ОПРЕДЕЛЕНИЕ

Механическая работа – это произведение силы, приложенной к объекту, на перемещение, совершённое этой силой.

– работа (может обозначаться как ), – сила, – перемещение.

Единица измерения работы — Дж (джоуль) .

Указанная формула применима к телу, движущемуся прямолинейно и постоянном значении воздействующей на него силы. Если между вектором силы и прямой, описывающей траекторию тела есть угол, то формула принимает вид:

Кроме того, понятие работы можно определить как изменение энергии тела:

Именно такое применение этого понятия чаще всего встречается в задачах.

Примеры решения задач по теме «Механическая работа»

ПРИМЕР 1

Задание Двигаясь по окружности радиусом 1м тело переместилось на противоположную точку окружности под действием силы 9Н. Найти работу, совершённую этой силой.
Решение Согласно формуле, работу нужно искать исходя не из пройденного пути, а из перемещения, то есть не нужно считать длину дуги окружности. Достаточно просто учесть, что при перемещении на противоположную точку окружности тело совершило перемещение, равное диаметру окружности, то есть 2м. По формуле:
Ответ Совершенная работа равна Дж.

ПРИМЕР 2

Задание Под действием некоторой силы тело движется вверх по наклонной плоскости под углом к горизонту. Найти силу, действующую на тело, если при продвижении тела на 5 м в вертикальной плоскости его энергия увеличилась на 19 Дж.
Решение По определению изменение энергии тела и есть работа, над ним совершённая.

Однако, мы не можем найти силу, подставив исходные данные в формулу, так как не знаем перемещение тела. Нам известно только его перемещение по оси (обозначим его ). Найдём перемещение тела с помощью определения функции :

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A – работа, F – сила, s – пройденный путь.

ПОТЕНЦИА́Л (потенциальная функция), понятие, характеризующее широкий класс физических силовыхполей (электрических, гравитационных и т. п.) и вообще поля физических величин, представляемыхвекторами (поле скоростей жидкости и т. п.). В общем случае потенциал векторного поля a(x ,y ,z ) - такаяскалярная функция u (x ,y ,z ), что a=grad

35. Проводники в электрическом поле. Электроемкость. Проводники в электрическом поле. Проводники - это вещества, характеризующиеся наличием в них боль­шого количества свободных носителей зарядов, способ­ных перемещаться под действием электрического поля. К проводникам относятся металлы, электролиты, уголь. В металлах носителями свободных зарядов являются электроны внешних оболочек атомов, которые при взаи­модействии атомов полностью утрачивают связи со «своими» атомами и становятся собственностью всего проводника в целом. Свободные электроны участвуют в тепловом движении подобно молекулам газа и могут перемещаться по металлу в любом направлении. Электри́ческая ёмкость - характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками

36. Емкость плоского конденсатора.

Емкость плоского конденсатора.

Т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

37. Магнитное взаимодействие токов в вакууме. Закон Ампера. Закон Ампера. В 1820 году Ампер (французский ученый (1775-1836)) установил экспериментально закон, по которому можно рассчитать силу, действующую на элемент проводника длины с током .

где – вектор магнитной индукции,– вектор элемента длины проводника, проведенного в направлении тока.

Модуль силы , где– угол между направлением тока в проводнике и направлением индукции магнитного поля.Для прямолинейного проводника длиной с токомв однородном поле

Направление действующей силы может быть определено с помощью правила левой руки :

Если ладонь левой руки расположить так, чтобы нормальная (к току) составляющая магнитного поля входила в ладонь, а четыре вытянутых пальца направлены вдоль тока, то большой палец укажет направление, в котором действует сила Ампера.

38.Напряженность магнитного поля. Закон Био-Савара-Лапласа Напряжённость магни́тного по́ля (стандартное обозначение Н ) - векторная физическая величина , равная разности вектора магнитной индукции B и вектора намагниченности J .

В Международной системе единиц (СИ) : где-магнитная постоянная .

Закон БСЛ. Закон, определяющий магнитное поле отдельного элемента тока

39. Приложения закона Био-Савара-Лапласа. Для поля прямого тока

Для кругового витка.

И для соленоида

40. Индукция магнитного поля Магнитное поле характеризуется векторной величиной, которая носит название индукции магнитного поля (векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства). МИ. (В) это не сила, действующая на проводники, это величина, которая находится через данную силу по следующей формуле: B=F / (I*l) (Словестно: Модуль вектора МИ. (B) равен отношению модуля силы F, с которой магнитное поле действует на расположенный перпендикулярно магнитным линиям проводник с током, к силе тока в проводнике I и длине проводника l . Магнитная индукция зависит только от магнитного поля. В связи с этим индукцию можно считать количественной характеристикой магнитного поля. Она определяет, с какой силой(Сила Лоренца) магнитное поле действует назаряд, движущийся со скоростью. Измеряется МИ в теслах (1 Тл). При этом 1 Тл=1 Н/(А*м) . МИ имеет направление. Графически ее можно зарисовывать в виде линий. В однородном магнитном полелинии МИ параллельны, и вектор МИ будет направлен так же во всех точках. В случае неоднородного магнитного поля, например, поля вокруг проводника с током, вектор магнитной индукции будет меняться в каждой точке пространства вокруг проводника, а касательные к этому вектору создадут концентрические окружности вокруг проводника.

41. Движение частицы в магнитном поле. Сила Лоренца. а) - Если частица влетает в область однородного магнитного поля, причем вектор V перпендикулярен вектору B, то она движется по окружности радиуса R=mV/qB, поскольку сила Лоренца Fл=mV^2/R играет роль центростремительной силы. Период обращения равен T=2пиR/V=2пиm/qB и он не зависит от скорости частицы (Это справедливо только при V<<скорости света) - Если угол между векторами V и B не равен 0 и 90 градусов, то частица в однородном магнитном поле движется по винтовой линии. - Если вектор V параллелен B, то частица движется по прямой линии (Fл=0). б) Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.

Сила Л. определяется соотношением: Fл = q·V·B·sina (q - величина движущегося заряда; V - модуль его скорости; B - модуль вектора индукции магнитного поля; aльфа - угол между вектором V и вектором В) Сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно. Сила Лоренца перпендикулярна векторам В и v , и её направление определяется с помощью того же правила левой руки, что и направление силы Ампера: если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца F л.

Вы знаете, что такое работа? Вне всякого сомнения. Что такое работа, знает каждый человек, при условии, что он рожден и живет на планете Земля. А что такое механическая работа?

Это понятие тоже известно большинству людей на планете, хотя некоторые отдельные личности и имеют довольно смутное представление об этом процессе. Но речь сейчас не о них. Еще меньшее число людей имеют представление, что такое механическая работа с точки зрения физики. В физике механическая работа - это не труд человека ради пропитания, это физическая величина, которая может быть совершенно никак не связана ни с человеком, ни с другим каким-нибудь живым существом. Как так? Сейчас разберемся.

Механическая работа в физике

Приведем два примера. В первом примере воды реки, столкнувшись с пропастью, шумно падают вниз в виде водопада. Второй пример - это человек, который держит на вытянутых руках тяжелый предмет, например, удерживает надломившуюся крышу над крыльцом дачного домика от падения, пока его жена и дети судорожно ищут, чем ее подпереть. В каком случае совершается механическая работа?

Определение механической работы

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A - работа,
F - сила,
s - пройденный путь.

Так что, несмотря на весь героизм уставшего держателя крыши, проделанная им работа равна нулю, а вот вода, падая под действием силы тяжести с высокого утеса, совершает самую, что ни на есть, механическую работу. То есть, если мы будем толкать тяжелый шкаф безуспешно, то проделанная нами работа с точки зрения физики будет равна нулю, несмотря на то, что мы прикладываем много сил. А вот если мы сдвинем шкаф на некоторое расстояние, то тогда мы проделаем работу, равную произведению приложенной силы на расстояние, на которое мы передвинули тело.

Единица работы - 1 Дж. Это работа, совершенная силой в 1 ньютон, по передвижению тела на расстояние в 1 м. Если направление приложенной силы совпадает с направлением движения тела, то данная сила совершает положительную работу. Пример - это когда мы толкаем какое-либо тело, и оно двигается. А в случае, когда сила приложена в противоположную движению тела сторону, например, сила трения , то данная сила совершает отрицательную работу. Если же приложенная сила никак не влияет на движение тела, то сила, совершаемая этой работой, равна нулю.

Мeханическая работа - это физическая величина - скалярная количественная мера действия силы (равнодействующей сил) на тело или сил на систему тел. Зависит от численной величины и направления силы (сил) и от перемещения тела (системы тел) .

Используемые обозначения

Работа обычно обозначается буквой A (от нем. A rbeit - работа, труд) или буквой W (от англ. w ork - работа, труд).

Определение

Работа силы, приложенной к материальной точке

Суммарная работа по перемещению одной материальной точки, совершаемая несколькими силами, приложенными к этой точке, определяется как работа равнодействующей этих сил (их векторной суммой). Поэтому дальше будем говорить об одной силе, приложенной к материальной точке.

При прямолинейном движении материальной точки и постоянном значении приложенной к ней силы , работа (этой силы) равна произведению проекции вектора силы на направление движения и длины вектора перемещения, совершённого точкой:

A = F s s = F s c o s (F , s) = F → ⋅ s → {\displaystyle A=F_{s}s=Fs\ \mathrm {cos} (F,s)={\vec {F}}\cdot {\vec {s}}} A = ∫ F → ⋅ d s → . {\displaystyle A=\int {\vec {F}}\cdot {\vec {ds}}.}

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из последовательных перемещений d s → , {\displaystyle {\vec {ds}},} если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат , интеграл определяется следующим образом:

A = ∫ r → 0 r → 1 F → (r →) ⋅ d r → {\displaystyle A=\int \limits _{{\vec {r}}_{0}}^{{\vec {r}}_{1}}{\vec {F}}\left({\vec {r}}\right)\cdot {\vec {dr}}} ,

где r → 0 {\displaystyle {\vec {r}}_{0}} и r → 1 {\displaystyle {\vec {r}}_{1}} - радиус-векторы начального и конечного положения тела соответственно.

  • Следствие. Если направление приложенной силы ортогонально перемещению тела или перемещение равно нулю, то работа (этой силы) равна нулю.

Работа сил, приложенных к системе материальных точек

Работа сил по перемещению системы материальных точек определяется как сумма работ этих сил по перемещению каждой точки (работы, совершённые над каждой точкой системы, суммируются в работу этих сил над системой).

Даже если тело не является системой дискретных точек, его можно разбить (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых можно считать материальной точкой, и вычислить работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.

  • Эти определения могут быть использованы как для вычисления работы конкретной силы или класса сил, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Кинетическая энергия

E k = 1 2 m v 2 . {\displaystyle E_{k}={\frac {1}{2}}mv^{2}.}

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Потенциальная энергия

Работа в термодинамике

В термодинамике работа, совершённая газом при расширении , рассчитывается как интеграл давления по объёму:

A 1 → 2 = ∫ V 1 V 2 P d V . {\displaystyle A_{1\rightarrow 2}=\int \limits _{V_{1}}^{V_{2}}PdV.}

Работа, совершённая над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объёма, но и к любому процессу (изображаемому любой кривой в плоскости PV ), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула прямо связана с механической работой. Действительно, попробуем написать механическую работу при расширении сосуда, учитывая, что сила давления газа будет направлена перпендикулярно каждой элементарной площадке, равна произведению давления P на площадь dS площадки, и тогда работа, совершаемая газом для смещения h одной такой элементарной площадки будет

d A = P d S h . {\displaystyle dA=PdSh.}

Видно, что это и есть произведение давления на приращение объёма вблизи данной элементарной площадкой. А просуммировав по всем dS , получим конечный результат, где будет уже полное приращение объёма, как и в главной формуле раздела.

Работа силы в теоретической механике

Рассмотрим несколько детальнее, чем это было сделано выше, построение определения энергии как риманова интеграла.

Пусть материальная точка M {\displaystyle M} движется по непрерывно дифференцируемой кривой G = { r = r (s) } {\displaystyle G=\{r=r(s)\}} , где s - переменная длина дуги, 0 ≤ s ≤ S {\displaystyle 0\leq s\leq S} , и на неё действует сила , направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под F (s) {\displaystyle F(s)} проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее). Величина F (ξ i) △ s i , △ s i = s i − s i − 1 , i = 1 , 2 , . . . , i τ {\displaystyle F(\xi _{i})\triangle s_{i},\triangle s_{i}=s_{i}-s_{i-1},i=1,2,...,i_{\tau }} , называется элементарной работой силы F {\displaystyle F} на участке и принимается за приближённое значение работы, которую производит сила F {\displaystyle F} , воздействующая на материальную точку, когда последняя проходит кривую G i {\displaystyle G_{i}} . Сумма всех элементарных работ является интегральной суммой Римана функции F (s) {\displaystyle F(s)} .

В соответствии с определением интеграла Римана , можем дать определение работе:

Предел, к которому стремится сумма ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle \sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} всех элементарных работ, когда мелкость | τ | {\displaystyle |\tau |} разбиения τ {\displaystyle \tau } стремится к нулю, называется работой силы F {\displaystyle F} вдоль кривой G {\displaystyle G} .

Таким образом, если обозначить эту работу буквой W {\displaystyle W} , то, в силу данного определения,

W = lim | τ | → 0 ∑ i = 1 i τ F (ξ i) △ s i {\displaystyle W=\lim _{|\tau |\rightarrow 0}\sum _{i=1}^{i_{\tau }}F(\xi _{i})\triangle s_{i}} ,

следовательно,

W = ∫ 0 s F (s) d s {\displaystyle W=\int \limits _{0}^{s}F(s)ds} (1).

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра t {\displaystyle t} (например, времени) и если величина пройденного пути s = s (t) {\displaystyle s=s(t)} , a ≤ t ≤ b {\displaystyle a\leq t\leq b} является непрерывно дифференцируемой функцией, то из формулы (1) получим

W = ∫ a b F [ s (t) ] s ′ (t) d t . {\displaystyle W=\int \limits _{a}^{b}Fs"(t)dt.}

Размерность и единицы

Единицей измерения работы в

Прежде чем раскрывать тему «В чём измеряется работа», необходимо сделать небольшое отступление. Всё в этом мире подчиняется законам физики. Каждый процесс или явление можно объяснить на основе тех или иных законов физики. Для каждой измеряемой величины существует единица, в которой её принято измерять. Единицы измерения являются неизменными и имеют единое значение во всём мире.

Причиной этого является следующее. В тысяча девятьсот шестидесятом году на одиннадцатой генеральной конференции по мерам и весам была принята система измерений, которая признана во всём мире. Эта система получила наименование Le Système International d’Unités, SI (СИ система интернационал). Эта система стала базовой для определений принятых во всём мире единиц измерения и их соотношения.

Физические термины и терминология

В физике единица измерения работы силы называется Дж (Джоуль), в честь английского учёного физика Джеймса Джоуля, сделавшего большой вклад в развитие раздела термодинамики в физике. Один Джоуль равен работе, совершаемой силой в один Н (Ньютон), при перемещении её приложения на один М (метр) в направлении действия силы. Один Н (Ньютон) равен силе, массой в один кг (килограмм), при ускорении в один м/с2 (метр в секунду) в направлении силы.

К сведению. В физике всё взаимосвязано, выполнение любой работы связано с выполнением дополнительных действий. В качестве примера можно взять бытовой вентилятор. При включении вентилятора в сеть лопасти вентилятора начинают вращаться. Вращающиеся лопасти воздействуют на поток воздуха, придавая ему направленное движение. Это является результатом работы. Но для выполнения работы необходимо воздействие других сторонних сил, без которых выполнение действия невозможно. К ним относятся сила электрического тока, мощность, напряжение и многие другие взаимосвязанные значения.

Электрический ток, по своей сути, – это упорядоченное движение электронов в проводнике в единицу времени. В основе электрического тока лежит положительно или отрицательно заряжённые частицы. Они носят название электрических зарядов. Обозначается буквами C, q, Кл (Кулон), названо в честь французского учёного и изобретателя Шарля Кулона. В системе СИ является единицей измерения количества заряженных электронов. 1 Кл равен объёму заряженных частиц, протекающих через поперечное сечение проводника в единицу времени. Под единицей времени подразумевается одна секунда. Формула электрического заряда представлена ниже на рисунке.

Сила электрического тока обозначается буквой А (ампер). Ампер – это единица в физике, характеризующая измерение работы силы, которая затрачивается для перемещения зарядов по проводнику. По своей сути, электрический ток – это упорядоченное движение электронов в проводнике под воздействием электромагнитного поля. Под проводником подразумевается материал или расплав солей (электролит), имеющий небольшую сопротивляемость прохождению электронов. На силу электрического тока влияют две физические величины: напряжение и сопротивление. Они будут рассмотрены ниже. Сила тока всегда прямо пропорциональна по напряжению и обратно пропорциональна по сопротивлению.

Как было сказано выше, электрический ток – это упорядоченное движение электронов в проводнике. Но есть один нюанс: для их движения нужно определённое воздействие. Это воздействие создаётся путём создания разности потенциалов. Электрический заряд может быть положительным или отрицательным. Положительные заряды всегда стремятся к отрицательным зарядам. Это необходимо для равновесия системы. Разница между количеством положительно и отрицательно заряжённых частиц называется электрическим напряжением.

Мощность – это количество энергии, затрачиваемое на выполнение работы в один Дж (Джоуль) за промежуток времени в одну секунду. Единицей измерения в физике обозначается как Вт (Ватт), в системе СИ W (Watt). Так как рассматривается мощность электрическая, то здесь она является значением затраченной электрической энергии на выполнение определённого действия в промежуток времени.

В заключение следует отметить, что единица измерения работы является скалярной величиной, имеет взаимосвязь со всеми разделами физики и может рассматриваться со стороны не только электродинамики или теплотехники, но и других разделов. В статье кратко рассмотрено значение, характеризующее единицу измерения работы силы.

Видео