В данной статье мы рассмотрим 3 вида современной оперативной памяти для настольных компьютеров:

  • DDR - является самым старым видом оперативной памяти, которую можно еще сегодня купить, но ее рассвет уже прошел, и это самый старый вид оперативной памяти, который мы рассмотрим. Вам придется найти далеко не новые материнские платы и процессоры которые используют этот вид оперативной памяти, хотя множество существующих систем используют DDR оперативную память. Рабочее напряжение DDR - 2.5 вольт (обычно увеличивается при разгоне процессора), и является наибольшим потребителем электроэнергии из рассматриваемых нами 3 видов памяти.
  • DDR2 - это наиболее распространенный вид памяти, который используется в современных компьютерах. Это не самый старый, но и не новейший вид оперативной памяти. DDR2 в общем работает быстрее чем DDR, и поэтому DDR2 имеет скорость передачи данных больше чем в предыдущей модели (самая медленная модель DDR2 по своей скорости равна самой быстрой модели DDR). DDR2 потребляет 1.8 вольт и, как в DDR, обычно увеличивается напряжение при разгоне процессора
  • DDR3 - быстрый и новый тип памяти. Опять же, DDR3 развивает скорость больше чем DDR2, и таким образом самая низкая скорость такая же как и самая быстрая скорость DDR2. DDR3 потребляет электроэнергию меньше других видов оперативной памяти. DDR3 потребляет 1.5 вольт, и немного больше при разгоне процессора

Таблица 1: Технические характеристики оперативной памяти по стандартам JEDEC

JEDEC - Joint Electron Device Engineering Council (Объединенный инженерный совет по электронным устройствам)

Важнейшей характеристикой, от которой зависит производительность памяти, является ее пропускная способность, выражающаяся как произведение частоты системной шины на объем данных, передаваемых за один такт. Современная память имеет шину шириной 64 бита (или 8 байт), поэтому пропускная способность памяти типа DDR400, составляет 400 МГц х 8 Байт = 3200 Мбайт в секунду (или 3.2 Гбайт/с). Отсюда, следует и другое обозначение памяти такого типа - PC3200. В последнее время часто используется двухканальное подключение памяти, при котором ее пропускная способность (теоретическая) удваивается. Таким образом, в случае с двумя модулями DDR400 мы получим максимально возможную скорость обмена данных 6.4 Гбайт/с.

Но на максимальную производительность памяти также влияет такие важный параметры как "тайминги памяти".

Известно, что логическая структура банка памяти представляет собой двумерный массив - простейшую матрицу, каждая ячейка которой имеет свой адрес, номер строки и номер столбца. Чтобы считать содержимое произвольной ячейки массива, контроллер памяти должен задать номер строки RAS (Row Adress Strobe) и номер столбца CAS (Column Adress Strobe), из которых и считываются данные. Понятно, что между подачей команды и ее выполнением всегда будет какая-то задержка (латентность памяти), вот ее-то и характеризуют эти самые тайминги. Существует множество различных параметров, которые определяют тайминги, но чаще всего используются четыре из них:

  • CAS Latency (CAS) - задержка в тактах между подачей сигнала CAS и непосредственно выдачей данных из соответствующей ячейки. Одна из важнейших характеристик любого модуля памяти;
  • RAS to CAS Delay (tRCD) - количество тактов шины памяти, которые должны пройти после подачи сигнала RAS до того, как можно будет подать сигнал CAS;
  • Row Precharge (tRP) - время закрытия страницы памяти в пределах одного банка, тратящееся на его перезарядку;
  • Activate to Precharge (tRAS) - время активности строба. Минимальное количество циклов между командой активации (RAS) и командой подзарядки (Precharge), которой заканчивается работа с этой строкой, или закрытия одного и того же банка.

Если вы увидите на модулях обозначения "2-2-2-5" или "3-4-4-7", можете не сомневаться, это упомянутые выше параметры: CAS-tRCD-tRP-tRAS.

Стандартные значения CAS Latency для памяти DDR - 2 и 2.5 такта, где CAS Latency 2 означает, что данные будут получены только через два такта после получения команды Read. В некоторых системах возможны значения 3 или 1.5, а для DDR2-800, к примеру, последняя версия стандарта JEDEC определяет этот параметр в диапазоне от 4 до 6 тактов, при том, что 4 - экстремальный вариант для отборных "оверклокерских" микросхем. Задержка RAS-CAS и RAS Precharge обычно бывает 2, 3, 4 или 5 тактов, а tRAS - чуть больше, от 5 до 15 тактов. Естественно, чем ниже эти тайминги (при одной и той же тактовой частоте), тем выше производительность памяти. Например, модуль с латентностью CAS 2,5 обычно работает лучше, чем с латентностью 3,0. Более того, в целом ряде случаев быстрее оказывается память с меньшими таймингами, работающая даже на более низкой тактовой частоте.

В таблицах 2-4 предоставлены общие скорости памяти DDR, DDR2, DDR3 и спецификации:

Таблица 2: Общие скорости памяти DDR и спецификации

Таблица 3: Общие скорости памяти DDR2 и спецификации

Тип Частота шины Скорость передачи данных Тайминги Заметки
PC3-8500 533 1066 7-7-7-20 чаще называемые DDR3-1066
PC3-10666 667 1333 7-7-7-20 чаще называемые DDR3-1333
PC3-12800 800 1600 9-9-9-24 чаще называемые DDR3-1600
PC3-14400 900 1800 9-9-9-24 чаще называемые DDR3-1800
PC3-16000 1000 2000 TBD чаще называемые DDR3-2000

Таблица 4: Общие скорости памяти DDR3 и спецификации

DDR3 можно назвать новичком среди моделей памяти. Модули памяти этого вида, доступны только около года. Эффективность этой памяти продолжает расти, только недавно достигла границ JEDEC, и вышла за эти границы. Сегодня DDR3-1600 (высшая скорость JEDEC) широко доступна, и все больше производителей уже предлагают DDR3-1800). Прототипы DDR3-2000 показаны на современном рынке, и в продажу должны поступить в конце этого года - начале следующего года.

Процент поступления на рынок модулей памяти DDR3, согласно с данными производителей, все еще небольшая, в пределах 1%-2%, и это значит, что DDR3 должен пройти длинный путь прежде чем будет соответствовать продажам DDR (все еще находиться в пределах 12%-16%) и это позволит DDR3 приблизиться к продажам DDR2. (25%-35% по показателям производителей).

ВОПРОС 2. Жесткий диск и оптический привод. Типы, устройство, характеристики.

ВОПРОС 3. Устройство и основные характеристики ЭЛТ-мониторов.

ВОПРОС 4. Устройство и основные характеристики жидкокристаллических мониторов.

ВОПРОС 5. Калибровка мониторов.

ВОПРОС 6. Технология струйной печати. Устройство и характеристики струйных принтеров.

ВОПРОС 7. Технология лазерной печати. Устройство и характеристики лазерных принтеров.

ВОПРОС 8. Плоттеры. Назначение, устройство и характеристики плоттеров.

ВОПРОС 9. Цветопроба. Цветовые профили устройств.

ВОПРОС 10. Цифровые фотоаппараты. Виды, устройство и основные характеристики фотокамер.

ВОПРОС 11. Цифровые видеокамеры. Виды, устройство и основные характеристики видеокамер.

ВОПРОС 12. Разновидности и основные характеристики сканеров.

ВОПРОС 13. Принцип действия сенсорных экранов.

ВОПРОС 14. Цифровое представление цвета. Цветовые модели. Глубина цвета. Управление цветами.

ВОПРОС 15. Тоновая и цветовая коррекция изображений. Инструменты оценки цветовых характеристик и цветокоррекции изображений.

ВОПРОС 16. Масштабирование и трансформация изображений.

ВОПРОС 17. Улучшение качества изображений: удаление шума и повышение резкости.

ВОПРОС 18. Методы анимации. Форматы анимационных файлов.

ВОПРОС 19. Представление видеоинформации. Видеостандарты.

ВОПРОС 20. Принципы сжатия видеоизображений.Кодеки(определение что такое кодека)(покадроввое, межкадровое)

ВОПРОС 1. Процессор и оперативная память. Основные характеристики.

Центральный процессор (ЦП; также центральное процессорное устройство - ЦПУ; англ. central processing unit, CPU, дословно - центральное обрабатывающее устройство) - электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Зная характеристики процессора, можно разложить его по полочкам и адекватно оценить вычислительную производительность будущей системы. Именно поэтому, очень важно хорошо разбираться во всех основных характеристиках процессоров. Данная статья будет вводным материалом, где будут перечислены все основные параметры CPU с кратким описанием каждого. Для более подробного ознакомления с какой-либо характеристикой, Вам просто необходимо будет перейти по нужным ссылкам, где в отдельных статьях будет подробно расписано про каждый из пунктов.

Сразу оговорюсь: некоторым расскажу, а некоторым напомню, одно простое правило комплексности характеристик. То есть, к выводам относительно производительности того, или иного процессора нельзя подходить с точки зрения лишь одной характеристики. К примеру, утверждение «лучше тот процессор, у которого частота больше», уже не работает в силу появления понятия многоядерности и других факторов. Точно так же, нельзя выбирать процессор по количеству ядер, ведь есть и другие не менее важные критерии. Так что, настоятельно рекомендую смотреть на все характеристики, и оценивать процессор по всем параметрам сразу. Итак, давайте, пожалуй, больше конкретики, поэтому подъезжаем к конкретным основным характеристикам процессоров.

1. Многоядерность процессора

Эта характеристика, последние несколько лет, является одной из наиболее важных в сфере центральных процессоров, но не решающей, как я уже упоминал выше. Уже давно прошла эра одноядерных процессоров, поэтому сейчас стоит выбирать многоядерные процессоры (одноядерные еще надо постараться найти). Соответственно, количество ядер нужно подбирать, под конкретные задачи. К примеру, для простеньких задач в виде офисных приложений и сёрфинга в интернете, двухъядерного процессора хватит более чем полностью.

А вот для таких задач как профессиональная работа с графикой, понадобится процессор с 4 или 8 ядрами – многое решает конкретная модель процессора и специфика задач. Прочитать подробно о самих принципах многоядерности вы можете в полной статье.

2. Техпроцесс процесора

Техпроцесс производства напрямую не влияет на производительность процессора при выполнении задач, но и тут есть одно «но». Увеличение тактовой частоты или любые другие архитектурные изменения, невозможны без вноса изменений в текущий техпроцесс, так как в пределах одного семейства процессоров на одном техпроцессе, запас на наращивание тактовой частоты ограничен. В 2011-2012 годах были выпущены процессоры с техпроцессом 22нм, и всё идёт к уменьшению данных показателей. По сути 22 нм - это ширина базы транзисторов, на которых преимущественно построены процессоры. Логичен тот факт, что чем меньше будет ширина базы транзистора, то тем больше их можно будет «впихнуть» на кристалл, а значит - производительность процессора увеличится.

3. Тактовая частота процессора

Наиболее известная характеристика процессоров – это тактовая частота. Частотой процессора определяется количество производимых вычислений в единицу времени и от неё напрямую зависит производительность процессора. Частота современных центральных процессоров колеблется от 1 до 4 ГГц, но не стоит смотреть только на тактовую частоту процессора, следует обращать внимание и на другие параметры. Безусловно частота процессора до сих пор является важным параметром, рекомендую почитать полную статью по данной характеристике.

4. Объём кэш-памяти

Кэш современных процессоров значительно поддает им производительности. Кэш – это сверхбыстрая энергозависимая память, которая позволяет процессору быстро получить доступ к определённым данным, которые часто используются.

Различают кэш-память нескольких уровней:

Кэш первого уровня является самым быстрым, но при этом его размер очень ограничен;

Кэш второго уровня чуть медленнее, но при этом немного больше по объёму.

Также и с кэш-памятью третьего уровня, которая немного медленнее кэша первого и второго уровня, но всё равно значительно быстрее оперативной памяти. Сейчас размер кэш-памяти третьего уровня достигает 12-16 Мбайт и более. Ограниченность объёма кэш-памяти проявляется в её дороговизне из-за сложного процесса производства.

5. Сокет процессора

Сокетом, является разъём на материнской плате, в который устанавливается сам процессор. Опять же, сокет не является прямой характеристикой процессора, но данный фактор настолько важен, что мы не можем о нем не вспомнить. Очень важно, чтобы сокет процессора и сокет материнской платы совпадали, ибо процессор который позиционируется под сокет LGA 1155, никак не будет работать на материнской плате с сокетом LGA 775, об этом нужно помнить, и всегда при подборе комплектующих сверять данные параметры. Настоятельно рекомендую ознакомиться с полной статьей о сокетах процессоров.

Основные характеристики оперативной памяти, советы по выбору

Оперативная память (ОЗУ - Оперативное Запоминающее Устройство, или RAM – Random Access Memory). Этот компонент относится к классу Энергозависимой памяти (при отключении питания все данные удаляются). В процессе работы ОЗУ выступает в качестве буфера между дисковыми накопителями и процессором, благодаря значительно большей скорости чтения и записи данных. Далее мы рассмотрим основные характеристики оперативной памяти...

Главными факторами при выборе оперативной памяти для настольного компьютера выступают Производительность и Цена, которые напрямую зависят друг от друга. Давайте рассмотрим, какие характеристики на них влияют и попробуем выбрать оптимальное соотношение. Основные параметры - Тип, Обьем, Частота, Тайминги, Напряжение, Производитель.

Типы оперативной памяти. В процессе эволюции ОЗУ, менялась ее форма, а также положение и принципы взаимодействия чипов. Фактически, каждая такая конфигурация и есть отдельный тип. Я не буду описывать устаревшие SIMM, DIMM, DDR и даже популярный до сих пор DDR2, поскольку они уже практически никем не производятся и было бы глупо собирать новый компьютер, используя значительно устаревшие ключевые компоненты. К тому-же, более старые типы ОЗУ стоят дороже, чем современные благодаря своей "раритетности" :-) Единственный актуальный сегодня тип - это DDR3 (Третье поколение Double Data Rate). В сравнении с предыдущим, вторым поколением (DDR2), все планки DDR3 имеют лучшую производительность при значительно уменьшенном энергопотреблении.

Обьем оперативной памяти. Описать его востребованность можно следующим образом: Во время Вашей работы за компьютером, большое количество данных (файлы операционной системы, запускаемых приложений и игр) перемещаются из дисковых накопителей в оперативную память для последующей обработки процессором и хранятся там до тех пор, пока Вы не завершите работу этих приложений (вернее не просто хранятся, часть из них постоянно мигрирует между кэшем процессора и ОЗУ с огромной скоростью). Сам обьем оперативной памяти не дает нам никакого ускорения. Он всего лишь показывает, какое максимальное количество данных может в ней храниться. При переполнении ОЗУ (например, если запущено много больших приложений + игрушка + браузер и т.д.) происходит переброс более старых данных в специальное место на диске (Файл подкачки). Вот именно в этот момент можно почувствовать, как компьютер начинает "тормозить, лагать, подвисать" и т.д. Из этого можно сделать следующий вывод - обьем оперативной памяти не должен быть меньше, чем максимальный суммарный обьем Возможных активных приложений. Общий обьем оперативной памяти равняется супе обьемов каждой отдельной ее планки. Тоесть, если Вы установите две планки ОЗУ по 1 Гб., то общий доступный обьем станет 2 Гб. Для бюджетного (Например, офисного) компьютера будет более, чем достаточно 2 Гб. Для домашнего (многоцелевого) ПК оптимальным будет 4-6 Гб. (в зависимости от количества планок - 2 шт, или 3 шт. по 2 Гб. каждая). Для современной игровой машины я бы советовал покупать не меньше 6-8 Гб. (Так сказать, "На перспективу", поскольку разработчики игр постоянно "утяжеляют" свои детища).

Частота оперативной памяти. Если коротко, то это пропускная способность каналов, по которым данные передаются на материнскую плату, а оттуда - в процессор. Чем больше - тем лучше и дороже. Желательно, чтоб этот параметр совпадал с допустимой частотой мат.платы. Если у оперативной памяти, допустим, частота 1600 МГц, а у системной платы - 1066, тогда Ваша ОЗУ не сможет полностью раскрыть свой потенциал и будет работать на более низкой частоте в 1066 МГц. Учтите этот параметр при выборе материнской платы.

Тайминги оперативной памяти. Другими словами - задержи или латентность (Latency) ОЗУ. Характеризуется этот параметр временем задержки данных при переходе между разными модулями микросхемы ОЗУ. Этих параметров много, но в спецификациях и описаних указываются только 4 основные:

2. RAS to CAS Delay

3. RAS Precharge Time

4. DRAM Cycle Time

Меньшие значения означают более высокое быстродействие. Но есть одна проблемка: Чем больше частота оперативной памяти - тем выше ее тайминги. Поэтому, следует выбирать оптимальное соотношение этих двух параметров, исходя из бюджета. Есть, например, специальные модели у разных производителей, в примечании к котороым указано "Low Latency". Это означает, что данная модель при более высокой рабочей частоте имеет меньшее время задержек. Но стоят они значительно дороже, поэтому обратят на них внимание только геймеры и оверклокеры, для которых каждая лишняя капля производительности - дороже любых денег.

Напряжение. Означает требуемое напряжение для стабильной работы оперативной памяти при стандартных частоте и таймингах. Чем меньше - тем лучше, но этот параметр важен только при оверклокинге (разгоне), поскольку при значительном завышении частоты, или занижении таймингов, требуется дополнительно пропорционально повышать напряжение... Что в свою очередь сопровождается дополнительным повышением температуры определенных модулей материнской платы и ухудшением стабильности такой системы. В этих целях выпускаются специальные модели оперативной памяти с маркировкой "LV" - Low Voltage.

Производитель ОЗУ. Как и при выборе остальных комплектующих для компьютера, стоит отдавать предпочтение известным производителям и моделям, с большим количеством положительных отзывов. В этом случае будет наименьшей вероятность покупки бракованного экземпляра и больше срок гарантии.

· Нажмите для увеличения 1_ram.jpgДополнительное внимание следует уделить вопросу желаемого количества модулей оперативной памяти. Дело в том, что в зависимости от модели материнской платы и количества на ней разъемов для ОЗУ, планки оперативной памяти могут работать в разных скоростных режимах (Single, Dual, Triple - Одиночный, Двойной, Тройной). Чтоб долго не описывать каждый из них - перейду сразу к выводу. Посчитайте общее количество слотов для подключения ОЗУ на Вашей материнской плате. В стандартных настольных моделях их может быть: 4, 6, 8. Разделите эти цифры на 2 и получите минимальное количество требуемых планок для оптимальной скорости работы. Например, если у Вас 4 слоты - значит для задействования оптимального режима Вам потребуется 2 или 4 планки оперативной памяти Одного производителя и модели. Тоесть вы активируете один или 2 режимы "Dual". Для работы в определенном режиме, Вы должны подключить модули в разъемы одинакового цвета (как правило, через один).

08.10.2012

Вопрос: стоит ли брать более быструю память – стоит перед многими покупателями. Вследствие снижения цены на модули DDR3 с частотой 1600 мегагерц и выше он стал еще актуальнее. Ответ казалось бы, очевиден – конечно, стоит! Но какой прирост может обеспечить большая частота памяти, и стоит ли переплачивать? Это мы и попытаемся выяснить.

Если еще совсем недавно выбор оперативной памяти был прост, есть лишние деньги, берешь DDR3 с частотой 1600 мегагерц, если их нет, довольствуешься DDR3-1333. В настоящий момент на полках магазинов имеется огромнейший выбор оперативной памяти с частотой выше 1600 мегагерц, и по вполне приемлемой цене. Это стимулирует покупателей делать свой выбор в пользу более быстрых моделей, с частотой 1866, 2000, и 2133 мегагерц. И это вполне обосновано в теории – чем больше частота памяти, тем больше пропускная способность, тем выше производительность.


Однако в реальных условиях ситуация может быть чуть другой. Нет, система с модулями DDR3-2000 не может быть медленнее системы с модулями DDR3-1333. В данном случае “кашу маслом не испортить”. Но разница в производительности может быть практически незаметна в большинстве приложений, которые мы используем в обычной жизни. Фактически из постоянно используемых приложений, лишь архиваторы четко и однозначно реагируют на возросшую частоту повышением производительности. В остальном заметить разницу непросто.

При этом, быстрая оперативная память продолжает активно продвигаться производителями и продавцами, как решение для геймеров. Что в результате создает у пользователей ощущение, что частота памяти значение практически настолько же критичное, как и количество ядер в процессоре, количество потоковых процессоров, и ширина шины памяти в чипе видеокарты.

Чтобы развенчать, или наоборот подтвердить это утверждение мы и задумали этот тест. Принцип его прост – мы протестируем в нескольких играх один и тот же комплект памяти при работе на разных частотах, и попытаемся выяснить какой, в действительности, прирост дает увеличение частоты памяти. И дает ли вообще.

Для проведения теста мы воспользовались нашим тестовым стендом, в который установили комплект памяти Team Xtreem Dark с базовой частотой 1866 мегагерц производства компании Team Group. Два модуля памяти объемом по 4 гигабайта имеют стандартные для номинальной частоты тайминги 9-11-9-27, несут маркировку TDD34G1866HC9KBK, и работают на напряжении 1,65 вольта. Вполне доступные и при этом быстрые модули памяти с трехлетней гарантией и оригинальными радиаторами, которые вполне могут стать выбором геймера, который не хочет отдавать сумасшедшие деньги за модули с частотой выше 2 гигагерц. А потому, идеально впишутся в концепцию теста.


Тестировать память решено на трех частотах – 1333, 1600, и 1866 мегагерц. От более низких частот в 800 и 1066 мегагерц решено было отказаться, так как покупка таких модулей (если вы все же сможете найти их в продаже) будет необоснованной, так как они будут одинаковы по цене с модулями DDR3-1333. Хотя теоретически планировался режим 2000 мегагерц, но суровая реальность внесла изменения в данные планы. Множитель частоты памяти в нашей плате ASUS P8Z77-V не поддерживает такую частоту, а следующим шагом свыше 1866 мегагерц, предлагает 2133. При такой частоте памяти система загрузилась при неизменном напряжении, позволяла работать, и даже прошла тест 3DMark Physics, но запуск любой игры приводил к “синему экрану”. Причем не помогло ни увеличение таймингов, ни повышение напряжения. Поэтому от высоких частот пришлось отказаться.


В принципе в этом нет ничего страшного, ведь цель данного теста не проверка самых дорогих и быстрых модулей памяти, а выяснение зависимости производительности в играх от частоты. Если в результате окажется, что прирост есть, то опираясь на результаты тестов с тремя разными частотами, вывести примерный прирост для моделей с частотами больше 2000 мегагерц можно будет интерполяцией полученных результатов.

Во время теста мы решили не изменять тайминги, дабы не вносить путаницы в результаты. Но в итоге решили дать небольшую фору самой низкой частоте, и кроме режима с таймингами 9-11-9-27, мы прогнали тесты с таймингами 7-7-7-21, которые являются стандартными для хороших модулей DDR3-1333. Отметим, что все тесты мы проводили при разрешении 1280 на 720 точек, на максимальных настройках качества с использованием анизотропной фильтрации 16x, и без сглаживания. Снизить разрешение пришлось ради снижения влияния производительности видеокарты, которая традиционно становится узким местом в игровых тестах.


Ну что же, вводные данные есть, пора переходить к результатам тестов. Чтобы оценить теоретический прирост пропускной способности памяти при повышении частоты, все конфигурации были протестированы в пакете AIDA 64. Этот синтетический тест выдал вполне логичные и ожидаемые результаты. Рост пропускной способности с ростом частоты имеется, а режим с минимальными таймингами позволил получить более высокие результаты, чем режим с меньшими. Переходим к результатам игровых тестов.

В режиме Performance 3DMark 11 продемонстрировал, что влияние частоты памяти на итоговый результат есть, и оно вполне линейно. Чем быстрее память, тем больше баллов. На насколько больше? Как видно на диаграмме, при общем результате больше 6000 баллов, система с памятью DDR3-1866 выиграла у DDR3-1333 при равных таймингах, лишь 111 баллов. Эту разницу можно выразить скромной цифрой - 1.8 процента. Если же память DDR3-1333 работает на более привычных для себя таймингах 7-7-7-21, то разница в результате с самой быстрой памятью снижается до 1.5 процента. То есть в данном случае, использование более быстрой памяти заметного прироста не дает.

Этот подтест оказался единственным в пакете 3DMark 11, который очень позитивно реагировал на повышение частоты памяти, и снижение таймингов. Нагрузка на видеокарту здесь невелика, зато нагрузка на процессор при обсчете физики очень велика. Соответственно велика и нагрузка на память, которая хранит все результаты обработки данных. В результате отрыв DDR3-1866 от DDR3-1333 при равных таймингах составил чуть более 16 процентов. Снижение таймингов самой медленной памяти позволяет снизить разрыв до 12,8 процента. DDR3-1600 оказалась ровно посередине между DDR3-1333 и DDR3-1866, как ей и положено по частоте. Учитывая, весьма странное для реальных приложений использование ресурсов в этом тесте, мы не будем учитывать его результаты. Таких игр, с таким распределением нагрузки нет, и скорее всего никогда не будет.

Metro 2033

Мы, если честно не ожидали увидеть столь интересные результаты. Причем интересны они не большим приростом, а зависимостью от таймингов. В прямом сравнении трех частот с равными таймингами мы наблюдаем все ту же линейность – с ростом частоты растет и производительность. Но рост мизерный, и практически незаметный: DDR3-1866 быстрее чем DDR3-1333 всего на 0,8 кадра в секунду, а это скромнейшие 1.3 процента. Совсем мало. Между ними вновь оказалась память DDR3-1600. А вот DDR3-1333 с таймингами 7-7-7-21 продемонстрировала недюжинный потенциал, продемонстрировав тот же результат, что и быстрая DDR3-1866 с таймингами 9-11-9-27. Это говорит о том, что меньшие тайминги для этой игры предпочтительнее, и DDR3-1600 с таймингами 8-8-8-24, вполне могла бы стать победительницей этого теста. Кстати, переложение обсчета физики с видеокарты на процессор не изменило расстановку сил и разрывы, как того можно было ожидать после теста 3DMark 11 Physics.

Crysis 2

Вдохновленные результатами предыдущих тестов, которые показали путь и практически незаметное для невооруженного глаза, но все же присутствующее повышение производительности, мы перешли к игре Crysis 2, и тут нас ждало откровение. Все четыре конфигурации, как видно на диаграмме продемонстрировали абсолютно одинаковый результат, с точность до одной десятой кадра в секунду. Да, бывает и так. Видимо, движок CryEngine совершенно не чувствителен к пропускной способности подсистемы памяти. Констатируем этот факт и переходим к последнему тесту.

DiRT Showdown

Этот тест выдал самый противоречивый и необъяснимый результат. Во-первых, удивила память DDR3-1333 с минимальными таймингами, которая уступила памяти работающей на той же частоте, но с большими таймингами, что в принципе, противоестественно. Правда уступила совсем мизер – 00,8 процента. DDR3-1600 оказалась быстрее DDR3-1333 при одинаковых таймингах, на разумные и объяснимые 1,7 процента. А вот DDR3-1866 показала запредельный прирост! Превосходство над DDR3-1600 составило солидные 5.8 процента. Это действительно много. Учитывая все предыдущие результаты. Ведь вполне логично и ожидаемо было увидеть те же 1.7 процента, что разделили DDR3-1600 и DDR3-1333 – тогда прирост был бы линейным. Исходя из опыта мы знаем, что такие результаты могут быть случайным, и ничем не объяснимым результатом какого-то внутреннего сбоя программы, так в нашей практике был случай, когда 3DMark 03 совершенно незаслуженно выдал GeForce FX 5200 результат, который превосходил результаты топовых карт того времени. Ну а, учитывая, что в статистике нелинейные результаты принято игнорировать, это мы и сделаем.

– Быстрее, еще быстрее, ну ускорься, пожалуйста, хоть немного, а то меня сейчас…

– Не могу, дорогой Геймер, ведь я достигла своей предельной тактовой частоты.

Примерно так мог бы выглядеть диалог и Геймера, у которого на счету каждая доля секунды.

Тактовая частота оперативной памяти (ОЗУ, RAM) – второй по значимости параметр после объема. Чем она выше, тем быстрее происходит обмен данными между процессором и ОЗУ, тем шустрее работает компьютер. Оперативка с низкими тактами может стать «бутылочным горлом» в ресурсоемких играх и программах. И если вы не хотите каждый раз упрашивать капризную железку немного прибавить скорость, при покупке всегда обращайте внимание на эту характеристику. Сегодня поговорим, как узнать частоту оперативной памяти по описанию в каталогах магазинов, а также той, что установлена на вашем ПК.

Как понять, что за «зверя» предлагает магазин

В описании модулей оперативной памяти на сайтах интернет-магазинов иногда указывают не все, а лишь отдельные скоростные характеристики. Например:
  • DDR3, 12800 Мб/с.
  • DDR3, PC12800.
  • DDR3, 800 МГц (1600 МГц).
  • DDR3, 1600 МГц.

Кто-то подумает, что речь в этом примере идет о четырех разных планках. На самом деле так можно описать один и тот же модуль RAM с эффективной частотой 1600 МГц! И все эти числа косвенно или прямо указывают на нее.

Чтобы больше не путаться, разберемся, что они означают:

  • 12800 Мб/с – это пропускная способность памяти, показатель, получаемый путем умножения эффективной частоты (1600 МГц) на разрядность шины одного канала (64 бит или 8 байт). Пропускная способность описывает максимальное количество информации, которое модуль RAM способен передавать за один такт. Как определить по ней эффективную частоту, думаю, понятно: нужно 12800 разделить на 8.
  • PC12800 или PC3-12800 – другое обозначение пропускной способности модуля RAM. Кстати, у комплекта из двух планок, предназначенного к использованию в двухканальном режиме, пропускная способность в 2 раза выше, поэтому на его этикетке может стоять значение PC25600 или PC3-25600.
  • 800 МГц (1600 МГц) – два значения, первое из которых указывает на частотность шины самой памяти, а второе – в 2 раза большее – на ее эффективную частоту. Чем отличаются показатели? В компьютерах, как вы знаете, используется ОЗУ типа DDR – с удвоенной скоростью передачи данных без увеличения количества тактов шины, то есть за 1 такт через нее передается не одна, а две условные порции информации. Поэтому основным показателем принято считать эффективную тактовую частоту (в данном примере – 1600 МГц).

На скриншоте ниже показано описание скоростных характеристик оперативки из каталогов трех компьютерных магазинов. Как видно, все продавцы обозначают их по-своему.

Разные модули ОЗУ в рамках одного поколения – DDR, DDR2, DDR3 или DDR4, имеют разные частотные характеристики. Так, самая распространенная на 2017 год RAM DDR3 выпускается с частотностью 800, 1066, 1333, 1600, 1866, 2133 и 2400 МГц. Иногда ее так и обозначают: DDR3-1333, DDR3-1866 и т. д. И это удобно.

Собственную эффективную частоту имеет не только оперативка, но и устройство, которое ею управляет – контроллер памяти. В современных компьютерных системах, начиная с поколения Sandy Bridge, он входит в состав процессора. В более старых – в состав компонентов северного моста материнской платы.

Практически все ОЗУ могут работать на более низких тактах, чем указано в характеристиках. Модули оперативки с разной частотностью при условии сходства остальных параметров совместимы между собой, но способны функционировать только в одноканальном режиме.

Если на компьютере установлено несколько планок ОЗУ с разными частотными характеристиками, подсистема памяти будет вести обмен данными со скоростью самого медленного звена (исключение – устройства ). Так, если частота контроллера составляет 1333 МГц, одной из планок – 1066 МГц, а другой – 1600 МГц, передача будет идти на скорости 1066 МГц.

Как узнать частоту оперативки на компьютере

П режде чем учиться определять частотные показатели оперативной памяти на ПК, разберемся, как их узнает сам компьютер. Он считывает информацию, записанную в микросхеме SPD, которой оснащена каждая отдельная планка ОЗУ. Как выглядит эта микросхема, показано на фото ниже.

Данные SPD умеют читать и программы, Например, широко известная утилита , один из разделов которой так и называется – «SPD ». На скриншоте далее мы видим уже знакомые характеристики скорости планки оперативки (поле «Max Bandwidth ») – PC3-12800 (800 MHz). Чтобы узнать ее эффективную частоту, достаточно разделить 12800 на 8 или 800 умножить на 2. В моем примере этот показатель равен 1600 MHz.

Однако в CPU- Z есть еще один раздел – «Memory », а в нем – параметр «DRAM Frequency », равный 665,1 MHz. Это, как вы, наверное, догадались, фактические данные, то есть частотный режим, в котором в действительности функционирует ОЗУ. Если мы умножим 665,1 на 2, то получим 1330,2 MHz – значение, близкое к 1333 – частоте, на которой работает контроллер памяти этого ноутбука.

Помимо CPU-Z, аналогичные данные показывает и другие приложения, служащие для распознавания и мониторинга железа ПК. Ниже приведены скриншоты бесплатной утилиты

Приветствую, дорогие читатели моего блога! Тема сегодняшней публикации – частота процессора и частота оперативной памяти. Вы узнаете, что важнее для производительности компьютера и какое соотношение следует выбирать.

Как это работает

Действительно, процесс похожий: как конвейер собирает детали, так ЦП производит расчеты. Готовая продукция, а часто промежуточный результат, отправляется на склад (в оперативку). В этом случае многоядерный процессор – цех с несколькими сборочными линиями. Частота оперативки – скорость, с которой специально обученный рабочий возит вещи между конвейером и складом вперед‐назад.

Двое таких рабочих – это спаренные модули памяти. Если у них синхронизированы перекуры (тайминги ОЗУ), то эффективность логистики увеличивается (активируется двухканальный режим). Остальные аналогии вы можете придумать сами, почитав подробнее об оперативной памяти и ее основных характеристиках.

Возможны неприятные явления в виде простоя конвейера (процессора), когда рабочие не успевают возить детали на склад (память работает существенно медленнее, чем камень).
Возможны – не значит, что это действительно случится.

Во‐первых , и процессор, и оперативка выполняют миллионы операций в секунду, поэтому человек попросту не заметит мгновения простоя.

Во‐вторых , как к каждому конвейеру, администрация завода приставляет соответствующего по квалификации рабочего, так и производители комплектующих синхронизируют параметры разных модулей для их полного соответствия.

Как правильно подобрать комплектующие под материнку

С публикацией о лучшем выборе ЦП для системного блока вы можете ознакомиться . Однако при сборке компьютера в первую очередь следует учитывать параметры материнской платы – базы, к которой крепятся все прочие детали.

Многие в курсе, что заказывать комплектующие в интернет‐магазине дешевле и удобнее. Однако большинство магазинов не указывают в спецификации ЦП поддерживаемые типы памяти. К счастью, их легко можно найти на сайте производителя.

При этом все спецификации по материнке, как правило, указаны. Нас, в первую очередь, интересует поддерживаемая память – тип, и т.д., чипсет (так как на всякий камень «дружит» с каждым чипсетом) и слот ЦП (который, естественно, должен соответствовать). Еще один параметр – максимальный объем ОЗУ, который можно поставить.

Не стоит покупать ОЗУ с тактовой больше чем поддерживает материнка – она попросту или не будет работать, или переключится на меньшую. Естественно, частота шины материнки и оперативки должны совпадать.

Опять же, если частота больше у какой‐либо детали, вся система синхронизируется под меньшую. Зачем переплачивать за неиспользуемые опции? Ориентируясь на максимальную производительность, будьте готовы раскошелиться – дополнительные герцы и байты стоят хороших денег.
В плане соотношения частоты ЦП и оперативки у юзеров часто возникает вопрос: должны ли они совпадать, и зависит ли этот параметр ОЗУ от камня? Полностью совпадать не должны, однако частота CPU должна быть выше.

К счастью, производители решают проблему за нас: сложно собрать конфигурацию, у которой частота процессора будет ниже частоты оперативки: детали попросту несовместимы.

Так, вполне нормально работает, например, компьютер с четырехъядерным процессором и тактовой частотой 4 ГГц в связке с 8 Гб оперативки DDR3, частота которой ниже. Зависит ли от этого общая производительность системы? Не особо.

Учитывайте, что все же на производительность, в первую очередь, влияют параметры процессора.

Я не буду пытаться спровоцировать очередной холивар на тему что лучше – Intel или AMD, однако в плане соотношения цены к производительности могу порекомендовать процессор i5 восьмого поколения, который отлично совместим с оперативкой DDR4.

Как сказано выше, отталкивайтесь от параметров материнской платы. Про лучшие материнские платы за 2018 год для игрового ПК по мнению блога читайте . Какую конкретно выбрать, рассчитывайте исходя из финансовых возможностей.

На этом, дорогие читатели, я прощаюсь с вами, всего лишь до завтра. Не забудьте , чтобы получать уведомления о новых публикациях.