Тиреоидные гормоны тироксин (Т4) и трийодтироксин (Т3) влияют на интенсивность обмена веществ и энергии, они усиливают поглощение кислорода клетками и тканями, стимулируют распад гликогена, тормозят его синтез, влияют на жировой обмен. Особенно важно влияние тиреоидных гормонов на сердечно-сосудистую систему. Увеличивая чувствительность рецепторов сердечно-сосудистой системы к катехоламинам, тиреоидные гормоны учащают ритм сердечных сокращений и способствуют повышению артериального давления. Тиреоидные гормоны необходимы для нормального развития и функционирования центральной нервной системы, их дефицит приводит к развитию кретинизма.
Тиреотоксин стимулирует обмен веществ, ускоряет биохимические реакции, оказывает влияние на все органы, поддерживает нормальный тонус нервной системы. Гормон тироксин оказывает влияние на активность адреналина и холинэстеразы, на водный обмен, регулируя реоабсорбцию жидкости в почечных канальцах, влияет на клеточную проницаемость, белковый, жировой и углеводный обмен, на уровень окислительных процессов в организме, на основной обмен, на гемопоэз.
Тиреоидные гормоны оказывают большое влияние на гормональное развитие ребенка.
При недостатке их при врожденном тиреотоксикозе является низкий рост и замедленное костное созревание. Как правило, костный возраст более медленный, чем рост организма.
Основной эффект тиреоидных гормонов осуществляется на уровне хряща, кроме этого, тироксин играет роль и в минерализации костей.

Тиреоидные гормоны плода образуются из щитовидной железы. Материнские тиреоидные гормоны не проходят через плаценту. В связи с этим развитие мозга и формирование костей у детей с врожденным атиреозом или гипотиреозом замедлены уже при рождении. Однако дети с атиреоидизмом рождаются с нормальной массой и ростом, это дает основание полагать, что во время внутриутробного роста тиреоидные гормоны не оказывают влияния на нарастание массы и роста тела.
Тиреоидные гормоны детерминируют постнатальный рост и в особенности созревание костей. Физиологические дозы вызывают эффект роста только при атиреоидизме и гицотиреоидизме, но не у здоровых детей. Для этого эффекта необходим и нормальный уровень гормона роста. При дефиците гормона роста тиреоидные гормоны могут корригировать только замедленное созревание кости, но не замедленный рост.
Регулирует секрецию гормонов щитовидной железы тирео-тропный гормон, который синтезируется в передней доле гипофиза, его синтез контролируется тиреолиберином (гормоном гипоталамуса). Выпадение функции гипоталамуса и гипофиза ведет к гипотиреозу и наоборот, чрезмерная активность тиреотропнопродуцирующих клеток гипофиза или наличие тиреотропнс секретирующих образований гипофиза приводит к гиперфункции щитовидной железы и развитию тиреотоксикоза.

Тиреотропный гормон гипофиза поступает в щитовидную железу с током крови, связывается специальными рецепторами, расположенными на поверхности фолликулярных клеток, и стимулирует их биосинтетическую и секреторную деятельность. Большая часть тироксина, поступающего в кровь, образует комплекс с определенными белками сыворотки крови, но биологической активностью обладает только свободный гормон.
Трийодтиронин связывается белками сыворотки крови в меньшей степени, чем тироксин. Функциональная активность щитовидной железы постоянна, она снижается только в старческом возрасте. В препубертатном и пубертатном периодах активность щитовидной железы у девочек выше, чем у мальчиков.
При избыточной продукции гормонов щитовидной железы могут возникнуть аутоиммунные процессы, при которых биосинтез гормонов щитовидной железы и их избыточная продукция контролируется не тиреотропиногормоном, а тиреоидстимулирующими антителами. Последние являются компонентами иммуноглобулинов сыворотки крови. Это приводит к нарушению иммунологического равновесия в организме, дефициту Т-лимфоцитов, Т-супрессоров, осуществляющих в организме функцию «иммунологического надзора». Вследствие этого выживают «запрещенные» клоны Т-лимфоцитов, появившихся в результате мутации лимфоидных клеток или их предшественников Т-химеров, последние, сенсибизированные к антигенам, взаимодействуют с В-лимфоцитами, которые превращаются в плазматические клетки, способные синтезировать тиреоидстимулирующие антитела.

Наиболее изучены длительно действующий стимулятор щитовидной железы LATS и LATS-протектор, которые конкурируют с тиреотропином за связь с рецепторами к нему и оказывают действие, аналогичное действию тиреотропина. Определяются также антитела, которые осуществляют изолированное трофическое влияние на щитовидную железу. Чрезмерная секреция тиреоидных гормонов усиливает катаболитические процессы в организме: распад белков, гликогенолиз, липолиз, распад и превращение холестерина.
В результате диссимиляции процессов, активируемых щитовидной железой, усиливается высвобождение калия и воды из тканей и их выведение из организма, появляется витаминная недостаточность, снижается масса тела. Избыток тиреоидных гормонов оказывает на центральную нервную систему вначале возбуждающее влияние, а впоследствии приводит к ослаблению как тормозных, так и возбудительных процессов и возникновению психической неустойчивости. Он способствует нарушению утилизации-энергии, снижению пластического и энергетического обеспечения миокарда, повышению чувствительности к симпатическим влияниям катехоламинов.
Недостаточная продукция гормонов гипофиза и гипоталамуса тиреотропина и тиреолиберина приводит к снижению уровня гормонов щитовидной железы в организме.

Дефицит гормонов обусловливает нарушение всех видов обмена веществ:
1) белкового - нарушается синтез и распад белка;
2) обмена гликозаминогликанов (миксидема);
3) углеводного - замедление всасывания глюкозы;
4) липидного - повышение содержания холестерина;
5) водно-солевого - задержка воды в тканях.
Угнетение окислительных процессов проявляется снижением основного обмена.

ГЛАВА II
АМИОДАРОН И ЩИТОВИДНАЯ ЖЕЛЕЗА

1. ФИЗИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ ГОРМОНОВ ЩИТОВИДНОЙ ЖЕЛЕЗЫ НА СЕРДЕЧНОСОСУДИСТУЮ СИСТЕМУ

1.1. ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ

В щитовидной железе синтезируется два гормона, непосредственно контролирующие деятельность сердечно-сосудистой системы и обеспечивающие изменение гемодинамики в ответ на меняющиеся метаболические потребности организма, тироксин и трийодтиронин. Тиреоидным гормонам принадлежит существенная роль в регуляции разнообразных физиологических функций, включая рост, размножение, дифференцировку тканей. Гормоны щитовидной железы способны не только активировать обмен веществ в организме, но и изменять гемодинамическую, дыхательную, дренажную функции сердечно-сосудистой системы и крови, приспосабливая их к разнообразным физиологическим и патологическим состояниям. Ежедневно щитовидная железа при достаточном поступлении йода секретирует 90-110 мкг Т 4 и 5-10 мкг Т 3 .

Основным субстратом для синтеза гормонов щитовидной железы является йод. Суточная потребность в нем составляет 100-200 мкг. После поступления в организм йод избирательно накапливается в щитовидной железе, где проходит сложный путь превращений и становится составной частью Т 4 и Т 3 (цифры означают количество атомов йода в молекуле) (рис. 1). В организме здорового человека содержится около 15-20 мг йода, из которых 70-80% находится в щитовидной железе. Обычно йод поступает в организм с пищевыми продуктами, но при определенных условиях, например, при проведении диагностических процедур или лечебных мероприятий, доза вводимого йода может значительно превышать физиологическую потребность. В таких случаях избыточное количество йода может приводить к изменению синтеза тиреоидных гормонов и нарушению функции щитовидной железы с развитием гипотиреоза или тиреотоксикоза.

Рис. 1. Основные пути обмена тироксина

Большое количество тиреоидных гормонов хранится в самой щитовидной железе, в составе белка - тиреоглобулина, и по мере необходимости Т 4 и Т 3 секретируются в кровь, при этом концентрация Т 4 в 10-20 раз превышает концентрацию Т 3 . Физиологический смысл такого различия заключен в разном функциональном предназначении гормонов. Хотя тироксин - основной продукт щитовидной железы и он способен оказывать ряд эффектов через собственные рецепторы в клетках-мишенях, в крови и периферических тканях под действием ферментов, отщепляющих йод (дейодиназ), из Т 4 образуется Т 3 и реверсивный (неактивный) рТ 3 (рис. 2). На уровне клеточного ядра действует преимущественно Т 3 , биологическая активность которого в 5 раз выше, чем Т 4 . Таким образом, клетки сами регулируют количество более активного гормона - Т 3 или его реверсивной формы, чтобы в тех или иных ситуациях перераспределить расход и сохранение энергии.

Рис. 2. Регуляция синтеза и секреции гормонов щитовидной железы

В крови Т 4 и Т 3 циркулируют в двух состояниях: в свободной и связанной с транспортными белками форме. Между связанными и свободными фракциями гормонов установлено динамическое равновесие. Падение концентрации свободного гормона ведет к уменьшению связывания и наоборот. Эта буферная система позволяет сохранять постоянную концентрацию свободных гормонов в крови. Это очень важно для организма, так как внутрь клетки проникают только свободные фракции гормонов. Т 3 обладает меньшим сродством к белкам плазмы, чем Т 4 , и, следовательно, Т 4 сохраняется в крови дольше, чем Т 3 (период полувыведения Т 4 из организма составляет примерно 7-9 дней, Т 3 - 1 -2 дня).

В клинической практике мы имеем возможность определять и свободные, и связанные с белками фракции гормонов. Величина общих Т 4 и Т 3 в большей степени зависит от концентрации связывающих белков, чем от степени нарушения функции щитовидной железы. При увеличении содержания транспортных белков (контрацептивы, беременность) или при их снижении (андрогены, цирроз печени, нефротический синдром, генетические нарушения) происходит изменение обшей концентрации гормонов, при этом содержание свободных фракций не меняется.

Изменение концентрации связывающих белков может осложнять интерпретацию результатов исследования общих Т 4 и Т 3 . В этой связи определение свободных фракций Т 4 и Т 3 имеет большую диагностическую значимость.

Главным стимулятором синтеза и секреции тиреоидных гормонов является тиреотропный гормон гипофиза, который, в свою очередь, находится под контролем гипоталамуса, вырабатывающего тиролиберин (ТРГ). Регуляция секреции ТРГ и ТТГ осуществляется при помощи механизма отрицательной обратной связи и тесно связана с уровнем Т 4 и Т 3 в крови (рис. 3). Если уровень тиреоидных гормонов в крови снижается, секреция ТРГ и ТТГ быстро возрастает и концентрация тиреоидных гормонов в крови восстанавливается. Эта жесткая система позволяет поддерживать оптимальную концентрацию гормонов в крови.

Рис. 3. Регуляция генов, определяющих синтез белков в сердечных миоцитах посредством трийодтиронина


(Klein I., Ojamaa K. Thyroid hormone and the cardiovascular system, N Engl J Med. 2001; 344: 501-509) с дополнениями.

Лабораторная диагностика патологии щитовидной железы включает тестирование ТТГ, св. Т 4 и св. Т 3 . Приоритет тестирования отдается прежде всего определению ТТГ. В настоящее время исследование уровня ТТГ производится высокочувствительным методом третьего поколения, который с большой долей достоверности характеризует функцию щитовидной железы. Тестирование сывороточного ТТГ является единственным, надежным методом диагностики первичного гипотиреоза и тиреотоксикоза. В тех случаях, когда уровень ТТГ не укладывается в диапазон нормальных значений, проводится определение св. Т 4 . В ряде случае (например, низкий ТТГ, св. Т 4 в норме) в рамках диагностического поиска проводится определение св. Т 3 (рис. 4).

В тиреоидологии выделяют три состояния функциональной активности щитовидной железы:

  • Эутиреоз - ТТГ, Т 4 , Т 3 в норме.
  • Тиреотоксикоз - ТТГ снижен, Т 4 повышен, Т 3 повышен или нормальный (исключением является ТТГ - продуцирующая аденома гипофиза и синдром «неадекватной» секреции ТТГ, обусловленный гипофизарной резистентностью к тиреоидным гормонам).
  • Гипотиреоз - ТТГ повышен, Т 4 снижен, Т 3 снижен или нор мальный.

Субклинические варианты нарушения функции щитовидной железы характеризуются нормальными показателями Т 3 и Т 4 при измененном уровне ТТГ:

  • Субклинический гипотиреоз - ТТГ повышен, Т 4 и Т 3 в норме.
  • Субклинический тиреотоксикоз - ТТГ снижен, Т 4 и Т 3 в норме.

1.2. МЕХАНИЗМ ДЕЙСТВИЯ ГОРМОНОВ ЩИТОВИДНОЙ ЖЕЛЕЗЫ НА КАРДИОМИОЦИТЫ

Действие гормонов щитовидной железы на кардиомиоциты осуществляется двумя путями: через прямое влияние тиреоидных гормонов на транскрипцию генов в сердечной мышце и опосредованно, через изменение проницаемости плазматических мембран, функционирования митохондрий и саркоплазматического ретикулума. В настоящее время выделен ряд чувствительных к действию тиреоидных гормонов генов. Они представлены в таблице 3. Тиреоидные гормоны могут оказывать как позитивную, так и негативную регуляцию. Позитивная регуляция приводит к возрастанию транскрипционной активности гена и увеличению продукции мРНК. Результатом негативной регуляции является угнетение транскрипционной активности гена и снижение образования мРНК.

Таблица 3. Регуляция генов, определяющих синтез белков в сердечных мио-цитах посредством трийодинина

Механизм проникновения тиреоидных гормонов через клеточную мембрану недостаточно изучен. Установлено, что клеточные мембраны кардиомиоцитов содержат специфические транспортные белки для Т 3 . Хотя в сердечных миоцитах обнаружена дейодиназа 2 типа, наличие которой может опосредовано свидетельствовать о конверсии Т 4 в Т 3 , четких доказательств в пользу такой конверсии не получено. Наибольшим сродством к ядерным рецепторам обладает именно Т 3 . Проникая в клетку, Т 3 поступает в ядро и связывается с ядерными рецепторами, образуя ядерно-рецепторный комплекс, который, в свою очередь, распознает специфический участок ДНК - Т 3 чувствительный элемент промотора гена, инициируя транскрипцию гена и синтез мРНК (рис. 3).

Координированное движение сердечной мышцы возможно благодаря циклическому процессу образования и диссоциации комплекса миозина и актина. Физиологическим регулятором мышечного сокращения является Са2+, действие которого опосредуется тропомиозином и тропониновым комплексом. Последовательность передачи информации такова: Са2+ - тропонин - тропомиозин - актин - миозин. Известны три изоформы молекул миозина сердечной мышцы: α/α, α/β, β/β. Они различаются уровнем АТФазной активности, а-изоформа тяжелой цепи миозина обладает более высоким уровнем АТФазной активности и более высокой скоростью укорочения мышечных волокон, чем b-изоформа. Синтез каждой изоформы миозина кодируется различными генами, экспрессия которых контролируется тиреоидными гормонами.

В сердечной мышце человека преобладают b-изоформы тяжелых цепей миозина, имеющие более низкую сократительную активность. Т 3 стимулирует синтез а-изоформы тяжелой цепи миозина, обладающей более высокой АТФазной активностью и сократительной способностью, что сопровождается улучшением насосной функции миокарда. Другим механизмом регуляции сокращения и расслабления волокон миокарда является скорость выхода Са2+ в саркоплазму и его возврата в саркоплазматический ретикулум. Т 3 регулирует транскрипцию генов, ответственных за продукцию белков саркоплазматического ретикулума, Са-активированной АТРазы (Са2+-АТФазы). Са2+-АТРаза обеспечивает возврат Са2+ из саркоплазмы в саркоплазматический ретикулум. Скорость обмена Са между саркоплазмой и саркоплазматическим ретикулумом определяет систолическую сократительную функцию и диастолическую релаксацию. Таким образом, Т 3 регулирует транспорт кальция в кардиомиоцитах, изменяя систолическую и диастолическую функцию миокарда.

Помимо прямого действия на миокард, Т 3 оказывает и непрямой эффект через активацию синтеза b-адренорецепторов в сердечной мышце. Под действием тиреоидных гормонов происходит увеличение числа b-адренергических рецепторов, увеличение аффинности этих рецепторов к катехоламинам и увеличение скорости оборота норадреналина в синапсах. Тиреоидные гормоны могут оказывать свое влияние и независимо от катехоламинов, используя общие пути внутриклеточной передачи сигналов. Увеличивая плотность b-адренорецепторов, Т 3 повышает чувствительность сердца к b-адренергической стимуляции, приводя к увеличению ЧСС, пульсового давления и минутного объема сердца.

Кроме того, тиреоидные гормоны оказывают дополнительное влияние на гемодинамику за счет внеядерных эффектов. Изменяя проницаемость плазматических мембран для глюкозы, натрия и кальция, тиреоидные гормоны увеличивают активность водителя ритма 1-го порядка.

Тиреоидные гормоны стимулируют клеточное и тканевое дыхание. Они ускоряют поглощение митохондриями АДФ, активируют цикл трикарбоновых кислот, усиливают поглощение фосфата, стимулируют АТФ-синтетазу, митохондриальную цитохром с-оксидазу, стимулируют цепи транспорта электронов.

Усиление дыхания, увеличение образования АТФ и повышение теплопродукции митохондриями является результатом одновременного увеличения размеров митохондрий, синтеза структурных компонентов дыхательной цепи, числа ферментов и повышения уровня свободного Са2+ в митохондриях, изменения структуры и свойств мембран митохондрий.

Под действием тиреоидных гормонов ускоряется обмен веществ в обоих направлениях - как анаболизм, так и катаболизм, что сопровождается усилением гликолиза и бета-окисления жирных кислот, затратой энергии, повышением теплообразования. Таким образом, тиреоидные гормоны, оказывая транскрипционные и не транскрипционные эффекты, могут модулировать функцию миокарда и сердечно-сосудистой системы при физиологических и патологических состояниях.

1.3. ВЛИЯНИЕ ГОРМОНОВ ЩИТОВИДНОЙ ЖЕЛЕЗЫ НА ГЕМОДИНАМИКУ

Тиреоидные гормоны оказывают многообразные эффекты на сердечно-сосудистую систему и гемодинамику. Показатели сердечной деятельности, такие как частота сердечных сокращений, минутный объем сердца, скорость кровотока, артериальное давление, общее периферическое сопротивление, сократительная функция сердца, непосредственно связаны с тиреоидным статусом.

Тиреоидные гормоны влияют на уровень энергообразования, синтеза белка и функционирования клеток, т. е. обеспечивают жизнедеятельность организма. Кроме хорошо изученной способности тиреоидных гормонов увеличивать потребление кислорода тканями и основной обмен, вызывая вторичное изменение гемодинамики для обеспечения возросших метаболических потребностей организма, тиреоидные гормоны оказывают прямой положительный инотропный эффект на сердце, регулируя экспрессию изоформ миозина в кардиомиоцитах (рис. 4).

Рис. 4. Действие трийодтиронина на сердечно-сосудистую систему

Тиреоидные гормоны уменьшают общее периферическое сопротивление сосудов, вызывая расслабление артериол. Вазодилатация осуществляется за счет прямого эффекта Т 3 на гладкую мускулатуру сосудов. В результате снижения сосудистого сопротивления артериальное давление снижается, что приводит к высвобождению ренина и активации ангиотензин-альдостероновои системы. Последнее, в свою очередь, стимулирует реабсорбцию натрия, приводя к увеличению объема плазмы. Тиреоидные гормоны также стимулируют секрецию эритропоэтина. Комбинированный эффект этих двух действий приводит к повышению массы циркулирующей крови, частоты сердечных сокращений, скорости кровотока и увеличению фракции сердечного выброса, что способствует удовлетворению возросших метаболических потребностей организма. Тиреоидные гормоны влияют и на диастолическую функцию, повышая скорость изометрического расслабления сердечных миофибрилл и снижая концентрацию кальция в цитозоле. Изменяя частоту сердечных сокращений (положительный хронотропный эффект), тиреоидные гормоны ускоряют диастолическую деполяризацию синусового узла и улучшают проведение возбуждения через атриовентрикулярныи узел, оказывая положительный дромотропный и батмотропный эффекты (таблица 4).

Лекция 8.

Щитовидная железа. Физиологические эффекты гормонов щитовидной железы.

1. Строение. Эмбриогенез.

5. Механизм действия тиреоидных гормонов.

1. Строение. Эмбриогенез.

Щитовидная железа есть у всех позвоночных. У человека она расположена в передней области шеи, несколько ниже перстневидного хряща гортани. Она подковообразной формы и состоит из трех основных частей: двух боковых долей и средней непарной части – перешейка.

В процессе эмбриогенеза человека щитовидная железа закладывается на 3-ей неделе внутриутробного развития. Уже между 12-ой и 14-й неделями внутриутробной жизни щитовидная железа способна поглощать и накапливать йод. Между 15-й и 19-й неделями начинается органическое связывание йода и синтез гормона тироксина. Т.о., щитовидная железа начинает функционировать у зародыша задолго до его рождения, ее гормональная деятельность необходима для полноценного развития плода.

Ткань щитовидной железы разделена соединительнотканными прослойками на отдельные дольки. Основным элементом ее паренхимы являются фолликулы. стенка каждого фолликула состоит из тиреоцитов – клеток однослойного эпителия, вырабатывающих два йодсодержащих гормона щитовидной железы. В периоды низкой функциональной активности железы эпителий плоский, при увеличении ее он становится кубическим и даже цилиндрическим. Внутри фолликула содержится коллоид – секретируемая эпителием фолликулом однородная масса, содержащая йод. Между фолликулами расположена рыхлая соединительная ткань, в которой встречаются скопления эпителиальных клеток – интерфолликулярные островки, которые служат источником образования новых фолликулов.

В стенке фолликулов и в интерфолликулярных островках встречаются особые клетки круглой или овальной формы, отличающиеся светлоокрашивающейся цитоплазмой («светлые» клетки). Повышение активности этих клеток происходит после перфузии щитовидной железы растворами с высоким содержанием кальция. «светлые» клетки участвуют в секреции кальцитонина, и поэтому получили название С-клетки или К-клетки (англ. – calcitonin или рус. кальцитонин). Некоторое количество «светлых» клеток в процессе эволюции мигрировало в другие эндокринные железы – околощитовидные и вилочковую железы.

Щитовидная железа занимает первое место в организме по объему кровоснабжения (через грамм ткани за 1 мин протекает 5,6 мл крови, через почки – только 1,5 мл), что свидетельствует об активной эндокринной функции железы. Иннервация железы осуществляется симпатическими, парасимпатическими и соматическими нервами. Многие симпатические нервные окончания непосредственно связаны с фолликулами, что создает условия для прямого их воздействия на секрецию тиреоидных гормонов.

2. Гормоны щитовидной железы и их образование.

К гормонам щитовидной железы относятся два йодированных гормона (тироксин и трийодтиронин) и три пептидных гормона, входящих в семейство кальцитонина.

Тироксин и трийодтиронин образуются в клетках фолликулярного эпителия. Для синтеза этих гормонов необходимо постоянное поступление в организм неорганического йода, который человек получает с пищей в виде иодидов – йодистого калия и йодистого натрия (в суточном рационе – 100-200 мкг). В организме человека содержится 30-50 мг йода, из них около 15 мг – в щитовидной железе.

Гормонообразование в щитовидной железе проходит следующие фазы:

1. Неорганический йод, поступивший в организм с пищей, всасывается в кровь и поступает в фолликулы щитовидной железы, где он концентрируется. Затем их йодидов в процессе ферментативного окисления освобождается элементарный йод.

2. Йод соединяется с молекулой тирозина и образуется монойодтирозин и дийодтирозин. Затем йодированные тирозины окисляются, конденсируются и образуют тироксин и трийодтирозин. Соотношение синтезируемых тироксина и трийодтиронина составляет примерно 4:1. Центральная роль в описанных процессах принадлежит крупномолекулярному гликопротеиду тиреоглобулину , который включает в себя остатки аминокислоты тирозина и йод. Тиреоглобулин синтезируется эпителиальными клетками фолликулов, а затем накапливается в коллоиде фолликулярной полости. Именно внутри его молекулы происходят процессы органического связывания йода, образования йодированных тирозинов и их конденсация. Таким образом, биосинтез тироксина и трийодтиронина основан на непрерывном образовании тиреоглобулина. Частично этот процесс может происходить и непосредственно в тиреоцитах.

3. Тиреоидные гормоны освобождаются из молекулы тиреоглобулина и выделяются в кровь. Этот этап начинается с поступления коллоидных капелек внутрь эпителиальных клеток путем пиноцитоза, после чего происходит протеолитическое расщепление молекулы тиреоглобулина катепсинами лизосом эпителиальных клеток. В результате освобождаются тироксин, трийодтирозин, а также моно- и дийодтирозины. Гормоны проникают в кровь, а йотирозины подвергаются деиодированию.

Основным тиреоидным гормоном, циркулирующим в крови, является тироксин. Тироксин находится в связанном с белками состоянии. У человека примерно 75 % циркулирующего тироксина связано с α -глобулином, 10-15 % - с преальбумином, небольшие количества – с альбумином. Эта связь носит обратимый характер. Трийодитонин также связывается с белками плазмы, но менее прочно, поэтому физиологическое действие его проявляется быстрее, чем тироксина. Связь с белками препятствует потере тиреоидных гормонов через почки.

Внутрь клетки проникают только свободные тироксин и трийодтиронин, которые фиксируются специфическими белками. В периферических тканях происходит метаболизм тиреоидных гормонов, в том числе их деиодирование. При этом тироксин частично переходит в биологически более активный трийодтиронин. при полном деиодировании, а также разрушении пептидной цепочки гормоны полностью инактивируются.

Организму взрослого человека в сутки требуется 100-300 мкг тироксина или 50-150 мкг трийодтиронина. Разрушаются тиреоидные гормоны довольно медленно: период полураспада тироксина – около 4 суток, а трийодиронина – 45 часов. Избыток гормонов разрушается или выводится из организма. Метаболическая деградация гормонов происходит главным образом в печени. Причем, полагают, что образующиеся метаболиты обладают физиологической активностью. Известно, что продукт дезаминирования тироксина сильно стимулирует метаморфоз у амфибий (действие у млекопитающих не изучено).

Выведению тироксина и трийодтиронина из ооганизма предшествует их конъюгирование с глюкуроновой и серной кислотами в печени. Образующиеся глюкурониды и сульфоглюкурониды тиреоидных гормонов проступают в желчь и с ней в кишечник. Небольшая часть этих конъюгатов гидролизируется кишечными ферментами и реабсорбируется в кровь. Некоторое количество тиреоидных гормонов выводится почками.

3. Регуляция биосинтеза и секреции тиреоидных гормонов .

Основным регулятором функции фолликулов щитовидной железы является тиреотропин (гормон, секретируемый передней долей гипофиза ). Под влиянием тиреотропина происходят следующие изменения:

1. Происходит рост тиреоцитов (после удаления гипофиза они становятся плоскими, а после введения тиреотропина – кубическим или цилиндрическим);

2. Активирует биосинтез треоидных гормонов на разных этапах:

Усиливает активный перенос иодидов из крови в фолликулы железы, благодаря деполяризации клеточных мембран и повышению АТФ-азной активности;

Увеличивает окисление иодидов, образование йодтиронинов, синтез тиреоглобулина;

усиливаются пиноцитоз тиреоглобулина и миграция его к лизосомам, расщепление его протеолитическими ферментами и выделение свободных тироксина и трийодтиронина в кровь.

Все это объясняет, почему разрушение передней доли гипофиза влечет за собой атрофию паренхимы щитовидной железы и гипотериоз и отчего избыточная продукция тиреотропина приводит к развитию гипертиреоза.

Взаимоотношения между гипофизом и щитовидной железы происходит по принципу прямой и обратной связи.

Секреция тиреотропина активируется тиреолиберином (тиреотропин-рилизинг- фактором), вырабатываемым нейросекреторными элементами гипоталамуса. Таким образом, в организме функционирует единая система: тиреолиберин-тиреотропин- тиреоидные гормоны или система гипоталамус-гипофиз-щитовидная железа. Через гипоталамическую область мозга и гипофиз к щитовидной железе передаются сигналы из ЦНС, в том числе ее высших отделов. Этот механизм лежит в основе острого (иногда в течение 1-2 суток) повышения функциональной активности щитовидной железы после психических травм у человека.

Между тиреоидными гормонами и тиреотропином, с одной стороны, и гипоталамическими клетками, вырабатывающих тиреолиберин, - с другой стороны, также существует обратная связь: повышенная выработка тиреоидных гормонов и тиреотропина угнетает образование тиреолиберина.

Полагают, что симпатические нервы возбуждают секреторную активность щитовидной железы, а парасимпатические - угнетают ее. Однако прямых доказательств мало. Имеются данные о контактах симпатических нервных окончаний с фолликулярным эпителием. Полагают, что вегетативная нервная система осуществляет лишь иннервацию сосудов (денервация щитовидной железы не препятствует ее реакции на тиреотропный гормон).

4. Методы оценки функциональной активности щитовидной железы.

1. Оценка функционального состояния щитовидной железы по величине основного обмена. Метод основан на данных о том, что йодсодержащие гормоны способны повышать основной обмен. Однако это метод неточен, так как на величину основного обмена могут влиять иные факторы (тонус вегетативной нервной системы, гормональная деятельность других эндокринных желез и др.).

2. Применения радиоактивного йода . Вводят небольшую дозу радиоактивного йода (от 1 до 5 мкКи) и через 2 и 24 часа определяют поглощение йода щитовидной железой (например, с помощью счетчика Гейгера-Мюллера). При нормальном функционировании щитовидной железы накопление йода в ней составляет: за 2 часа – 7-12 %, а за 24 часа – 20-29 % введенного количества. При снижении ее функции соответствующие величины составляют соответственно – 1-2 и 2-4-%, а при повышенной функции – 20-40 и 40-80 %.

3. Определение количества связанного с белками йода плазмы (СБИ). У здоровых людей СБИ составляет 3,4-8 мкг%, при тиреотоксикозе – свыше 8,5, а при гипотиреозе – менее 3 мкг%.

4. Определение реактивности щитовидной железы к тиреотропину : сначала определяют базальную концентрацию тиреоидных гормонов в плазме (сыворотке) крови, а затем их содержание после введения тиреотропина.

5. Физиологическое значение и механизмы действия гормонов щитовидной железы.

Тироксин и трийодтиронин обладают очень широким спектром действия на функции организма.

Рост и развитие . Удаление или ослабление функций щитовидной железы у взрослых способствует снижению секреции тиреоидных гормонов, что приводит к снижению основного обмена на 40-50 %. Кожа теряет свою эластичность, волосяной покров редеет, замедляется работа сердца. У детей также задерживается рост скелета, развитие и половое созревание. Тироксин и трийодтиронин взаимодействуют с гормоном роста (соматотропным гормоном). Врожденное недоразвитие или даже полное отсутствие щитовидной железы у человека способствует развитию кретинизма . Кретинизм проявляется нарушением пропорций тела, задержкой роста, снижением основного обмена, изменением состояния покровных тканей, недоразвитием мышц, подавлением рассудочной деятельности, бесплодием, сердечной слабостью и т.д. Природа нарушений процесса дифференцировки железы в эмбриогенезе пока недостаточно выяснена. Причиной развития спонтанного кретинизма у человека также может быть хроническая недостаточность йодидов в пищевом рационе. Гиперфункция щитовидной железы оказывает противоположные изменения в организме человека.

Влияние на нервную систему . При подавлении или выключении функции щитовидной железы на начальных этапах онтогенеза возникают глубокие нарушения функций высших отделов головного мозга: снижение условно-рефлекторной деятельности, снижение ориентировочных реакций. Гипотериоз приводит к изменениям в других отделах мозга и периферической нервной системе: снижается возбудимость нервных центров, периферических ганглиев и нервно-органных синапсов. Полагают, что в основе этих нарушений лежит резко сниженная степень дифференцировки нервной ткани: уменьшение размеров нейронов, торможение развития нервных терминалей, торможение сипапсогенеза, снижение миелинизации нервов и белкового синтеза в ткани мозга. По мнению некоторых ученых, тироксин необходим для запуска дифференцировки нервных клеток. Дефицит или избыток тиреоидных гормонов в критическом периоде развития ЦНС вызывают глубокие изменения в различных отделах мозга. Они могут быть компенсированы нормализацией баланса тиреоидных гормонов только в пределах этого же периода, но не позже (у человека в первые 3-6 месяцев). После завершения критического периода развития возникшие изменения в нервных клетках становятся необратимыми.

Гипоталамический тиреотропин-рилизинг гормон (ТРГ) стимулирует тиреотрофные клетки передней доли гипофиза, секретирующие ТТГ, который, в свою очередь, стимулирует рост щитовидной железы и секрецию ею тиреоидных гормонов. Кроме того, действие тиреоидных гормонов в гипофизе и периферических тканях модулируется местными дейодиназами, превращающими Т 4 в более активный Т 3 . Наконец, молекулярные эффекты Т 3 в отдельных тканях зависят от подтипов рецепторов Т 3 , активации или репрессии специфических генов и взаимодействия рецепторов Т 3 с другими лигандами, другими рецепторами (например, ретиноидным Х-рецептором, РХР), а также коактиваторами и корепрессорами.

Тиреотропин-рилизинг гормон
ТРГ (трипептид пироглутамил-гистидил-пролинамид) синтезируется нейронами супраоптических и паравентрикулярных ядер гипоталамуса. Он накапливается в срединном возвышении гипоталамуса, а затем транспортируется по гипоталамо-гипофизарной портальной системе вен, проходящей через ножку гипофиза, в переднюю его долю, где контролирует синтез и секрецию ТТГ. В других отделах гипоталамуса и головного мозга, а также в спинном мозге ТРГ может играть роль нейротрансмиттера. Ген ТРГ, расположенный на хромосоме 3, кодирует крупную молекулу пре-про-ТРГ, содержащую пять последовательностей предшественника гормона. Экспрессия гена ТРГ подавляется как Т 3 плазмы, так и Т 3 , образующимся в результате дейодирования Т 4 в самих пептидергических нейронах.
В передней доле гипофиза ТРГ взаимодействует со своими рецепторами, локализованными на мембранах ТТГ- и ПРЛ-секретирующих клеток, стимулируя синтез и секрецию этих гормонов. Рецептор ТРГ принадлежит к семейству сопряженных с G-белками рецепторов с семью трансмембранными доменами. ТРГ связывается с третьей трансмембранной спиралью рецептора и активирует как образование цГМФ, так и инозитол-1,4,5-трифосфатный (ИФ 3) каскад, что приводит к высвобождению внутриклеточного Са 2+ и образованию диацилглицерина и, следовательно, к активации протеинкиназы С. Эти реакции ответственны за стимуляцию синтеза ТТГ, координированную транскрипцию генов, кодирующих субъединицы ТТГ, и посттрансляционное глико-зилирование ТТГ, придающее ему биологическую активность.
ТРГ-стимулируемая секреция ТТГ имеет импульсный характер; средняя амплитуда импульсов, регистрируемых каждые 2 часа, составляет 0,6 мЕд/л. У здорового человека секреция ТТГ подчиняется суточному ритму. Максимальный уровень ТТГ в плазме определяется между полуночью и 4 часами утра. Этот ритм задается, по-видимому, импульсным генератором синтеза ТРГ в нейронах гипоталамуса.
Тиреоидные гормоны снижают количество рецепторов ТРГ на тиреотрофах гипофиза, что формирует дополнительный механизм отрицательной обратной связи. В результате при гипертиреозе снижается амплитуда импульсов ТТГ и его ночной выброс, а при гипотиреозе и то, и другое увеличивается. У экспериментальных животных и новорожденных детей воздействие холода усиливает секрецию ТРГ и ТТГ. Синтез и секрецию ТРГ стимулируют также некоторые гормоны и лекарственные вещества (например, вазопрессин и а-адренергические агонисты).
При внутривенном введении человеку ТРГ в дозах 200-500 мкг концентрация ТТГ в сыворотке быстро возрастает в 3-5 раз; реакция достигает пика в первые 30 минут после введения и продолжается 2-3 часа. При первичном гипотиреозе на фоне повышенного базального уровня ТТГ реакция ТТГ на экзогенный ТРГ усиливается. У больных с гипертиреозом, автономно функционирующими узлами щитовидной железы и центральным гипотиреозом, а также у получающих высокие дозы экзогенных тиреоидных гормонов, реакция ТТГ на ТРГ ослаблена.
ТРГ присутствует и в островковых клетках поджелудочной железы, желудочно-кишечном тракте, плаценте, сердце, предстательной железе, яичках и яичниках. Его продукция в этих тканях не ингибируется Т 3 , а физиологическая роль остается неизвестной.


Тиреотропин (тиреотропный гормон, ТТГ)

ТТГ представляет собой гликопротеин (28 кДа), состоящий из α- и β-субъединиц, нековалентно связанных друг с другом. Та же самая α-субъединица входит в состав еще двух гликопротеиновых гормонов гипофиза - фолликулостимулирующего (ФСГ) и лютеинизирующего (ЛГ), а также гормона плаценты - хорионического гонадотропина человека (ХГЧ); β-субъединицы всех этих гормонов различаются, и именно они определяют связывание гормонов с их специфическими рецепторами и биологическую активность каждого из гормонов. Гены α- и β-субъединиц ТТГ локализованы соответственно на хромосоме 6 и 1. У человека α-субъединица содержит полипептидное ядро из 92 аминокислотных остатков и две олигосахаридные цепи, а β-субъединица - полипептидное ядро из 112 аминокислотных остатков и одну олигосахаридную цепь. Каждая из полипептидных цепей α- и β-субъединиц ТТГ образует три петли, свернутых в цистиновый узел. В ШЭР и аппарате Гольджи происходит гликозилирование полипептидных ядер, т. е. присоединение к ним остатков глюкозы, маннозы и фукозы и концевых остатков сульфата или сиаловой кислоты. Эти углеводные остатки увеличивают срок присутствия гормона в плазме и его способность активировать рецептор ТТГ (ТТГ-Р).
ТТГ регулирует рост клеток и продукцию гормонов щитовидной железы, связываясь со своим специфическим рецептором. На базолатеральной мембране каждого тиреоцита находится примерно 1000 таких рецепторов. Связывание ТТГ активирует внутриклеточные сигнальные пути, опосредуемые как циклическим аденозинмонофосфатом (цАМФ), так и фосфоинозитолом. Ген ТТГ-Р, расположеный на хромосоме 14, кодирует одноцепочечный гликопротеин из 764 аминокислотных остатков. ТТГ-Р принадлежит к семейству сопряженных с G-белками рецепторов с семью трансмембранными доменами; внеклеточная часть ТТГ-Р связывает лиганд (ТТГ), а внутримембранная и внутриклеточная части ответственны за активацию сигнальных путей, стимуляции роста тиреоцитов и синтеза и секреции тиреоидных гормонов.
Известные наследственные дефекты синтеза или действия ТТГ включают мутации генов факторов транскрипции, определяющих дифференцировку тиреотрофов гипофиза (POU1F1, PROP1, LHX3, HESX1), мутации генов ТРГ, β-субъединицы ТТГ, ТТГ-Р и белка GSa, передающего сигнал от связывания ТТГ с ТТГ-Р на аденилатциклазу. К гипотиреозу может приводить и появление в сыворотке тиреоблокирующих антител.
Наиболее частой формой гипертиреоза является болезнь Грейвса, при которой ТТГ-Р связывается и активируется аутоантителами. Однако ТТГ-Р участвует в патогенезе и других форм гипертиреоза. Активирующие мутации гена ТТГ-Р в зародышевых клетках лежат в основе семейного гипертиреоза, а соматические мутации этого гена - в основе токсической аденомы щитовидной железы. Другие мутации могут обусловливать синтез аномального ТТГ-Р, который активируется структурно сходным лигандом - ХГЧ, как это наблюдается при семейном гипертиреозе беременных.

Влияние ТТГ на клетки щитовидной железы
ТТГ оказывает многообразное влияние на тиреоциты. Большинство из них опосредуется системой G-белок-аденилатциклаза-цАМФ, но играет роль и активация фосфатидилинозитоловой (ФИФ 2) системы, сопровождающаяся увеличением внутриклеточного уровня кальция. Основные эффекты ТТГ перечислены ниже.

Изменение морфологии тиреоцитов

ТТГ быстро индуцирует появление псевдоподий на границе тиреоцитов с коллоидом, что ускоряет резорбцию тиреоглобулина. Содержание коллоида в просвете фолликулов уменьшается. В клетках появляются капли коллоида, стимулируется образование лизосом и гидролиз тиреоглобулина.

Росттиреоцитов
Отдельные тиреоциты увеличиваются в размерах. Возрастает васкуляризация щитовидной железы и со временем развивается зоб.


Метаболизм йода

ТТГ стимулирует все стадии метаболизма йодида - от его поглощения и транспорта в щитовидной железе до йодирования тиреоглобулина и секреции тиреоидных гормонов. Влияние на транспорт йодида опосредуется цАМФ, а на йодирование тиреоглобулина - гидролизом фосфатидилинозитол-4,5-дифосфата (ФИФ 2) и повышением внутриклеточного уровня Са 2+ . ТТГ действует на транспорт йодида в тиреоциты двухфазно: поглощение йодида вначале угнетается (отток йодида), а через несколько часов возрастает. Отток йодида может быть следствием ускорения гидролиза тиреоглобулина с освобождением гормонов и истечением йодида из железы.

Прочие эффекты ТТГ
К другим эффектам ТТГ относятся стимуляция транскрипции мРНК тиреоглобулина и ТПО, ускорение образования МИТ, ДИТ, Т 3 и Т 4 и повышение активности лизосом с усилением секреции Т 4 и Т 3 . Под влиянием ТТГ возрастает также активность 5"-дейодиназы 1-го типа, что способствует сохранению йодида в щитовидной железе.
Кроме того, ТТГ стимулирует поглощение и окисление глюкозы, а также потребление кислорода щитовидной железой. Ускоряется также кругооборот фосфолипидов и активируется синтез пуриновых и пиримидиновых предшественников ДНК и РНК.

Концентрация ТТГ в сыворотке
В крови присутствуют как целые молекулы ТТГ, так и его отдельные а-субъединицы, концентрации которых при определении иммунологическими методами в норме составляют соответственно 0,5-4,0 мЕд/л и 0,5-2 мкг/л. Содержание ТТГ в сыворотке возрастает при первичном гипотиреозе и снижается при тиреотоксикозе, будь-то эндогенном или связанном с приемом избыточных количеств тиреоидных гормонов. Т 1/2 ТТГ в плазме составляет примерно 30 минут, а его суточная продукция - около 40-150 мЕд.
У больных с ТТГ-секретирующими опухолями гипофиза в сыворотке часто обнаруживается непропорционально высокое содержание а-субъединицы. Повышенная ее концентрация характерна также для здоровых женщин в постменопаузальном периоде, поскольку в этот период усиливается секреция гонадотропинов.

Регуляция гипофизарной секреции ТТГ

Синтез и секреция ТТГ регулируются в основном двумя факторами:

  1. уровнем Т 3 в тирео-трофных клетках, от которого зависит экспрессия мРНК ТТГ, ее трансляция и секреция гормона;
  2. ТРГ, который регулирует пострансляционное гликозилирование субъединиц ТТГ и опять-таки его секрецию.

Высокие уровни Т 4 и Т 3 в сыворотке (тиреотоксикоз) ингибируют синтез и секрецию ТТГ, а низкие уровни тиреоидных гормонов (гипотиреоз) стимулируют эти процессы. Ингибирующее влияние на секрецию ТТГ оказывает также ряд гормонов и лекарственных средств (соматостатин, дофамин, бромкриптин и глюкокортикоиды). Снижение секреции ТТГ наблюдается при острых и хронических заболеваниях, причем после выздоровления возможен «эффект отдачи», т. е. повышение секреции этого гормона. Перечисленные выше вещества обычно лишь несколько снижают концентрацию ТТГ в сыворотке, которая остается определимой, тогда как при явном гипертиреозе концентрация ТТГ может падать ниже пределов чувствительности самых современных иммунологических методов.

Нарушения секреции ТРГ и ТТГ могут иметь место при опухолях и других заболеваниях гипоталамуса или гипофиза. Гипотиреоз, обусловленный нарушением функции гипофиза, называют «вторичным», а обусловленный патологией гипоталамуса - «третичным».

{module директ4}

Другие стимуляторы и ингибиторы функции щитовидной железы
Фолликулы щитовидной железы окружены густой сетью капилляров, на которых оканчиваются норадренергические волокна верхнего шейного ганглия, а также волокна блуждающего нерва и щитовидных ганглиев, содержащие ацетилхолинэстеразу. Парафолликулярные С-клетки секретируют кальцитонин и пептид, родственный гену кальцитонина (ПРГК). У экспериментальных животных эти и другие нейропептиды влияют на кровоток в щитовидной железе и секрецию тиреоидных гормонов. Кроме того, на рост тиреоцитов и продукцию тиреоидных гормонов влияют такие факторы роста, как инсулин, ИФР-1 и эпидермальный фактор роста, а также аутокринные факторы - простагландины и цитокины. Однако клиническое значение всех этих влияний остается неясным.


Роль гипофизарных и периферических дейодиназ

Основное количество Т 3 в тиреотрофах гипофиза и головном мозге образуется в результате дейоди-рования Т 4 под действием 5"-дейодиназы 2-го типа. При гипотиреозе активность этого фермента возрастает, что позволяет некоторое время поддерживать нормальную концентрацию Т 3 в мозговых структурах, несмотря на снижение уровня Т 4 в плазме. При гипертиреозе активность 5"-дейодиназы 2-го типа снижается, что предохраняет гипофиз и нервные клетки от избыточного действия Т 3 . В отличие от этого, активность 5"-дейодиназы 1-го типа при гипотиреозе снижается, обеспечивая сохранение Т 4 , а при гипертиреозе возрастает, ускоряя метаболизм Т 4 .

Ауторегуляция в щитовидной железе
Ауторегуляцию можно определить как способность щитовидной железы адаптировать свою функцию к изменениям доступности йода независимо от гипофизарного ТТГ. Нормальная секреция тиреоидных гормонов сохраняется при колебаниях потребления йодида от 50 мкг до нескольких миллиграмм в сутки. Некоторые эффекты дефицита или избытка йодида рассматривались выше. Основной механизм адаптации к низкому поступлению йодида в организм заключается в увеличении доли синтезируемого Т3, что повышает метаболическую эффективность тиреоидных гормонов. С другой стороны, избыток йодида ингибирует многие функции щитовидной железы, включая транспорт йодида, образование цАМФ, продукцию перекиси водорода, синтез и секрецию тиреоидных гормонов, а также связывание ТТГ и аутоантител с ТТГ-Р. Некоторые из этих эффектов могут опосредоваться образованием в щитовидной железе йодированных жирных кислот. Способность нормальной железы «ускользать» из-под ингибиторных влияний избытка йодида (эффект Вольфа-Чайкова) позволяет сохранять секрецию тиреоидных гормонов при высоком потреблении йодида. Важно отметить, что механизм эффекта Вольфа-Чайкова отличается от механизма терапевтического действия йодида при болезни Грейвса. В последнем случае высокие дозы йодида хронически угнетают эндоцитоз тиреоглобулина и активность лизосомных ферментов, тормозя секрецию тиреоидных гормонов и снижая их концентрацию в крови. Кроме того, фармакологические дозы йодида уменьшают кровоснабжение щитовидной железы, что облегчает хирургические вмешательства на ней. Однако и этот эффект сохраняется короткое время - от 10 суток до 2 недель.

Действие тиреоидных гормонов


1. Рецепторы тиреоидных гормонов и механизмы их действия

Тиреоидные гормоны реализуют свои эффекты двумя основными механизмами:

  1. геномные эффекты предполагают взаимодействие Т 3 с его ядерными рецепторами, которые регулируют активность генов;
  2. негеномные эффекты опосредуются взаимодействием Т 3 и Т 4 с некоторыми ферментами (например, кальциевой АТФазой, аденилатцикла-зой, мономерной пируваткиназой), транспортерами глюкозы и белками митохондрий.

Свободные тиреоидные гормоны с помощью специфических переносчиков или путем пассивной диффузии проходят через клеточную мембрану в цитоплазму, а затем в ядро, где Т 3 связывается со своими рецепторами. Ядерные рецепторы Т 3 принадлежат к суперсемейству ядерных белков, включающему также рецепторы глюко- и минерало-кортикоидов, эстрогенов, прогестинов, витамина D и ретиноидов.
У человека рецепторы тиреоидных гормонов (TP) кодируются двумя генами: ТРа, расположенным на хромосоме 17, и TРβ, локализованном на хромосоме 3. В результате альтернативного сплайсинга мРНК, транскрибируемых с каждого из этих генов, образуются по два разных белковых продукта:
TPα1 и ТРα2 и ТРβ1 и ТРβ2, хотя ТРα2, как полагают, лишен биологической активности. TP всех типов содержат С-концевой лиганд-связывающий и центральный ДНК-связывающий домен с двумя цинковыми пальцами, которые облегчают взаимодействие рецепторов с элементами ДНК, чувствительными к тиреоидным гормонам (ТЧЭ). ТЧЭ расположены в промоторных участках генов-мишеней и регулируют транскрипцию последних. В разных тканях и на разных стадиях развития синтезируется разное количество тех или иных ТР. Например, головной мозг содержит преимущественно ТРα, печень - ТРβ, а сердечная мышца - оба типа рецепторов. Точечные мутации гена ТРβ, нарушающие строение лиганд-связывающего домена этого рецептора, лежат в основе генерализованной резистентности к тиреоидным гормонам (ГенРТГ). ТЧЭ, с которыми взаимодействуют TP, обычно представляют собой своеобразные спаренные олигонуклеотидные последовательности (например, AGGTCA). TP могут связываться с ТЧЭ и в виде гетеродимеров с рецепторами других факторов транскрипции, таких как РХР и рецептор ретиноидных кислот. В опероне ТЧЭ расположены, как правило, перед стартовым сайтом транскрипции кодирующей области генов-мишеней. В случае генов, активируемых тиреоидными гормонами, TP в отсутствие лиганда образуют связи с корепрессорами [например, корепрессором ядерных рецепторов (NCoR) и «тушителем» эффектов рецепторов ретиноевых кислот и тиреоидных гормонов (SMRT)]. Это приводит к активации деацетилаз гистонов, меняющих местную структуру хроматина, что сопровождается репрессией базальной транскрипции. При связывании TP с Т 3 корепрессорные комплексы распадаются, и TP образуют комплексы с коактиваторами, способствующими ацетилированию гистонов. Связанные с Т 3 TP присоединяют также другие белки (в частности, белок, взаимодействующий с рецептором витамина D); образующиеся белковые комплексы мобилизуют РНК-полимеразу II и активируют транскрипцию. Экспрессия некоторых генов (например, гена пре-про-ТРГ и генов α- и β-субъединиц ТТГ) под влиянием связанных с Т 3 TP снижается, но молекулярные механизмы таких эффектов изучены хуже. Изменение синтеза отдельных РНК и белков определяет характер реакций разных тканей на действие тиреоидных гормонов.
Ряд клеточных реакций на тиреоидные гормоны возникает раньше, чем могли бы измениться процессы транскрипции в ядре; кроме того, обнаружено связывание Т 4 и Т 3 с внеядерными структурами клеток. Все это позволяет предполагать существование негеномных эффектов тиреоидных гормонов. Недавно показано, например, что они связываются с мембранным белком-интегрином αVβ3, который опосредует стимулирующее действие тиреоидных гормонов на МАП-киназный каскад и ангиогенез.

2. Физиологические эффекты тиреоидных гормонов
Влияние Т 3 на транскрипцию генов достигает своего максимума через несколько часов или суток. Эти геномные влияния изменяют ряд жизненно важных функций, включая рост тканей, созревание головного мозга, теплопродукцию и потребление кислорода, а также состояние сердца, печени, почек, скелетных мышц и кожи. К негеномным эффектам тиреоидных гормонов относят снижение активности 5"-дейодиназы 2-го типа в гипофизе и активацию транспорта глюкозы и аминокислот в некоторых тканях.

Влияние на развитие плода
Способность щитовидной железы концентрировать йодид и появление ТТГ в гипофизе наблюдаются у плода человека примерно на 11-й неделе беременности. Из-за высокого содержания в плаценте 5-дейодиназы 3-го типа (которая инактивирует большую часть материнских Т 3 и Т 4) в кровь плода поступает очень малое количество свободных материнских тиреоидных гормонов. Однако они крайне важны для ранних стадий развития головного мозга плода. После 11-й недели беременности развитие плода зависит уже в основном от его собственных тиреоидных гормонов. Некоторая способность плода к росту сохраняется и в отсутствие у него щитовидной железы, но развитие головного мозга и созревание скелета в таких условиях резко нарушаются, что проявляется кретинизмом (умственной отсталостью и карликовостью).

Влияние на потребление кислорода, теплопродукцию и образование свободных радикалов
Рост потребления O 2 под влиянием Т 3 отчасти обусловлен стимуляцией Na + , К + -АТФазы во всех тканях, за исключением головного мозга, селезенки и яичек. Это вносит свой вклад в повышение основного обмена (общего потребления 02 в покое) и чувствительности к теплу при гипертиреозе и в противоположные сдвиги при гипотиреозе.

Влияние на сердечно-сосудистую систему
Т3 стимулирует синтез Са 2+ -АТФазы саркоплазматического ретикулума, что увеличивает скорость диастолического расслабления миокарда. Под влиянием Т 3 возрастает также синтез обладающих большей сократимостью α-изоформ тяжелых цепей миозина, что определяет усиление и систолической функции миокарда. Кроме того, Т 3 влияет на экспрессию разных изоформ Na + , К + -АТФазы, усиливает синтез β-адренорецепторов и снижает концентрацию ингибиторного G-белка (Gi) в миокарде. Учащение сердечных сокращений обусловлено ускорением как деполяризации, так и реполяризации клеток синусового узла под действием Т 3 . Таким образом, тиреоидные гормоны оказывают положительное инотропное и хронотропное влияние на сердце, что - вместе с повышением его чувствительности к адренергической стимуляции - определяет тахикардию и увеличение сократимости миокарда при гипертиреозе и противоположные сдвиги при гипотиреозе. Наконец, тиреоидные гормоны снижают периферическое сосудистое сопротивление, и это способствует дальнейшему повышению минутного объема сердца при гипертиреозе.

Влияние на симпатическую нервную систему
Тиреоидные гормоны увеличивают количество β-адренорецепторов в сердце, скелетных мышцах, жировой ткани и на лимфоцитах, а также, возможно, усиливают действие катехоламинов на пострецепторном уровне. Многие клинические проявления тиреотоксикоза отражают повышенную чувствительность к катехоламинам, и β-адреноблокаторы нередко устраняют такие проявления.

Легочные эффекты
Тиреоидные гормоны способствуют сохранению реакций дыхательного центра ствола мозга на гипоксию и гиперкапнию. Поэтому при тяжелом гипотиреозе может иметь место гиповентиляция. Функция дыхательных мышц также регулируется тиреоидными гормонами.

Влияние на кроветворение
Возрастание потребности клеток в O 2 при гипертиреозе обусловливает усиленную продукцию эритропоэтина и ускорение эритропоэза. Однако из-за более быстрого разрушения эритроцитов и гемодилюции показатель гематокрита обычно не увеличивается. Под влиянием тиреоидных гормонов в эритроцитах возрастает содержание 2,3-дифосфоглицерата, что ускоряет диссоциацию оксигемоглобина и увеличивает доступность O 2 для тканей. Гипотиреоз характеризуется противоположными сдвигами.

Влияние на желудочно-кишечный тракт
Тиреоидные гормоны усиливают перистальтику кишечника, что приводит к учащению дефекаций при гипертиреозе. При гипотиреозе, напротив, прохождение пищи по кишечнику замедляется и возникает запор.

Влияние на кости
Тиреоидные гормоны стимулируют кругооборот костной ткани, ускоряя резорбцию костей и (в меньшей степени) остеогенез. Поэтому при гипертиреозе развивается гиперкальциурия и (реже) гиперкальциемия. Кроме того, хронический гипертиреоз может сопровождаться клинически значимой потерей минерального вещества костной ткани.

Нервно-мышечные эффекты
При гипертиреозе ускоряется кругооборот белка, и его содержание в скелетных мышцах снижается. Это приводит к характерной для данного заболевания проксимальной миопатии. Тиреоидные гормоны увеличивают также скорость сокращения и расслабления скелетных мышц, что клинически проявляется при гипертиреозе гиперрефлексией, а при гипотиреозе - замедлением фазы расслабления глубоких сухожильных рефлексов. Для гипертиреоза типичен также тонкий тремор пальцев рук. Выше уже отмечалось, что тиреоидные гормоны необходимы для нормального развития и функционирования ЦНС, и недостаточность щитовидной железы у плода приводит к тяжелой умственной отсталости(Своевременное выявление врожденного гипотериоза (скрининг новорожденных) помогает предотвратить развитие таких нарушений). У взрослых людей при гипертиреозе наблюдается гиперактивность и суетливость, тогда как у больных гипотиреозом - медлительность и апатия.

Влияние на липидный и углеводный обмен
При гипертиреозе ускоряется как гликогенолиз, так и глюконеогенез в печени, а также всасывание глюкозы в желудочно-кишечном тракте. Поэтому гипертиреоз затрудняет контроль гликемии у больных, одновременно страдающих сахарным диабетом. Тиреоидные гормоны ускоряют как синтез, так и распад холестерина. Последний эффект связан в основном с увеличением печеночных рецепторов липопротеинов низкой плотности (ЛПНП) и ускорением клиренса ЛПНП. При гипотиреозе уровни общего холестерина и холестерина ЛПНП, как правило, повышены. Ускоряется также липолиз, в результате чего в плазме возрастает содержание свободных жирных кислот и глицерина.

Эндокринные эффекты
Тиреоидные гормоны изменяют продукцию, регуляцию секреции и метаболический клиренс многих других гормонов. У детей с гипотиреозом нарушается секреция гормона роста, что замедляет рост тела в длину. Гипотиреоз может задерживать и половое развитие, нарушая секрецию ГнРГ и гонадотропинов. Однако при первичном гипотиреозе иногда наблюдается преждевременное половое развитие, обусловленное, вероятно, взаимодействием очень больших количеств ТТГ с рецепторами гонадотропинов. У некоторых женщин с гипотиреозом развивается гиперпролактинемия. Характерны меноррагия (длительные и тяжелые маточные кровотечения), ановуляция и бесплодие. При гипотиреозе ослабляется реакция гипоталамо-гипофизарно-надпочечниковой системы на стресс, что несколько компенсируется замедлением метаболического клиренса кортизола. Восстановление эутиреоза в таких случаях может приводить к надпочечниковой недостаточности, так как клиренс кортизола ускоряется, а его резервы остаются сниженными.
При гипертиреозе у мужчин возможно развитие гинекомастии, обусловленной ускоренной ароматизацией андрогенов с образованием эстрогенов и повышенным уровнем глобулина, связывающего половые гормоны. Может нарушаться и гонадотропная регуляция овуляции и менструального цикла, что приводит к бесплодию и аменорее. Восстановление эутиреоза, как правило, устраняет все эти эндокринные расстройства.