Понятие жизненного цикла клетки

У значительного большинства клеток существует определённый жизненный цикл.

Определение 1

Жизненный цикл – это период жизни клетки от её появления до окончания деления или гибели.

Этот цикл характеризуется большим количеством процессов, происходящих в клетке: рост, развитие, дифференциация, функционирование и т.п.

Клеточный цикл состоит из длительного периода интерфазы , а также коротких периодов митоза и цитокинеза .

Интерфаза – это период жизни клеток, в течение которого не происходит их деление.

Замечание 1

В этот период жизненного цикла клетки поддерживают свой гомеостаз и выполняют определённые функции.

Исследование различных групп клеток отдельного организма свидетельствует, что большинство из них находятся в интерфазе. Лишь небольшая часть клеток – около 1% - может быть задействована на это время в митозе.

Клеточный цикл, который оканчивается делением, свойствен для большинства разновидностей клеток многоклеточного организма и для всех одноклеточны

Все разновидности клеток имеют разную длительность как всего цикла, так и отдельных его периодов, даже в различных тканях одного и того же организма.

Пример 2

У человека длительность клеточного цикла для клеток эпителия кожи составляет 10-20 суток, для лейкоцитов – 4-5 суток, для клеток костного мозга – 8-12 часов.

Длительность жизни клетки запрограммирована генетически и наследуется.

На определённом этапе жизнедеятельности в клетках образуются специальные белковые молекулы, определённая концентрация которых сигнализирует о необходимости деления или гибели.

Интерфаза. Периоды интерфазы

Определение 2

Интерфаза – это период жизненного цикла клетки, во время которого она живёт, функционирует и готовится к делению.

Началом интерфазы и всего клеточного цикла можно считать момент окончания предыдущего цитокинеза.

Первый период интерфазы – пресинтетический , или $G_1$. На протяжении этого периода генетическая информация, закодированная в ДНК, находится в состоянии максимального функционирования – ДНК руководит синтезом РНК и белков. В этот период, который является наиболее длительным, клетки растут, дифференцируются и выполняют свои функции. В ядрах таких клеток содержится диплоидный набор хромосом, каждая из которых состоит из одной молекулы ДНК. Генетическая формула клетки в этот период – $2n2c$, где $n$ – гаплоидный набор хромосом, $c$ – количество копий ДНК.

Во время следующего, синтетического , периода ($S$) синтезируется и удваивается ДНК. В результате каждая хромосома уже состоит из двух хроматид, из двух дочерних молекул ДНК, соединённых в участке центромеры. Количество генов увеличивается вдвое. Удваивается и количество белков хроматина. Генетическая формула в этот период – $2n4c$.

Репликация ДНК является очень важным моментом во время подготовки клетки к делению. Только репликация лежит в основе как бесполого, так и полового размножения, а, значит, и непрерывности жизни.

Момент начала фазы $S$ называется точкой рестрикции . Синтез ДНК запускается с появлением специальных сигнальных молекул белков-активаторов $S$-фазы. В конце $S$- фазы, после полной репликации ДНК, белок-активатор разрушается, и клетка может переходить к следующему периоду. Клетки, не имеющие «разрешения» на деление, не способны пройти точку рестрикции. Такие клетки на определённый период времени останавливаются в состоянии «покоя» - в $G_0$-фазе, поддерживая метаболизм и выполняя свои функции.

Нейроны и мышечные клетки могут функционировать на протяжении всей жизни организма.

В постсинтетическом периоде $G_2$ клетки готовятся к митозу. Происходит постепенное разрушение цитоскелета, начинается конденсация и спирализация хроматина. Усиливается синтез АТФ, белков, РНК, липидов и углеводов. Формируются новые органеллы клетки. Размеры клетки значительно увеличиваются. Синтезируются специальные белки-регуляторы, которые способствуют переходу клетки из фазы $G_2$ к делению. Период $G_2$ переходит в профазу митоза. Это тот момент клеточного цикла, когда впервые в световой микроскоп можно увидеть хромосомы, сформировавшиеся из хроматина.

Жизненный цикл клеток многоклеточного организма контролируется окружающими клетками и гуморальными факторами организма. Существенную роль в регуляции играют также специальные белки, которые образуются клеткой под влиянием собственной генетической программы.

К числу важнейших изменений в клетке, которые происходят в интерфазе и готовят клетку к делению, относятся спирализация и сокращение половинок хромосом (хроматид), удвоение уентриолей, синтез белков будущего ахроматинового веретена, синтез высокоэнергетических соединений (в основном, АТФ). Клетка завершает свой рост и готова вступить в профазу следующего митоза.

Цитокинез

Следующий после митоза этап клеточного цикла - цитокинез – деление цитоплазмы.

По экватору материнской клетки животных организмов образуется перетяжка. Эта структура образуется ещё в телофазе митоза. Перетяжка деления формируется из микрофилламентов цитоскелета, которые образуют сократительное кольцо. Оно постепенно уменьшается, и перетяжка всё более углубляется по всему периметру. Через некоторое время материнская клетка делится на две дочерние. В образовании перетяжки и её углублении, а также в полном делении дочерних клеток активное участие берёт цитоскелет. После цитокинеза обе доерние клетки содержат все компоненты материнской клетки.

Замечание 2

Если после митоза не происходит цитокинез, то образуются многоядерные клетки.

Жизненный цикл клетки включает в себя ее образование и завершается концом ее существования как самостоятельной единицы. Клетка возникает в процессе деления материнской клетки и кончает существование в результат следующего ее деления или гибели. Жизненный цикл клетки состоит из интерфазы и митоза, и в этом он равнозначен клеточному циклу.

Интерфаза - период между двумя очередными митотическими делениями клетки. Воспроизведение хромосом происходит сходно с полуконсервативной репликацией (редупликацией) молекул ДНК. Ядро клетки в интерфазе окружено двухмембранной оболочкой, хромосомы раскручены (неконденсированы) и незаметны при обыкновенном световом микроскопировании, При фиксации и окрашивании клеток наблюдается скопление интенсивно окрашенного вещества - хроматина. В цитоплазме содержатся все необходимые органоиды, что обеспечивает нормальную жизнь клетки.

Первый период интерфазы (пересинтетический). В результате предшествующего митоза количество клеток увеличивается, они растут. Происходит транскрипция новых молекул информационной РНК, синтезируются молекулы других РНК, в цитоплазме и ядре синтезируются белки. Часть веществ цитоплазмы расщепляется с образованием АТФ, молекулы которой имеют макроэргические связи и переносят энергию к тем местам в клетке, где в ней есть потребность. Клетка при этом увеличивается и достигает размеров материнской. Этот период у специализированных клеток длится долго и в течение его они осуществляют свои специфические функции.

Второй период ин тер фазы (синтетически и), или период синтеза ДНК, - узловой в клеточном цикле. Его блокада приводит к остановке цикла. В это время происходят репликация молекул ДНК, синтез участвующих в построении хромосом белков. Молекулы ДНК связываются с молекулами белков и хромосомы становятся толще. В это же время происходит репродукция центриолей и их становится две пары. В каждой паре новая центриоль располагается по отношению к старой под углом 90°. В дальнейшем во время следующего митоза каждая пара центриолей отходит к полюсам клетки.

Синтетический период интерфазы характеризуется не только повышенным синтезом ДНК, но и резким увеличением образования в клетке молекул РНК и белков.

Третий период интерфазы (постсинтетический) характеризуется подготовкой клетки к следующему митотическому делению, Длительность этого периода обычно всегда меньше остальных периодов интерфазы. В некоторых случаях он может вообще выпадать.

Продолжительность жизненною (клеточного) цикла. Общая продолжительность клеточного цикла - генерационного времени – и отдельных его периодов у разных клеток различна (табл. 37). Наиболее компактный клеточный цикл у камбиальных клеток. Иногда сокращается или даже совсем выпадает постсинтетический период генерационного времени. Например, у трехнедельной крысы в клетках печени он сокращается до получаса при общей продолжительности генерационного времени 21,5 ч. Продолжительность синтетического периода наиболее стабильна.

В других случаях во время первого, пресинтетического, периода-интерфазы клетка приобретает свойства выполнять специфические функции, что связано с усложнением ее строения. Если специализация не зашла слишком далеко, клетка способна пройти весь жизненный цикл с образованием двух новых клеток в митозе. В этом случае первой период жизни клеток может значительно увеличиваться. Например, У клеток кожного эпителия мыши генерационное время (585,6 ч) в основном приходится на пресинтетический период (528 ч), а в клетках периоста молодой крысы на такой период приходится 102 ч из 114 всего

генерационного времени. Основная часть этого времени получила название G 0 -периода, когда осуществляется интенсивная специфическая функция клетки. Так, большинство клеток печени находятся в G 0 -периоде и потеряли способность к митозу. Если же удалить часть печени, то многие клетки ее переходят к полному прохождению синтетического, постсинтетического периодов и митотического процесса. Таким образом, для различных клеточных популяций доказана обратимость Go -периода. В других случаях степень специализации стала настолько высокой, что при обычных условиях клетки уже не могут митотически делиться. Иногда в таких клетках происходит эндорепродукция (см. Эндорепродукция). В некоторых клетках она повторяется много раз и хромосомы становятся настолько толстыми, что видны в обыкновенный световой микроскоп.

Жизненный цикл клетки – это период существования клетки от момента её образования путём деления материнской клетки до её смерти. Важнейшим компонентом является митотический цикл.

Интерфаза – подготовка к делению клетки.

Митоз – деление клетки.

22. Интерфаза, её периоды, их характеристика.

Интерфаза - подготовка к делению клетки.

Пресинтетический (G1) – идёт рост образовавшейся клетки, синтез различных РНК и белков. Синтез ДНК не происходит. (12-24 часа). 2n2c (хромосом и ДНК).

Синтетический (S) – синтез ДНК и редупликация хромосом. Синтез РНК и белка. (10 часов).

Постсинтетический (G2) – синтез ДНК останавливается. Происходит синтез РНК, белков и накопление энергии. Ядро увеличивается в размере. Происходит его деление. (3-4 часа).

23. Способы деления клеток и клеточных структур: амитоз, митоз, мейоз, эндомитоз, политения. Определение понятий.

Способы деления клеток:

Амитоз – прямое, простое деление клетки (неполноценное).

Митоз – сложное, непрямое, полноценное деление клетки.

Мейоз – сложное, непрямое, редукционное деление специализированных клеток репродуктивных органов.

Способы деления клеточных структур:

Эндомитоз – увеличение числа хромосом кратное их набору.

Политения – образование многонитчатых хромосом за счёт многократной репликации хромосом.

24. Митоз, его фазы, их характеристика. Факторы, влияющие на интенсивность митоза. Биологиче­ское значение митоза.

Митоз – сложное, непрямое, полноценное деление клетки.

Профаза – хромосомы спирализуются, укорачиваются, приобретают вид нитей и ядро напоминает клубок нитей. Ядрышко начинает разрушаться. Ядерная оболочка частично лизируется. В цитоплазме уменьшается количество структур шероховатой ЭПС. Резко уменьшается число полисом. Центриоли клеточного центра расходятся к полюсам. Между ними микротрубочки образуют веретено деления, увеличивается вязкость цитоплазмы, её тургорт и поверхностное натяжение внутренней мембраны.

Прометафаза – исчезает ядерная оболочка и ядрышко. Хромосомы в виде толстых нитей располагаются по экватору.

Метафаза – заканчивается образование веретена деления. Хроматиновые нити прикрепляются одним концом к центриолям, а другим к центромерам хромосом. Хроматиды начинают отталкиваться друг от друга. Хромосомы подразделяются на две хроматиды. Остаются сцепленными в центре. Хромосомы выстраиваются по экватору, образуя материнскую звезду.

Анафаза – рвётся связь по центромере, сохраняются нити ахроматинового веретена и растягивают хроматиды к центриолям.

Телофаза – происходят процессы обратные процессам профазы. Хромосомы десрирализуются, удлиняются, становятся тонкими. Формируется ядрышко, образуется ядерная мембрана, разрушается веретено деления, происходит цитокинез. Из материнской клетки образуются две дочерние.

Размножение как свойство живого. Способы размножения организмов, их характеристика.

Размножение – свойство живых организмов воспроизводить себе подобных. Оно обеспечивает непрерывность и преемственность.

Бесполое:

Одной клеткой (моноцитогенное).

Группой клеток (полицитогенной).

Участвуют две родительские особи.

Формы бесполого размножения у одноклеточных и многоклеточных организмов.

Период жизнедеятельности клетки, в котором происходят все процессы обмена веществ, называется жизненным циклом клетки.

Клеточный цикл состоит из интерфазы и деления.

Интерфаза - это период между двумя делениями клетки. Она характеризуется активными процессами обмена веществ, синтезом белка, РНК, накоплением питательных веществ клеткой, ростом и увеличением объема. К концу интерфазы происходит удвоение ДНК (репликация). В результате каждая хромосома содержит две молекулы ДНК и состоит из двух сестринских хроматид. Клетка готова к делению.

Деление клетки. Способность к делению - это важнейшее свойство клеточной жизнедеятельности. Механизм самовоспроизведения срабатывает уже на клеточном уровне. Наиболее распространенным способом деления клетки является митоз (рис. 55).

Рис. 55. Интерфаза (А) и фазы митоза (Б): 1 - профаза; 2 - метафаза; 3 - анафаза; 4 - телофаза

Митоз - это процесс образования двух дочерних клеток, идентичных исходной материнской клетке.

Митоз состоит из четырех последовательных фаз, обеспечивающих равномерное распределение генетической информации и органелл между двумя дочерними клетками.

1. В профазе ядерная мембрана исчезает, хромосомы максимально спирализуются, становятся хорошо заметными. Каждая хромосома состоит из двух сестринских хроматид. Центриоли клеточного центра расходятся к полюсам и образуют веретено деления.

2. В метафазе хромосомы располагаются в экваториальной зоне, нити веретена деления соединены с центромерами хромосом.

3. Анафаза характеризуется расхождением сестринских хроматид-хромосом к полюсам клетки. У каждого полюса оказывается столько же хромосом, сколько их было в исходной клетке.

4. В телофазе происходит деление цитоплазмы и органоидов, в центре клетки образуется перегородка из клеточной мембраны и возникают две новые дочерние клетки.

Весь процесс деления длится от нескольких минут до 3 ч в зависимости от типа клеток и организма. Стадия деления клетки по времени в несколько раз короче ее интерфазы. Биологический смысл митоза заключается в обеспечении постоянства числа хромосом и наследственной информации, полной идентичности исходных и вновь возникающих клеток.


Положения клеточной теории Шлейдена-Шванна

1. Все животные и растения состоят из клеток.

2. Растут и развиваются растения и животные путём возникновения новых клеток.

3. Клетка является самой маленькой единицей живого, а целый организм - это совокупность клеток.

]Основные положения современной клеточной теории

1. Клетка - элементарная единица живого, вне клетки жизни нет.

2. Клетка - единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц - органоидов.

3. Клетки всех организмов гомологичны.

4. Клетка происходит только путём деления материнской клетки, после удвоения её генетического материала.

5. Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.

6. Клетки многоклеточных организмов тотипотентны.

Клетки многоклеточного организма чрезвычайно разнообразны по выполняемым функциям. В соответствии со специализацией клетки имеют разную продолжительность жизни. Так нервные клетки после завершения эмбриогенеза перестают делиться и функционируют на протяжении всей жизни организма. Клетки же других тканей (костного мозга, эпидермиса, эпителия тонкого кишечника) в процессе выполнения своей функции быстро погибают и замещаются новыми в результате клеточного деления. Деление клеток лежит в основе развития, роста и размножения организмов. Деление клеток также обеспечивает самообновление тканей на протяжении жизни организма и восстановление их целостности после повреждения. Существует два способа деления соматических клеток: амитоз и митоз . Преимущественно распространено непрямое деление клеток (митоз). Размножение с помощью митоза называют бесполым размножением, вегетативным размножением или клонированием.

^ Жизненный цикл клетки (клеточный цикл) – это существование клетки от деления до следующего деления или смерти. Продолжительность клеточного цикла в размножающихся клетках составляет 10-50 ч и зависит от типа клеток, их возраста, гормонального баланса организма, температуры и других факторов. Детали клеточного цикла варьируют среди разных организмов. У одноклеточных организмов жизненный цикл совпадает с жизнью особи. В непрерывно размножающихся тканевых клетках клеточный цикл совпадает с митотическим циклом.



^ Митотический цикл - совокупность последовательных и взаимосвязанных процессов в период подготовки клетки к делению и период деления (рис 1). В соответствие с приведенным выше определением митотический цикл подразделяют на интерфазу и митоз (греч. “митос” - нить).

Интерфаза - период между двумя делениями клетки - подразделяется на фазы G 1 , S и G 2 (ниже указана их продолжительность, типичная для растительных и животных клеток.). По продолжительности интерфаза составляет большую часть митотического цикла клетки. Наиболее вариабельны по времени G 1 и G 2 -периоды.

G 1 (от англ. grow – расти, увеличиваться). Продолжительность фазы составляет 4–8 ч. Это фаза начинается сразу после образования клетки. В этой фазе в клетке усиленно синтезируются РНК и белки, повышается активность ферментов, участвующих в синтезе ДНК. Если клетка в дальнейшем не делится, то переходит в фазу G 0 – период покоя. С учетом периода покоя клеточный цикл может длиться недели или даже месяцы (клетки печени).

S (от англ. synthesis - синтез). Длительность фазы составляет 6–9 ч. Масса клетки продолжает увеличиваться, и происходит удвоение хромосомной ДНК. Две спирали старой молекулы ДНК расходятся, и каждая становится матрицей для синтеза новых цепей ДНК. В результате каждая из двух дочерних молекул обязательно включает одну старую спираль и одну новую. Тем не менее хромосомы остаются одинарными по структуре, хотя и удвоенными по массе, так как две копии каждой хромосомы (хроматиды) все еще соединены друг с другом по всей длине. После завершения фазы S митотического цикла клетка не сразу начинает делиться.

G 2 . В этой фазе в клетке завершается процесс подготовки к митозу: накапливается АТФ, синтезируются белки ахроматинового веретена, удваиваются центриоли. Масса клетки продолжает увеличиваться до тех пор, пока она приблизительно вдвое не превысит начальную, а затем наступает митоз.

^ Рис. Митотический цикл: М - митоз, П - профаза, Мф - метафаза, А - анафаза, Т- телофаза, G 1 - пресинтетический период, S - синтетический период, G 2 - постсинтетический

^ 2. Митоз. Стадии митоза, их продолжительность и характеристика. Митоз условно разделяют на четыре фазы:профазу, метафазу, анафазу и телофазу.

Профаза. Две центриоли начинают расходиться к противоположным полюсам ядра. Ядерная мембрана разрушается; одновременно специальные белки объединяются, формируя микротрубочки в виде нитей. Центриоли, расположенные теперь на противоположных полюсах клетки, оказывают организующее воздействие на микротрубочки, которые в результате выстраиваются радиально, образуя структуру, напоминающую по внешнему виду цветок астры («звезда»). Другие нити из микротрубочек протягиваются от одной центриоли к другой, образуя веретено деления. В это время хромосомы спирализуются и вследствие этого утолщаются. Они хорошо видны в световом микроскопе, особенно после окрашивания. Считывание генетической информации с молекул ДНК становится невозможным: синтез РНК прекращается, ядрышко исчезает. В профазе хромосомы расщепляются, но хроматиды все еще остаются скрепленными попарно в зоне центромеры. Центромеры тоже оказывают организующее воздействие на нити веретена, которые теперь тянутся от центриоли к центромере и от нее к другой центриоли.

Метафаза. В метафазе спирализация хромосом достигает максимума, и укороченные хромосомы устремляются к экватору клетки, располагаясь на равном расстоянии от полюсов. Образуется экваториальная, или метафазная, пластинка. На этой стадии митоза отчетливо видна структура хромосом, их легко сосчитать и изучить их индивидуальные особенности. В каждой хромосоме имеется область первичной перетяжки - центромера, к которой во время митоза присоединяются нить веретена деления и плечи. На стадии метафазы хромосома состоит из двух хроматид, соединенных между собой только в области центромеры.

^ Рис. 1. Митоз растительной клетки. А - интерфаза;
Б, В, Г, Д- профаза; Е, Ж-метафаза; 3, И - анафаза; К, Л, М-телофаза

В анафазе вязкость цитоплазмы уменьшается, центромеры разъединяются, и с этого момента хроматиды становятся самостоятельными хромосомами. Нити веретена деления, прикрепленные к центромерам, тянут хромосомы к полюсам клетки, а плечи хромосом при этом пассивно следуют за центромерой. Таким образом, в анафазе хроматиды удвоенных еще в интерфазе хромосом точно расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом (4n4с).

Таблица 1. Митотический цикл и митоз

Фазы Процесс, происходящий в клетке
Интерфаза Пресинтетический период (G1) Синтез белка. На деспирализованных молекулах ДНК синтезируется РНК
Синтетический период (S) Синтез ДНК - самоудвоение молекулы ДНК. Построение второй хроматиды, в которую переходит вновь образовавшаяся молекула ДНК: получаются двухроматидные хромосомы
Постсинтетический период (G2) Синтез белка, накопление энергии, подготовка к делению
^ Фазы митоза Профаза Двухроматидные хромосомы спирализуются, ядрышки растворяются, центриоли расходятся, ядерная оболочка растворяется, образуются нити веретена деления
Метафаза Нити веретена деления присоединяются к центромерам хромосом, двухроматидные хромосомы сосредоточиваются на экваторе клетки
Анафаза Центромеры делятся, однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки
Телофаза Однохроматидные хромосомы деспирализуются, сформировывается ядрышко, восстанавливается ядерная оболочка, на экваторе начинает закладываться перегородка между клетками, растворяются нити веретена деления

В телофазе хромосомы раскручиваются, деспирализуются. Из мембранных структур цитоплазмы образуется ядерная оболочка. В это время восстанавливается ядрышко. На этом завершается деление ядра (кариокинез), затем происходит деление тела клетки (или цитокинез). При делении животных клеток на их поверхности в плоскости экватора появляется борозда, постепенно углубляющаяся и разделяющая клетку на две половины - дочерние клетки, в каждой их которых имеется по ядру. У растений деление происходит путем образования так называемой клеточной пластинки, разделяющей цитоплазму: она возникает в экваториальной области веретена, а затем растет во все стороны, достигая клеточной стенки (т.е. растет изнутри кнаружи). Клеточная пластинка формируется из материала, поставляемого эндоплазматической сетью. Затем каждая из дочерних клеток образует на своей стороне клеточную мембрану и, наконец, на обеих сторонах пластинки образуются целлюлозные клеточные стенки. Особенности протекания митоза у животных и растений приведены в таблице 2.
^

Таблица 2. Особенности митоза у растений и у животных

Так из одной клетки формируются две дочерние, в которых наследственная информация точно копирует информацию, содержавшуюся в материнской клетке. Начиная с первого митотического деления оплодотворенной яйцеклетки (зиготы) все дочерние клетки, образовавшиеся в результате митоза, содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз - это способ деления клеток, заключающийся в точном распределении генетического материала между дочерними клетками. В результате митоза обе дочерние клетки получают диплоидный набор хромосом.

Весь процесс митоза занимает в большинстве случаев от 1 до 2 часов. Частота митоза в разных тканях и у разных видов различна. Например, в красном костном мозге человека, где каждую секунду образуется 10 млн эритроцитов, в каждую секунду должно происходить 10 млн. митозов. А в нервной ткани митозы крайне редки: так, в центральной нервной системе клетки в основном перестают делиться уже в первые месяцы после рождения; а в красном костном мозге, в эпителиальной выстилке пищеварительного тракта и в эпителии почечных канальцев они делятся до конца жизни.

Регуляция митоза, вопрос о пусковом механизме митоза.

Факторы, побуждающие клетку к митозу точно не известны. Но полагают, что большую роль играет фактор соотношения объемов ядра и цитоплазмы (ядерно-плазменное соотношение). По некоторым данным, отмирающие клетки продуцируют вещества, способные стимулировать деление клетки. Белковые факторы, отвечающие за переход в фазу М, первоначально были идентифицированы на основе экспериментов по слиянию клеток. Слияние клетки, находящейся в любой стадии клеточного цикла, с клеткой находящейся в М фазе, приводит к вхождению ядра первой клетки в М фазу. Это означает, что в клетке находящейся в М фазе существует цитоплазматический фактор способный активировать М фазу. Позднее этот фактор был вторично обнаружен в экспериментах по переносу цитоплазмы между ооцитами лягушки, находящимися на различных стадиях развития, и был назван "фактором созревания" MPF (maturation promoting factor). Дальнейшее изучение MPF показало, что этот белковый комплекс детерминирует все события М-фазы. На рисунке показано, что распад ядерной мембраны, конденсация хромосом, сборка веретена, цитокинез регулируются MPF.

Митоз тормозится высокой температурой, высокими дозами ионизирующей радиации, действием растительных ядов. Один из таких ядов называется колхицин. С его помощью можно остановить митоз на стадии метафазной пластинки, что позволяет подсчитать число хромосом и дать каждой из них индивидуальную характеристику, т. е. провести кариотипирование.