность ячеек, расположенных на поверхности стекла или пластика, своего рода миниатюрный аналог сразу нескольких сотен, а то и тысяч реакционных пробирок.

Технологии изготовления чипов могут быть разными.

ИСТОРИЯ
"РУССКОГО БИОЧИПА"

Не верилось, что миниатюрное устройство, закрепленное на предметном стекле (таком, на которое обычно помещают препарат для рассмотрения под микроскопом), может заменить собой целую диагностическую лабораторию. Но это действительно так!. Подобно электронным чипам, биочипы обрабатывают большой массив информации методом параллельного анализа. Проще говоря, в одно и то же время на одном чипе проходит множество - до нескольких сотен - всевозможных анализов. Еще более удивительна история происхождения биочипа, который продукт сугубо отечественный, не случайно за рубежом его до сих пор называют "русский биочип". Началось же все в конце 80-х годов прошлого века, когда команда ученых из Института молекулярной биологии РАН (ИМБ) под руководством академика Андрея Мирзабекова, в 2003 году, взялась за изготовление универсального миниатюрного анализатора. Идея, конечно, уже витала в воздухе. Но только специалистам удалось воплотить эту идею в жизнь.

Как рассказывал Андрей Мирзабеков, в то время весь мир был увлечен процессом расшифровки генома человека, и они с коллегами предложили использовать для этих целей биочипы. Но очень скоро поняли, что новые устройства могут пригодиться для решения самых разных практических задач, поэтому поспешили сделать следующий шаг - разработать технологию. И преуспели в этом! Биочипы начали свое победное шествие по миру. В середине 90-х, когда финансирование российской науки практически полностью прекратилось, академика Мирзабекова пригласили в Аргонскую национальную лабораторию США. Он заявил, что будет работать в Чикаго, только если там создадут совместную исследовательскую группу, в которую войдут как американские, так и российские специалисты. Именно так российским молекулярным биологам удалось пережить "веселые 90-е", самые тяжелые для отечественной науки. За время работы в США они получили больше 10 патентов. На заработанные деньги закупили оборудование и создали комплексную лабораторию в ИМБ.

"Русский биочип", как его называли за рубежом, получил признание. Право на использование технологии купили компании Motorola и НР, а затем зарегистрировали свой патент на модифицированную технологию. В ответ на это ученые из ИМБ разработали и запатентовали более совершенную технологию.

АТАКА НА ТУБЕРКУЛЕЗ

Первым объектом для апробации нового метода стал туберкулез. Ежегодно в мире им заражаются около 30 млн человек, порядка 2 млн от него умирают. Особенно тяжелая ситуация по туберкулезу сложилась в России, где в 90-е годы из-за многочисленных социальных проблем возбудители туберкулеза - микобактерии, или, как их еще называют, палочки Коха, мутировали, став невосприимчивыми к традиционным препаратам. На сегодняшний день известно около 40 мутантных штаммов. При традиционном подходе после выявления у пациента туберкулеза рентгенологическими методами его лечат препаратами так называемого первого ряда, к которым относятся рифампицин и изониазид. Параллельно проводят микробиологическое исследование возбудителя, чтобы установить его чувствительность к этим лекарствам. Это занимает от двух до трех месяцев. А когда выясняется, что эти лекарства на данную форму микобактерии не действуют, больной уже в течение нескольких месяцев принимал ненужные и, более того, вредные препараты, успев передать лекарственно-устойчивую форму туберкулеза всем, с кем контактировал. Конечно, в запасе у медиков остаются препараты "второго ряда", но и с ними может произойти та же история. Поэтому быстрая и точная диагностика туберкулеза очень и очень важна. Если использовать биочипы, диагноз можно поставить менее чем за сутки. Из пробы больного выделяют ДНК и проводят полимеразно-цепную реакцию (ПЦР), чтобы многократно размножить участок ДНК, на котором могут встречаться мутировавшие гены устойчивости к антибиотикам. Последующий анализ на биочипе поможет определить, каким именно из десятков мутантных штаммов туберкулеза заражен пациент. Но эти волшебные биочипы надо было еще создать. В 2004 году труды ученых из ИМБ увенчались успехом - диагностика с использованием биочипов была сертифицирована. Сегодня выпускается два вида устройств: для выявления чувствительности микобактерий к препаратам первого и второго ряда

НА ВСЕ РУКИ МАСТЕР

Выпускаются биочипы для самых разных целей. Для выявления возбудителей гриппа А, в том числе птичьего гриппа, герпеса, гепатита В и С, разнообразных инфекций у беременных женщин и новорожденных, для определения предрасположенности к сердечно-сосудистым заболеваниям. А есть и такие, которые могут сослужить службу криминалистам, поскольку определяют пол и группу крови. Ученые работают над биочипами для обнаружения стафилококкового, холерного, дифтерийного, столбнячного токсинов, возбудителей сибирской язвы и чумы, разновидностей вируса оспы.

ЛАБОРАТОРИЯ РАЗМЕРОМ С ПОЧТОВУЮ МАРКУ

Биочип устроен следующим образом. На матрице-подложке расположено множество ячеек с гидрогелем (диаметром около 100 микрон, так что на одном квадратном сантиметре могут разместиться до тысячи ячеек). В ячейках содержатся молекулы-зонды: в зависимости от назначения биочипа это могут быть фрагменты ДНК, РНК или белки. Каждая ячейка - это аналог микропробирки, в которой происходит реакция между молекулами-зондами и молекулами исследуемой пробы. Если эти молекулы подходят друг к другу как ключ к замку, происходит так называемая гибридизация - молекулы соединяются химическими связями. Ячейка, в которой произошла реакция, флуоресцирует (потому что пробу предварительно обрабатывают светящейся меткой). В специальном приборе-анализаторе под названием "чип-детектор" конфигурация светящихся точек покажет, какие мутации есть в клетках пациента, обнаружит бактерии и вирусы, выявит генетические формы микроорганизмов - возбудителей болезни.



1.Забор анализируемогообразца.
2 Обработка образца.
3 Взаимодействие образца
с иммобилизованными зондами биологического микрочипа.
4 Анализ биочипа после взаимодействия. Картина распределения свечения ячеек микрочипа является индивидуальной характеристикой анализируемого образца.
Управляющая программа контролирует эксперимент и обрабатывает данные в реальном масштабе времени и отображает их на экране монитора.

Материалы по теме

Российские ученые из МФТИ и еще нескольких академических институтов создали чип, который позволяет с высокой точностью определять один из самых распространенных раков - колоректальный (так называют злокачественные опухоли толстой и прямой кишки).

ЧТО АМЕРИКАНЦАМ ЗАПРОСТО...

Крайне важно, что новый тест очень прост, кровь для него берут из вены точно так же, как для обычного так называемого биохимического анализа. Поэтому он будет хорошо подходить для скрининга - быстрого и простого отбора пациентов даже с ранними формами рака. Сейчас в мире для этого рекомендуют колоноскопию, которую после 50 лет нужно проводить не реже одного раза в десятилетие. Это совсем непростая и не очень приятная процедура, при которой гибкий эндоскоп вводят через прямую кишку в толстый кишечник. В США это профилактическое исследование для людей старше пятидесяти поставлено на поток. Каждый эпизодически получает по почте приглашение на такую диагностическую процедуру.

У нас такое исследование проводят по показаниям, когда есть симптомы какого-либо заболевания толстого кишечника. Если же кто-то хочет просто провести такое профилактическое исследование, как это делают в США, чтобы не проморгать болезнь, это можно сделать на платной основе в индивидуальном порядке. Может быть, всем поголовно его и не стоит делать, но тем, у кого есть факторы риска развития колоректального рака, это исследование лишним не будет.

Почему ранняя диагностика рака толстой и прямой кишки так важна? Во-первых, это заболевание одно из самых распространенных - в развитых странах эта злокачественная опухоль стоит на 3-м месте среди всех видов рака. Во-вторых, болезнь весьма тяжелая и тяжело лечится. Несмотря на большие достижения в ее лечении, результаты далеко не самые лучшие: пятилетнее выживание после хорошей терапии бывает примерно у 60-65% пациентов. И в-третьих, если опухоль выловить на ранних стадиях, то результаты будут гораздо лучшими. Для этого и нужен скрининг. И лучше простой и не очень затруднительный, как колоноскопия.

НАУКА - ПРАКТИКЕ

Над поиском такой методики трудится немало ученых в мире. Например, в США недавно появился метод диагностики по сложному анализу стула. Но наши ученые предложили еще более удачное решение. Про-цедура исследования сведена к забору крови из вены, как это делают при биохимическом анализе крови. Российский биочип построен на совсем иных принципах, чем американский набор для диагностики. Хорошо известно, что в крови есть маркеры, которые могут свидетельствовать о наличии опухоли. Они тем или иным образом связаны с обменом веществ в злокачественных клетках и с ответом организма на опухоль. И таких маркеров много. Беда в том, что они весьма капризны: могут быть не только при колоректальном раке, но и при других опухолях и даже при иных состояниях. То есть их специфичность для данного вида рака не всегда достаточна для уверенной постановки диагноза. Наши ученые нашли выход из этой проблемы: они сделали комбинированный чип, который определяет сразу не один маркер, а много. Благодаря этому точность диагностики повысилась многократно.

Не будем приводить названия маркеров, которые определяются при использовании чипа. Для нас гораздо важнее чувствительность предложенного теста - она составляет 88%. То есть он определяет наличие опухоли у 88% больных из 100. Это очень хороший показатель.

Отчет об исследовании отечественного чипа опубликован на днях во влиятельном международном журнале Cancer Medicine, и есть все основания полагать, что скоро такая полезная диагностическая система поступит в практическое здравоохранение. И самое главное, по этому же принципу можно разработать диагностические чипы и для других видов рака.

Материал подготовил Олег Днепров

Фото THESTAR.COM

ФАКТОРЫ РИСКА КОЛОРЕКТАЛЬНОГО РАКА:

  • наличие таких болезней, как дивертикулы толстой кишки и неспецифический язвенный колит (болезнь Крона);
  • возраст старше 50 лет;
  • наличие этой опухоли у кровных родственников;
  • большое содержание жиров и мяса в питании;
  • пристрастие к алкоголю;
  • курение;
  • сахарный диабет, ожирение, низкая физическая активность.

Биочип – это организованное размещение молекул ДНК или белка на специальном носителе – «платформе».

Платформа представляет из себя пластинку площадью всего 1 см2 или чуть больше. Она сделана из стекла или пластика, либо из кремния. На ней в строго определенном порядке может быть размещено множество молекул ДНК или белка. Отсюда и присутствие в термине слова – «микро».

На биочипе можно проводить анализ молекул различных веществ. Для этого на нем закрепляют «узнающие» молекулы. Каждую из таких молекул обозначают термином – «молекула-зонд», а каждую из исследуемых молекул –

«молекула-проба».

Молекула-зонд на биочипе определяется самим исследователем, т.е. он планирует, какую молекулу нужно искать среди молекул в исследуемом материале – в жидкости и т.д. Если на микрочипе исследуется ДНК – это ДНК-чип, если молекула белка – белковый чип.

Как фиксируются молекулы-зонды на биочипе?

Во многих странах молекулы-зонды прикрепляют прямо к стеклянной пластинке, т.е. к подложке при помощи лазеров. В нашей стране молекулы-зонды размещаются в ячейки из геля, диаметром менее 100 микрон каждая, ячейки фиксированы к пластинке в процессе изготовления микрочипа. Количество ячеек на чипе достигает уже несколько тысяч.

В ячейках молекулы-зонды химически привязаны и находятся в функционально активном состоянии.

Так как ячейки заполнены гелем трехмерной структуры, то они удерживают большее количество молекул-зондов, нежели чипы, в которых молекулы- зонды просто прикреплены к пластинке. Важно и то, что химическая реакция между молекулой-зондом и вносимой в ячейку из геля молекулы-пробы, протекает как и в жидкостях, а значит, как и в живом организме.

Изучение генома и протеома каждого типа клетки в норме и при любой болезни позволит выяснить – какой ген или гены вызывают ту или иную болезнь.

На ДНК-чипе выясняется причина возникновения болезни: дефекты в структуре гена или генов, или изменения активности гена при нормальной его структуре.

На белковом чипе определяются последствия «поломок» в гене по изменениям его продукта – белков в клетке. Изменения в гене клетки или белке – это их метка или маркер (от англ. mark – знак, метка).

Отсюда: ген с меткой – это ген-маркер, а белок с меткой – это белок- маркер. Эти маркеры позволяют обнаруживать у пациента дефектную или больную клетку, характерную для конкретной болезни, в том числе и раковую стволовую клетку. При диагностике болезни ген-маркер и белок-маркер для контроля сравнивают с нормальным геном клетки и его продуктом – белками.

Ясно, что на ДНК-чипе молекулой-зондом является ген-маркер, а для контроля в отдельной ячейке – нормальный ген, в белковом микрочипе в качестве молекулы-зонда может быть или антитело, или антиген.

Способы изготовления биочипов

1. Молекулы ДНК или белка предварительно синтезируют, а затем размещают на матрице. Недостаток этого метода: невысокая плотность молекулы- зонда на матрице – до 1000 молекул и трудоемкий процесс их синтеза.

Копии гена-маркера можно получить ПЦР-ММК методом, такого метода для копий белка-маркера нет. Его копии можно создавать встраиванием иРНК гена белка-маркера в бактерию: E. coli или в клетки дрожжей.

2. Для ДНК-чипов синтез олигонуклеотидов производят непосредственно на матрице. Такие чипы обладают гораздо большей плотностью молекул-зондов.

3. Нанесение олигонуклеотидов в строго определенное место матрицы струйным принтером.

В нашей стране биочипы – ДНК-чип и белковый чип готовят по первому способу.

Биочип – новейшее устройство для медицины XXI века. По молекулам-маркерам он позволяет:

1) диагностировать любую болезнь: до ее начала или в самом ее начале;

2) находить в организме тот или иной вирус, бактерии и раковые клетки;

3) белковым чипом можно находить лекарства среди низкомолекулярных соединений в целом ряде анализируемых материалов;

4) решение этих задач на биочипах можно сделать за считанные часы, а не дни и т.д.

Принцип действия биочипов и этапы анализа

1. ДНК-чип.

Мы знаем, что молекула ДНК состоит из двух комплементарных цепей. Основа каждой цепи – это последовательность из четырех азотистых оснований: аденин (А), гуанин (Г), тимин (Г) и цитозин (Ц).

При этом последовательность оснований одной цепи определяет последовательность оснований в другой: А-Т и Г-Ц. Когда между этими комплементарными основаниями спонтанно образуются водородные связи, две цепи соединяются, т.е. гибридизуются в двойную спираль и удерживают цепи вместе. Именно на способности комплементарных оснований связываться друг с другом: А с Т, а Г с Ц основан принцип действия ДНК-чипа.

Этапы анализа с помощью ДНК-чипа

1. В ячейках чипа фиксированы копии известного гена-маркера в виде одной цепи этого гена, т.е. его «половинки» – кДНК.

2. Из плазмы крови от пациента выделяется копия гена-маркера, т.е. иРНК.

3. На молекуле иРНК с помощью фермента обратной транскриптазы синтезируют другую цепь гена-маркера, т.е. вторую его «половинку» – кДНК. ПЦР-ММК размножают эту кДНК – это молекулы-пробы, и их метят флуоресцентным красителем.

4. Роботом помещают молекулы-пробы в определенные ячейки на чипе с копией генов-маркеров раковой стволовой клетки.

Если кДНК генов из образца плазмы комплементарна с кДНК в соответствующих ячейках, то между ними произойдет гибридизация, и такие ячейки начнут светиться. Чип сканируют лазером, следя за интенсивностью сигнала флуоресценции в каждой ячейке. То есть гены-маркеры в плазме есть, а значит, в организме пациента есть раковые стволовые клетки.

Если нет гибридизации между этими молекулами, значит, нет гена-маркера раковой стволовой клетки в этом образце плазмы.

Когда имеется ген с мутацией, тогда будет гибридизация его кДНК на чипе с кДНК молекулы-зонда, имеющей эту мутацию. Если это ген-супрессор wt53, то это также может указывать на наличие в организме пациента раковой стволовой клетки или клеток.

Раковая клетка возникает из стволовой клетки ткани из-за включения в ней генов фетальных белков. Поэтому в молекулах-пробах плазмы пациента будут кДНК этих генов и отсутствие их в контроле.

Чем меньше в образце плазмы от пациента титр эпимутантных и мутантных генов-маркеров, тем меньше раковых клеток в его организме.

Выявление раковых клеток в образце плазмы крови или других биологических жидкостей от пациента – моча, слюна, слезная жидкость и др. по генам- маркерам, дает возможность поставить диагноз рака, а по генам-маркерам свойства инвазии раковой клетки – микрометастазы рака. И это задолго до обнаружения их стандартными методами – УЗИ, рентгенография, компьютерная томография и др.

Биочипом по генам-маркерам можно выявлять угрозу болезни. Так, если обнаружены гены-маркеры, но еще нет их продуктов – белков в клетке, то это выявление предболезни. По отношению к раку – это предраковые клетки. Так как в этом случае биочип позволяет выявить только вероятность болезни, то такой чип пока не подвергается сертификации.

Плазма крови пациента – это главный резервуар, куда проникают гены- маркеры из погибающих дефектных или больных клеток при конкретной болезни из различных органов, в том числе из раковых клеток. Такие клетки в организме могут погибать за счет некроза и апоптоза, а их гены через межклеточную жидкость затем проникают в кровь.

Низкий титр генов-маркеров в плазме крови пациента по анализу на ДНК- чипе и отсутствии их продукта – белков, может означать предболезнь, а при наличии их – болезнь. В таком же смысле это касается и рака. Это могло бы означать раннюю диагностику рака – II ее уровень.

2. Белковый чип.

Строение чипа для анализа белков то же, что и у ДНК-чипов. Лишь те чипы, на которых проходит ферментативная реакция, имеют более редкое расположение ячеек, а те, на которых идет ДНК-реакция, – более частое.

Белки-маркеры – это продукт «поломок» гена или генов, они превращают нормальную клетку в дефектную или больную клетку при конкретной болезни. Эти белки появляются на поверхности клеток и являются белками-антигенами и для каждой болезни они свои.

На раковой стволовой клетке появляются фетальные белки и белки- рецепторы, которых нет на нормальной стволовой клетке. Являются ли они белками-антигенами – вопрос не решен.

В белковом чипе в качестве молекулы-зонда, т.е. белка-маркера дефектной или больной клетки может быть белок-антиген, тогда в сыворотке от пациента определяют антитела к нему. Если молекулой-зондом берется антитело, то в сыворотке крови от пациента ищут белок-антиген.

В связи с расшифровкой генома человека требуется анализ функций огромного количества белков в клетках разного типа, в том числе ранее неизвестных. Тысячи белков могут быть фиксированы в разных ячейках микрочипа и одновременно анализированы на способность: связывать известный лиганд, катализировать ту или иную ферментативную реакцию, взаимодействовать с антителами, низкомолекулярными соединениями и др.

В раковой клетке важно изучать кроме белков-маркеров, белков- рецепторов и антител к ним, белки свойства инвазии, фактор роста эндотелия сосудов-1 и белок-рецептор к нему на поверхности гемопоэтической клетки и др.

Принцип действия белкового чипа

Он также основан на комплементарности участвующих молекул, но белковых.

1. Антиген со своим антителом. Антиген – это любое вещество, в состав которого обычно входит какой-то белок, способный вызывать иммунную реакцию.

Антитело – это молекула белка, секретируемая одной из клеток иммунной системы. Форма этой молекулы и распределение электрического заряда по ее поверхности делают ее способной связывать антиген, комплементарный ей по форме и распределению заряда.

Впервые еще в 1942 г. нобелевский лауреат Л. Полинг и его коллеги выдвинули верный постулат, что трехмерная структура антигена и его антитела

Комплементарны и, таким образом, «несут ответственность» за образование комплекса – антиген–антитело.

2. Субстрат со своим ферментом. На основе гипотезы топохимического соответствия специфичность действия фермента связана с узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают точечные контакты и водородные связи.

3. Белок с низкомолекулярным соединением. Для ингибирования белка необходима связь между ними – комплементарной поверхности соединения с активными участками молекулы белка,

4. Фермент с низкомолекулярным соединением. Ферменты и другие белки создают все свойства раковой клетки, поэтому они являются основными мишенями для лекарств. Для блокады фермента низкомолекулярным соединением также необходима между ними комплементарность: поверхность молекулы соединения при этом должна быть копией поверхности участка субстрата, которая не изменяется при катализе.

Этапы анализа с помощью белкового чипа

1. В ячейках чипа фиксирован известный белок-антитело к белку, который создает дефектную или больную клетку конкретной болезни. Искомый белок – это белок-маркер.

2. Из сыворотки крови от пациента берется образец сыворотки для анализа. В образец добавляют флуоресцентный краситель – каждая молекула белка- маркера получает это вещество.

3. С помощью робота капли сыворотки из образца помещают в определенные ячейки чипа. Молекулы-зонды ищут комплементарные им молекулы среди молекул-проб. Если есть такая молекула, то она связывается с молекулой-зондом в ячейке чипа; между ними происходит химическая реакция, и она начинает светиться.

4. Ячейки, в которых появилось яркое свечение, укажут на присутствие искомого белка белка-маркера. Так как этот белок-маркер из дефектной или больной клетки при конкретной болезни, это укажет на начало у пациента этой болезни. Точно также выявляют присутствие в организме пациента раковой клетки(-ок) по их белкам-маркерам.

Если в ячейках чипа фиксирован белок-антиген, тогда в сыворотке крови пациента ищут антитела к белку-маркеру. Если в сыворотке окажутся антитела к белку-маркеру, это будет указывать на наличие в организме пациента раковых клеток, т.е. пациент болен. А по белкам-маркерам свойства инвазии раковой клетки, например, по наличию белка Mts1 и других, можно регистрировать гдето в организме у пациента микрометастазы раковых клеток.

Мы уже знаем, что белки, которые образуются в раковых клетках, но отсутствуют в нормальных, это белки-маркеры или антигены. Наличие таких белков – признак того, что ген, вызывающий перерождение нормальной клетки в раковую, начал свою разрушительную работу. Выявление раковой клетки(-ок) по белкам-маркерам позволяет поставить диагноз рака или его микрометастазов задолго до выявления его симптомов у пациента. Титр белка-маркера в сыворотке крови пациента определяет количество раковых клеток в его организме. Низкий титр белков-маркеров из раковых клеток в сыворотке крови, а также в других жидкостях пациента – признак малого количества раковых клеток в организме пациента. Это могло бы стать ранней диагностикой рака – II ее уровень.

Итак, в XXI веке по мере выявления генов-маркеров и белков-маркеров, вызывающих конкретную болезнь, диагностика ее, в том числе и рака, станет ранней, т.е. на двух уровнях: 1) «до начала» – по генам-маркерам и 2) «в самом начале» – по белкам-маркерам.

Гены-маркеры и белки-маркеры в дефектной или больной клетке – это цели или мишени для новых лекарств. На их основе будут создаваться лекарства и другие средства, в том числе – вакцины. За счет комплементарности к молекулам-мишеням, лекарства будут действовать избирательно, не повреждая нормальные клетки.

Врач, действуя на гены-маркеры болезни, сможет ее предотвратить, а воздействиями на белки-маркеры клеток ее можно будет излечить в самом «зародыше».

Этими двумя путями врач получит, так сказать, полную власть над любой болезнью на клеточном уровне.

Поиск генов-маркеров и белков-маркеров в различных средах организма пациента быстро и точно можно выполнять на биочипах, а гены-маркеры, кроме этого, можно выявлять с помощью точнейших методов: ПЦР-ММК и МС- ПЦР. Это будет означать революцию в медицине.

Ученые выявят гены-маркеры и белки-маркеры, вызывающие конкретную болезнь, в том числе и возникновение раковой клетки. Тогда станет возможным разработать для ранней диагностики любой болезни минимум наборов: генов-маркеров и белков-маркеров. Они будут дополняться и уточняться по мере получения новых знаний. Это будет генный и белковый «профили» болезни, и которые будут перенесены на биочипы.

Тестирование человека на маркеры определенной болезни с помощью ДНК-чипа и белкового чипа имеет несколько преимуществ.

Отрицательный результат – принесет человеку радость и может избавить его от обследования стандартными методами: ультразвуковое исследование, рентгенография и др.

Положительный результат – даст человеку возможность, а также время на то, чтобы принять меры для снижения риска возникновения болезни, или при ее начале – начать соответствующее лечение.

Особое значение имеет ранняя диагностика рака. Это связано с тем, что, во-первых, причина рака – раковая клетка, а она из клетки своего организма- хозяина и, во-вторых, вплоть до недавнего времени не было известно абсолютных отличий раковой клетки от нормальной клетки.

До сих пор считается, что для каждого типа раковой клетки характерны «свои» гены и белки. Но геном в клетке каждого типа – один и тот же. Если принять, что из каждого типа клетки раковая клетка – «своя», тогда почему свойства раковой клетки любого типа – одинаковые?

Тип клетки создается репрессией одних генов – из-за метилирования и экспрессией других генов – за счет деметилирования их промотора.

Теперь также доказано, что клетка любого типа становится раковой за счет дерепрессии в ней генов фетальных белков. То есть формирование типа клетки и возникновение раковой клетки из нормальной клетки – это независимые друг от друга процессы. Из этих двух фактов можно допустить, что общие гены-маркеры и их продукт – белки для любого типа раковой стволовой клетки должны быть.

Общими генами и их продуктами – белками могут стать: ген и его фермент – теломераза, ген и белок под кодовым обозначением «5Т4», ген oct-4 и белок Oct-4, ген Nanog и белок, ген mts 1 и белок Mts 1, ген остеопонтин и белок и др.

Если это подтвердится, то это станет настоящим прорывом в решении многих, если не всех, проблем рака:

Ранняя и точная диагностика раковой стволовой клетки любого типа на основе общего гена-маркера и его продукта – белка-маркера;

Универсальные лекарства и средства, в том числе вакцина, против рако-стволовой клетки и ее метастазов.


Биологический микрочип, биочип (biochip, греч. bio(s) - жизнь и logos - понятие, учение; греч. mikros - маленький и англ. chip - осколок) - пластинка-носитель, на которой в определенном порядке расположены многочисленные ячейки (до несколько десятков тыс.) с различными иммобилизованными в них одноцепочечными олигонуклеотидами или олигопептидами, каждый из которых способен избирательно связывать определенное вещество, содержащееся в сложной смеси в анализируемом растворе. Биочип используется для молекулярно-генетических исследований, диагностики различных заболеваний человека, экспресс-диагностики высокопатогенных вирусов, а также в ветеринарии, сельском хозяйстве, криминалистике, токсикологии, охране окружающей среды. Первая работа по биочипам в современном формате (с фрагментами ДНК) была опубликована А. Д. Мирзабековым с сотр. в 1989 г.

Биологические микрочипы (biochips), или, как их чаще называют, DNA microarrays, - это один из новейших инструментов биологии и медицины XXI в. В настоящее время они активно производятся несколькими биотехнологическими фирмами. Биочипную технику можно с успехом применять как для исследовательских целей, так и для диагностики в медицинских учреждениях.

С помощью микрочипов можно проводить одновременный анализ работы тысяч и десятков тысяч генов, сравнивать их экспрессию. Такие исследования помогают создавать новые лекарственные препараты, выяснять, на какие гены и каким образом эти новые лекарства действуют. Биочипы являются также незаменимым инструментом для биологических исследований, за один эксперимент можно увидеть влияние различных факторов (лекарств, белков, питания) на работу десятков тысяч генов.

Биочипы позволяют очень быстро определять наличие вирусных и бактериальных возбудителей. Важное медицинское применение биочипов - это диагностика лейкозов и других вирусных заболеваний. Биочипы позволяют быстро, за считанные дни или даже часы различать внешне неразличимые виды лейкозов. Биочипы применяются для диагностики различных видов раковых опухолей .

Прообразом современных "живых чипов" послужил саузерн-блоттинг , изготовленный в 1975г. Эдом Саузерном. Он использовал меченую нуклеиновую кислоту для определения специфической последовательности среди фрагментов ДНК, зафиксированных на твердой подложке. В России ученые начали активно разрабатывать биочипы в конце 1980-х годов в Институте молекулярной биологии РАН под руководством А.Д.Мирзабекова.

Точнее всего биочипы описывает английское название DNA-microarrays, т.е. это организованное размещение молекул ДНК на специальном носителе. Профессионалы называют этот носитель платформой. Платформа - это чаще всего пластинка из стекла (иногда используют и другие материалы, например кремний), на которую наносятся биологические макромолекулы (ДНК, белки, ферменты), способные избирательно связывать вещества, содержащиеся в анализируемом растворе.

В зависимости от того, какие макромолекулы используются, выделяют различные виды биочипов, ориентированные на разные цели. Основная доля производимых в настоящее время биочипов приходится на ДНК-чипы (94%), т.е. матрицы, несущие молекулы ДНК. Оставшиеся 6% составляют белковые чипы.

Организованное размещение макромолекул занимает на платформе очень небольшой участок размером от почтовой марки до визитной карточки. Микроскопический размер биочипа позволяет размещать на небольшой площади огромное количество разных молекул ДНК и считывать с этой площади информацию с помощью флюоресцентного микроскопа или специального лазерного устройства для чтения ( рис. 2.50).

Характерные размеры ячеек современных микрочипов лежат в пределах 50-200 мкм, общее число ячеек на чипе составляет 1000-100000, а линейные размеры чипа - порядка 1 см. В поверхностных матричных биочипах ДНК иммобилизуется на поверхности мембран или пластинок из стекла, пластика, полупроводника или металла. В гелевых биочипах ДНК иммобилизуется в слое полиакриламидного геля толщиной 10-20 мкм, нанесенного на специально обработанную поверхность стекла. Также чипы могут наращиваться прямо из стеклянной пластинки методом фотолитографии с использованием специальных микромасок. Иммобилизуемая ДНК наносится на поверхность или через игольчатые растры (пины) механического робота, или с помощью технологии струйного принтера. Контроль качества нанесения осуществляется с помощью специализированной оптики и компьютерного анализа изображения. На биочипе в дальнейшем гибридизуют молекулы ДНК, меченные красителем.

Гибридизуемая ДНК в растворе метится с помощью флюоресцентной или радиоактивной метки. В случае смеси молекул ДНК (например, ДНК дикого типа и ДНК с мутациями) каждая метится своим флюоресцентным красителем. Свойства красителя не должны сильно зависеть от состава (A/Т или G/C) ДНК и температуры. Интенсивность флюоресценции в ячейках измеряют с помощью сканера или люминесцентного микроскопа, передающего сигнал на прибор с зарядовой связью. Однако флюоресценция является основным, но не единственным методом изучения гибридизации. В частности, данные о характере гибридизации можно получить также с помощью масс-спектрометрии, атомной силовой микроскопии и др.

В основе принципа работы всех типов биочипов с иммобилизованной ДНК лежит точное соответствие между комплементарными ДНК по правилу Уотсона-Крика: A-Т, G-С. Если соответствие между нуклеотидами иммобилизованной и гибридизуемой ДНК точно удовлетворяет условиям комплементарности, то образующиеся дуплексы будут термодинамически наиболее устойчивы. В результате при конечных температурах их будет больше, чем несовершенных дуплексов с нарушением условий комплементарности, и, соответственно, совершенным дуплексам будет отвечать более сильный сигнал флюоресценции. В выявлении и сопоставлении наиболее ярко светящихся ячеек и заключается работа прибора - анализатора биочипов.

Гибридизуемая ДНК обычно заранее нарабатывается в достаточных количествах с помощью ПЦР. В более продвинутых технологиях ПЦР осуществляется непосредственно на чипе. Кроме того, непосредственно на чипе можно осуществлять фрагментацию, фосфорилирование, лигирование ДНК или мини-секвенирование, при котором длина дуплекса увеличивается на одну пару оснований. Последнюю технику можно эффективно использовать для поиска мутаций.

На Западе и в России сейчас сформировалось два разных направления и два разных стандарта по созданию и применению биочипов. Российские биочипы дешевле, а западные - объемнее. При этом в России биочипами занимаются пока преимущественно исследовательские лаборатории, а на Западе - это, в первую очередь, военные исследования и коммерческое производство чипов для диагностики.