Спинной мозг расположен внутри позвоночника, который надежно защищает его от внешних повреждений. Он тоненький, не очень длинный, совсем мало весит, но управляет и всем опорно-двигательным аппаратом, и внутренними органами. Начинается он у затылочного отверстия черепа и длится до поясничных позвонков, далее в позвоночнике располагается «конский хвост» – пучок нервов, выходящих из спинного мозга.

Спинной мозг окружен тремя оболочками: мягкой, паутинной и твердой. А пространство между мягкой и паутинной оболочками заполнено еще и большим количеством спинномозговой жидкости. Через межпозвоночные отверстия от спинного мозга парами отходят спинномозговые нервы: каждый выходит двумя корешками – задним (чувствительным) и передним (двигательным), соединенными в один ствол. Каждая такая пара ответственна за определенную часть тела.


Вы замечали, что зачастую мы отдергиваем руку от острого или горячего предмета еще до того, как почувствовали боль? Чувствительный нерв, ответственный за руку, немедленно дает сигнал об опасности в спинной мозг и моментально его двигательный собрат передает руке команду срочно отдернуться. Сигнал о боли дойдет в головной мозг чуть позже. Это позволяет нам и нашим питомцам избежать более серьезных повреждений.

Вообще, практически все наши автоматические и рефлекторные действия контролируются спинным мозгом, ну за исключением тех, за которыми следит сам головной мозг. Так, например, информация об увиденном поступает в головной мозг, но глазные мышцы управляются спинным мозгом. Все новое, то, что человек, собака, кошка делает впервые, контролирует головной мозг, как только это действие становится привычным, автоматическим, рефлекторным, оно передается в ведение спинного мозга. А головной мозг отправляется в дальнейшее познавание неизведанного.

В свете разговоров про спинной мозг хотелось бы напомнить о таком заболевании, как дископатия. Больше всех это заболевание донимает такс, но бывает и у других пород собак, а также у животных других видов и человека. Позвонки, как мы помним, соединены между собой подвижно (иначе как бы мы поворачивались, нагибались?).

Верхняя часть каждого позвонка образует дужку. В ряд этих дужек, соединенных суставами (да-да, такими же суставами, что и кости конечностей), "продет", как нитка в бусины, спинной мозг. Нижние части (тела) позвонков, чтобы не тереться друг о друга и не травмироваться, "проложены" дисками. Каждый диск состоит из эластичной хрящевой основы и внутреннего желеобразного содержимого (представьте себе резиновый шарик, в который налили клейстер), за счет чего он может менять форму и играет роль амортизатора при нагрузке на позвоночник.

Если по какой-то причине диск деформируется, его части, выступающие за пределы межпозвоночного пространства, сдавливают спинной мозг и отходящие от него нервы. Чем это чревато? Пережатые нервные волокна перестают функционировать, и та часть тела, которая управляется этим нервом (этим участком спинного мозга), теряет чувствительность, подвижность, нарушается кровоток и т.д.

В зависимости от места и степени поражения это может ограничиться небольшим, проходящим приволакиванием задних лап (небольшое ущемление спинномозговых нервов в районе поясницы), а может привести и к летальному исходу (сильное сдавливание спинного мозга в области первых грудных позвонков). Хотя к этому заболеванию есть породная предрасположенность, следует помнить, что позвоночник поддерживает мышечный корсет, поэтому активная жизнь и адекватная физическая нагрузка снижают риск. Кроме того, нельзя позволять животным совершать неестественные движения.

Однако давайте немного поговорим о головном мозге. Чем больше, тем лучше? У мышек масса мозга всего около 1 грамма, у кошек – около 30, у собак – около 100, у человекообразных обезьян – около 400. Казалось бы, куда им до человека? У нас с вами в среднем по 1,4 кг мозга! Но у слона мозг весит 5 кг, а у кашалотов – все 7… Они умнее?

Нет, разумность зависит от соотношения массы мозга к массе тела. У человека это соотношение – 50, у шимпанзе – 120, у собаки – 500, а у кашалота – все 3000… Но и это не показатель. В качестве примера посмотрим на знаменитых людей: мозг И.С. Тургенева имел массу 2012 г, знаменитого химика Ю. Либиха – 1362 г, Ленина – 1340 г, писателя А. Франса – всего 1017 г, а самый большой мозг, массой в 2850 г, принадлежал… пациенту психиатрической лечебницы идиоту-эпилептику. От чего же зависит интеллект? От количества так называемого серого вещества – густого сосредоточения нейронов и от количества связей между нейронами.

Мозг потребляет громадное количество энергии и кислорода – до 9% всей энергии организма и 20% кислорода в покое и около 25% от всех поступающих в организм питательных веществ и примерно 33% так необходимого организму кислорода в период активности. Неэкономно? С одной стороны, да, с другой, для выживания нужны не только способы сэкономить энергию и кислород, но и скорость реакции. В общем, мозг, это выгодное вложение. Мощнейший компьютер, самообучающаяся система, центр управления полетами.

Он сложно устроен и надежно защищен: крепкими костями черепа и тремя оболочками: твердой, паутинной и мягкой. Головной мозг состоит из продолговатого мозга, заднего мозга (мозжечок и варолиев мост), среднего мозга, промежуточного мозга (таламус, гипоталамус, эпиталамус, гипофиз и эпифиз), ретикулярной формации, лимбической системы, мозолистого тела, большого мозга и коры его полушарий – это так много и так интересно, что об этом стоит поговорить подробно, что мы сделаем в следующий раз.

ГОЛОВНОЙ МОЗГ

Головной мозг - encephalon - головная часть центрального отдела нервной системы, расположенная в полости черепа. Развитие его, как и спинного мозга, произошло путем замыкания краев нервной борозды с образованием нервной трубки. Высокая концентрация нервной ткани вокруг пяти пузырей на переднем конце тела привела к развитию разнообразных по строению и функции структур (схема).

Схема строения головного мозга

Так, конечный мозг наиболее богат сложными ассоциативными структурами, тесно связан с органами чувств наиболее древнего нервно-эпителиального типа. Конечный мозг - это чувствительно-ассоциативная область, лишенная собственных двигательных центров. Он характеризуется развитием двух структур: 1) 6а-зальных ганглиев в виде полосатых тел - важного ассоциативного центра прочных, стабильных нервных связей типа инстинктов и 2) коры головного мозга - обширного поля высших центров, богатых возможностями установления лабильных ассоциаций условно-рефлекторного характера.

Средний мозг по происхождению имеет двойной характер. Кроме чувствительного поля, в нем появляются двигательные центры - ядра III и IV пар черепных нервов и красное ядро.

Ромбовидный мозг имеет оба отдела - чувствительный и двигательный. Его продолговатый мозг является типичным туловищным мозгом «допозвоночного» организма, содержащим висцеральные (рецепторные и эффекторные) и соматорецепторные компоненты (слуха, равновесия и др.).

Головной мозг с дорсальной поверхности разделяется поперечной щелью - fissura trausversa cerebri на большой и ромбовидный мозг.

Большой мозг - cerebrum. Состоит из конечного, промежуточного и среднего мозга, имеет два полушария, представляющих конечный мозг. Правое и левое полушария большого мозга - hemispheria cerebri dextrum et sinistrum дорсально разграничиваются глубокой продольной щелью - fissura longitudinalis cerebri. Полушария прикрывают с дорсальной поверхности промежуточный и средний мозг. С базальной стороны можно видеть части промежуточного мозга - гипофиз и перекрест зрительных нервов, а также среднего мозга - ножки большого мозга.

Ромбовидный мозг - rhombencephalon. Состоит из заднего мозга, в который входят мозжечок и мозговой мост, и продолговатого мозга. Мозжечок - cerebellum располагается дорсально от продолговатого мозга и позади от полушарий большого мозга. На переднем конце продолговатого мозга с вентральной поверхности лежит мозговой мост - pons. Продолговатый мозг - medulla oblongata, s. myelencephalon непосредственно продолжается в спинной мозг.

У рогатого скота большой мозг сравнительно короткий, широкий и высокий; полушария спереди сужены, сзади сильно расширены, что придает мозгу грушевидную форму (рис. 162).

У лошадей большой мозг сравнительно длинный, более сжат с боков и ниже, чем у жвачных. Извилин больше, чем у рогатого скота (рис. 163).

У свиней сильно развиты латеральные обонятельные тракты, а дугообразные борозды не такие четкие, как у собаки.

У собак общая форма головного мозга зависит от очертаний черепа: она то более грушевидная, то более круглая. Для мозга собаки типичны три дугообразные борозды на плаще.

Масса головного мозга новорожденных отличается от массы мозга взрослых, у разных животных она неодинакова (табл. 6).

Морские свинки, лошади, крупный рогатый скот, овцы рождаются «зрелыми», появляются на свет с массой головного мозга, составляющей от массы мозга взрослых особей 40-60%, тогда как собаки, кошки, кролики, крысы и мыши - животные, неспособные сразу после рождения к активному существованию (к самостоятельному передвижению, питанию), имеют относительно малый по размерам мозг-13-17% от массы мозга взрослых животных. Самым не-зрелым (12%) в этом ряду оказывается мозг ребенка.

Развитие головного мозга. На ранних стадиях онто-и филогенеза головной мозг представляет расширенный конец мозговой трубки, который называется первичным, или прехордальным, мозговым пузырем, так как он лежит впереди хорды. Развитие его функционально связано с органом обоняния, и его обонятельная функция сохраняется у всех животных, включая млекопитающих (рис. 164).

Рис. 162. Сагиттальный разрез головного мозга крупного рогатого скота

Несколько позже позади прехордального мозгового пузыря на переднем конце мозговой трубки появляется вторичный мозговой пузырь (его называют также эпихордальным мозговым пузырем, так как он лежит дорсально от хорды). Развитие вторичного мозгового пузыря обусловлено: а) функцией жаберного аппарата и органов боковой линии водных животных (соответственно органу равновесия у наземных животных); б) дифференцировкой внутренних органов, которая, в свою очередь, была вызвана повышением интенсивности обмена веществ и усилением подвижности животных и в) возникновением первичного ассоциативного и коммиссурального центра.

С усовершенствованием органа зрения от эпихордального мозгового пузыря обособляется средний мозговой пузырь - mesencephalon. На этой трехпузырной стадии прехордальный мозговой пузырь именуют передним мозгом - prosencephalon, а эпихордальный мозговой пузырь - задним, или ромбовидным, мозгом - rhombencephalon. С дорсальной поверхности все три отдела мозга довольно резко отграничиваются друг от друга поперечными коммиссурами, или спайками, из нервных волокон как впереди, так и позади среднего мозга. В дальнейшем возникает пятипузырная стадия мозга. Из прехордального мозга образуется конечный мозг - telencephalon в виде парного мозгового пузыря и промежуточный мозг - diencephalon.

Рис. 163. Головной мозг лошади

Наивысшей ступени развития, особенно в области, плаща, конечный мозг достигает у млекопитающих, в частности у человека. Промежуточный мозг у низших животных развит слабо, но затем с повышением организации животных он становится высшим подкорковым чувствительным центром, связанным со всеми рецепторами анализаторов и через спинной мозг со всеми органами тела, а также с корой большого мозга по мере ее разрастания. Из него же происходят глазные пузыри.

Почти одновременно с делением прехордального мозга дифференцируется и ромбовидный мозг на задний мозг - metencephalon

6. Масса головного мозга у домашних животных разных видов

6. Масса головного мозга у домашних животных разных видов (по Ю.Т. Техверу, 1983) и продолговатый мозг - myelencephalon. Задний мозг первоначально представлен одним лишь мозжечком, который является подкорковым центром корреляции мышечных движений для сохранения равновесия. Лишь у млекопитающих к мозжечку вследствие диффе-ренцировки коры большого мозга добавляется мозговой мост. Продолговатый мозг - непосредственное производное эпюсордального мозгового пузыря, функции которого он и сохраняет.

Полости первичных мозговых пузырей в развитом мозге становятся мозговыми желудочками. Из полости прехордального мозга в конечном мозге возникают парные боковые желудочки, а в промежуточном мозге - третий мозговой желудочек. Все три желудочка соединяются межжелудочковым отверстием (монроево). Желудочек среднего мозгового пузыря вследствие разрастания стенок последнего превращается в мозговой водопровод. Полость же эпихордального мозгового пузыря становится четвертым мозговым желу-дочком. Он сообщается и с центральным спинномозговым каналом, и с мозговым водопроводом.

КОНЕЧНЫЙ МОЗГ - telencephalon. Состоит из двух полушарий большого мозга - hemispheria dextrum et sinistrum, разделенных с дорсальной повер-хности глубокой продольной щелью - fissura longitudinalis cerebri. В каждом полушарии рассматривают плащ, обонятельный мозг, полосатые тела и боковые желудочки мозга. Плащ расположен на дорсолатеральной поверхности полушарий, обонятельный мозг лежит вентромедиально. Границей между плащом и обонятельным мозгом на вентральной поверхности мозга служит базальная пограничная, или обонятельная, борозда. Полосатое тело лежит в вентральной стенке полушарий под корой, но дорсально от частей обонятельного мозга.

Рис. 164. Стадии эмбрионального развития головного мозга


Рис. 165. Головной мозг крупного рогатого скота с базальной поверхности

Плащ - pallium построен из серого и белого мозгового вещества. Серое мозговое вещество - substantia grisea образует кору большого мозга - cortex cerebri. На дорсолатеральной, базальной и медиальной поверхностях она имеет многочисленные извилины, отделенные друг от друга глубокими щелями; извилины покрыты мелкими бороздами. Более глубокие щели, извилины и борозды имеют специальные названия.

А. Борозды на базальной поверхности - пограничные (рис. 165).

1. Базальная пограничная, или обонятельная, борозда - sulcus rhinalis lateralis. Лежит в латеральном отделе основания мозга, на границе между обонятельным мозгом и плащом. Каудальная часть борозды переходит на затылочную долю полушария, образуя затылочно-височную борозду.

2. Медиальная пограничная щель - sulcus rhienalis medialis. Лежит на медиальной поверхности, образуя каудомедйальную границу грушевидной доли.

Б. Борозды на дорсолатеральной поверхности плаща.

1. Латеральная сильвиева борозда (щель) - fissura sylvia. Начинается от базальной пограничной борозды в плоскости перекреста зрительных нервов. В ней проходит средняя мозговая артерия. Она делится на три ветви: каудальную, среднюю, или верхушечную, и ростральную. В глубине сильвиевой борозды лежит часть плаща - островок Рейля.

2. Эктосильвиева, или первая дугообразная, борозда - sulcus presylvius. Лежит дорсально и каудально от ветвей сильвиевой борозды.

3. Надсильвиева, или вторая дугообразная, борозда - sulcus sup-rasylvius. Представлена двумя бороздами: диагональной - слаборазвитой, лежащей над ростральной ветвью сильвиевой борозды. Другая же - собственно надсильвиева борозда-следует параллельно эктосильвиевой борозде.

4. Эктомаргинальная, или третья дугообразная, борозда - sulcus ectomarginalis. Состоит из двух обособленных частей. Обе проходят вдоль дорсального края плаща, причем задний участок сохраняет название латеральной борозды, а передний называется венечной бороздой.

В. Борозды на медиальной поверхности плаща.

1. Борозда мозолистого тела - sulcus corporis callosi идет по дорсальному краю мозолистого тела.

2. Поясная борозда лежит в обоих полушариях над бороздой мозолистого тела. Разделяется на ростральную часть, или борозду колена - sulcus genualis, и дорсокаудальную часть, или борозду валика - sulcus splenialis.

Проводящие пути конечного мозга. Белое мозговое вещество - substantia alba залегает под корой плаща. Оно состоит из проводящих путей: ассоциативных, коммиссуральных и проекционных.

Л. Ассоциативные, или сочетательные, волокна соединяют отдельные участки коры в пределах каждого полушария. Они разделяются на короткие волокна (между извилинами) и длинные (между долями полушарий). Проходят они в наружной капсуле.

Б. Коммиссуральные, или спаечные, волокна соединяют участки, принадлежащие разным полушариям. Они формируют мозолистое тело - corpus callosum - самую крупную комиссуру головного мозга. Оно помещается между полушариями в глубине продольной щели. Различают ствол мозолистого тела - truncus corporis callosi и два конца - передний и задний. Передний конец называется коленом мозолистого тела - genu corporis callosi. Он загибается вентрально. Задний конец, или валик, мозолистого тела - splenium corporis callosi срастается со сводом. Коммиссуральные волокна, выходящие из ствола мозолистого тела, образуют лучистость спайки - radiatio corporis callosi. Формируя крышу бокового желудочка мозга, она расходится в передний, боковой и задний отделы коры плаща.

Коммиссуральные пути проходят не только через мозолистое тело, но и еще через четыре спайки -- коммиссуры: спайка зрительных бугров, или серая спайка; ростральная спайка, расположенная в передней части третьего желудочка, соединяет обонятельные доли; каудальная спайка является спайкой свода боковых желудочков мозга, располагается в каудальной части третьего желудочка и спайка аммоновых рогов, расположенная на дне боковых желудочков мозга.

В. Проекционные волокна - двусторонние. Они соединяют кору плаща как с отдельными частями ствола головного мозга, так и со спинным мозгом. Проекционные волокна проходят во внутренней капсуле.

Функционально проекционные пути разделяются на эфферентные и афферентные.

Эфферентные проводящие пути (они же центрифугальные, центробежные, двигательные) выносят импульсы из коры полушарий большого мозга в разные отделы ствола большого, ромбовидного и спинного мозга.

Афферентные проводящие пути (они же центропетальные, цен-тростремительные, чувствительные) приносят импульсы в кору полушарий из зрительных бугров промежуточного мозга.

В противоположность коре больших полушарий все серое мозговое вещество остальных отделов центральной нервной системы объединяется понятием «подкорка». Импульсы со всех частей тела сначала притекают в разные отделы подкорки (включая зрительный бугор), а из последних уже поступают в кору полушарий.

На плаще рассматривают доли: лобную, височную, теменную, затылочную и обонятельную. Впереди лобная доля - lobus frontalis - психомоторная, лишь у собаки четко отграничивается венечной бороздой - sulcus coronarius. Затылочная доля - lobus occipitalis - зрительная, занимает каудальный отдел плаща позади плоскости, проведенной через валик мозолистого тела. Теменная доля - lobus parietalis - психосенсорная, лежит между лобной и затылочной долями. Височная доля - lobus temporalos - слуховая, находится ориентировочно позади латеральной борозды (сильвиевой) в вентральной половине плаща. Обонятельная доля - lobus olfactorius образует обонятельный мозг.

Обонятельный мозг - rhinencephalon располагается в вентромедиальном отделе каждого полушария большого мозга. Отдельные части его видны на базальной и медиальной поверхностях полушарий, а также на дне боковых желудочков мозга. На базальной поверхности полушарий сосредоточены обонятельные луковицы, обонятельные тракты и извилины, обонятельные треугольники и грушевидные доли. На медиальных поверхностях полушарий видны околообонятельное поле, извилины гиппокампа, поясные извилины и поверхность разреза ростральной спайки, а на дне боковых желудочков мозга - хвостатые ядра, аммоновы рога (гипокамп) и свод.

1. Обонятельная луковица - bulbus olfactorius - парное образование в виде довольно плоского, вытянутого и загнутого дорсально полого мозгового отростка, который выдается за передний край полушария мозга в обонятельную ямку решетчатой кости. Дорсомедиальный отдел луковицы построен из серого мозгового вещества, а латеровентральный - из белого мозгового вещества. В луковице заключен желудочек обонятельной луковицы - ventriculus bulbi olfactorii. Он является продолжением бокового желудочка мозга.

В обонятельную луковицу входят обонятельные нервы - пп. olfactorii (I пара). Они содержат многочисленные пучки нервны* волокон - fila olfactoria, направляющихся от обонятельных клеток слизистой оболочки носа к нервным клеткам луковицы. Таким образом, обонятельные луковицы являются первичными обонятельными центрами.

2. От нервных клеток обонятельной луковицы начинаются обонятельные проводящие пути. Они образуют белое мозговое вещество самой луковицы и обонятельные тракты-общий, медиальный и латеральный. Латеральный обонятельный тракт переходит в грушевидную долю, отграничивает на своем пути латеральную обонятельную извилину - gyrus olfactorius lateralis. Медиальный обонятельный тракт достигает медиальной поверхности плаща, формируя околообонятельное поле -area parolfactoria. По пути он образует медиальную обонятельную извилину - gyrus olfactorius. Обонятельные тракты ограничивают обонятельные треугольники - trigonum olfactorium из серого мозгового вещества. Они проводят импульсы от обонятельной луковицы к клеткам вторичных обонятельных центров, расположенных в обонятельных извилинах, обонятельных треугольниках, околообонятельных полях, а также в грушевидных долях.

3. Грушевидная доля - lobus piriformis (крючок - uncus) расположена каудально от латерального обонятельного тракта и обонятельного треугольника, а медиально граничит с ножками большого мозга. Каудомедиальной границей грушевидной доли является медиальная пограничная щель, или щель гиппокампа - fissura hippocampi. В грушевидной доле заключена полость, представляющая собой задний отдел бокового желудочка мозга. На внутренней стенке доли лежит конец аммонова рога. Грушевидная доля каудально переходит без четкой границы в извилину гиппокампа - gyrus hippocampi, расположенную на медиальной поверхности полушария, кзади и латерально от щели гиппокамра. Извилина гиппокампа дорсально продолжается в поясную извилину - gyrus cinguli. Последняя проходит непосредственно дорсально от мозолистого тела и, огибая его спереди, соединяется с околообонятельным полем.

Грушевидная доля и извилина гиппокампа выполняют роль вторичных обонятельных центров, а извилина гиппокампа, кроме того, и вкусового центра.

4. Аммонов рог (гиппокамп) - hippocampus своим дорсальным отделом образует дно бокового желудочка, лежит позади хвостатого ядра, от которого отделяется сосудистым сплетением бокового желудочка.

Аммонов рог представляет собой складку коры мозга в области щели гиппокампа и грушевидной доли. Он серповидно изгибается латерокаудально и вентрально и упирается концом в стенку грушевидной доли.

Аммоновы рога лежат дорсально на зрительных буграх, будучи отделены от них сосудистым сплетением третьего мозгового желудочка. Являясь высшими ассоциационными подкорковыми обонятельными центрами, аммоновы рога связаны с различными участками коры больших полушарий и подкорковыми ядрами. Проводящие пути их образуют свод и его производные.

5. Свод - fornix содержит в своем составе проводящие пути, соединяющие аммоновы рога с сосцевидным телом промежуточного мозга. Отдельным участкам этого пучка проводящих путей присвоены различные названия - желобоватые листки, кайма аммонова рога, ножки, столбы и тело свода и коммиссура аммоновых рогов.

Желобоватый листок - alveus hippocampi покрывает аммонов рог с его поверхности, обращенной в боковой желудочек мозга. Он построен из нервных волокон, происходящих из серого мозгового вещества грушевидной доли и аммонова рога. По дорсолатеральному краю эти волокна создают кайму аммонова рога, продолжающуюся в ножку свода. Последняя, соединяясь с ножкой другой стороны, становится коротким телом свода. Тело свода служит крышей третьего мозгового желудочка. Рострально оно разделяется на два столба свода. Последние медиально от хвостатых ядер направляются к, сосцевидному телу и серому бугру промежуточного мозга (гипоталамусу). Коммиссура аммоновых рогов - commissura hippocampi образована поперечными волокнами между ножками свода; она соединяет дорсальные концы аммоновых рогов друг с другом.

6. Между передним концом мозолистого тела (клювом) и столбами свода залегает передняя спайка мозга - commissura rostralis.

Рис. 166. Полосатое тело на разрезе

Рис. 167. Вид на боковой желудочек мозга

Рис. 168. Стволовая и подкорковая части головного мозга

На границе между оградой, скорлупой и аммоновым рогом располагается миндалевидное тело - corpus amygdaloideum.

Полосатые тела соединяются проводящими путями: 1) с корой большого мозга; 2) с промежуточным мозгом (со зрительными буграми и гипоталамусом); 3) с ядрами сетчатого образования среднего мозга (красное ядро и др.); 4) с ядрами моста и продолговатого мозга (каудальные оливы); 5) с ядрами черепных нервов.

Через полосатые тела замыкаются различные рефлекторные цепи: а) периферический рецепторный аппарат - зрительные бугры, полосатые тела - соматические и висцеральные эффекторные аппараты или б) кора - полосатое тело - соматические и висцеральные эффекторные аппараты. У млекопитающих ядра полосатых тел являются важнейшими подкорковыми двигательными центрами: 1) координированных непроизвольных движений (ходьба, бег, лазание); 2) регуляции мышечного тонуса в состоянии покоя и движения; 3) безусловных рефлексов в виде жестов (у человека), позы и мимики и, наконец 4) высшими подкорковыми вегетативными центрами. Полосатые тела функционируют как единое целое, но отдельные их части действуют противоположно: например, стриатум тормозит движения, а бледное ядро вместе с медиальными ядрами зрительного бугра, напротив, усиливает их.

Развитие конечного мозга. Из передней и вентральной стенок конечного мозга происходят обонятельный мозг - обонятельные доли и полосатые тела, а из дорсальной его стенки - плащ.

Развитие обонятельных долей мозга обусловливается наличием обонятельного анализатора, который у водных животных играет исключительную роль при ориентации во внешней среде. Отростки чувствительных обонятельных клеток заканчиваются в обонятельных долях - выростах стенки конечного мозга. Дистальные отделы обонятельных долей формируют первичные обонятельные центры - обонятельные луковицы, а проксимальные отделы - древнейшую обонятельную кору из серого мозгового вещества в виде обонятельных извилин и обонятельных треугольников; они возникают как вторичные обонятельные центры.

В вентральной же стенке конечного мозга дорсально от закладки очень рано появляется закладка крупноклеточного базального ганглия. Это первичный и притом высший двигательный центр. Назальный ганглий сохраняется и у млекопитающих животных в виде бледного ядра. Позднее у наземных животных разрастаются дополнительные мелкоклеточные ядра, образующие скорлупу (начиная с рептилий), а у млекопитающих еще хвостатое ядро. Оба объединяются под названием «полосатое тело». С появлением вторичного плаща полосатое тело пронизывается внутренней и наружной капсулами из проводящих путей, идущих в кору плаща и обратно.

В эволюции плаща наблюдаются две формации различной функции и строения, не считая мембранообразного примитивного плаща, характерного для водных животных и построенного только из эпендимы.

У наземных животных разрастание вторичного плаща вызывается внедрением в него новых нервных волокон (проекционных) из промежуточного мозга, являющихся проводниками различных анализаторов - кожного, зрительного, слухового, мышечного.

Кора вторичного плаща в ряду животных чрезвычайно усложняется в строении, резко дифференцируются ее функции и структура, увеличиваются размеры. У крупных млекопитающих животных плащ обычно испещрен извилинами и бороздами. Извилины в ряду животных располагаются неодинаково. В одних случаях (у хищных, копытных) они в основном идут дугами вокруг поперечной сильвиевой борозды; у приматов и человека извилины образуют две системы - ложную и теменную. Обе системы разделены сильвиевой бороздой. У третьей группы животных сильвиева борозда отсутствует, а борозды идут в передней части мозга продольно, а в задней - поперечно. В силу сказанного абсолютная гомологизация извилин между разными отрядами животных крайне затруднительна, а в отдельных случаях невозможна. У мелких животных извилины вообще отсутствуют (животные с гладким головным мозгом). Наибольшее количество извилин насчитывается у слонов и китов, у мелких приматов извилины отсутствуют. В онтогенезе извилины появляются также не сразу, а в определенной последовательности.

Рис. 169. Цито- и миелоархитектоника коры больших полушарий

Цито- и миелоархитектоника коры больших полушарий (рис. 169). В процессе исторического развития усложняются цитоархитёк-тоника и миелоархитектоника, т. е. строение и расположение клеток и волокон между ними в коре плаща. Клеточные элементы коры распределяются шестью слоями, параллельными поверхности мозга. Пласты эти, считая с поверхности вглубь, следующие: I - молекулярный; II - наружный зернистый; III - малых пирамидных клеток. Клетки II и III пластов появляются наиболее поздно, им приписывают ассоциационную функцию высшего порядка, характеризующую высшую нервную деятельность; IV - внутренний зернистый, первичный по происхождению, ему принадлежит рецепторная функция; V - больших пирамидных клеток и VI - веретенообразных и полиморфных клеток (выполняет эффекторную функцию). В примитивной обонятельной коре из перечисленных слоев имеются I, V и VI.

Особого развития как в филогенезе, так и в онтогенезе достигают пирамидные клетки В. А. Беца. Неодинакова и густота расположения нервных клеток в коре: в 1 мм3 у млекопитающих их до 5-10 тыс., а у приматов и человека даже до 35-50 тыс.

На основе локальных различий в цитоархитектонике кору млекопитающих разделяют на поля - area. Отдельные поля на основе несходства миелоархитектоники, в свою очередь, могут быть подразделены на меньшие участки. Каждое поле характеризуется определенной функцией. Существуют поля с функцией, встречающейся только у человека. Такие поля у низших животных, естественно, отсутствуют. Наконец, есть и такие поля, функция которых до сих пор еще недостаточно ясна. Общее число полей у человека превышает 250.

Филогенетически все поля дифференцируются из примитивных четырех областей мозга низших животных (сумчатых и насекомоядных). Эти области представляют собой мозговые отделы анализаторов: передние доли коры являются двигательным анализатором, затылочные доли - зрительным и промежуточная между ними доля - кожным анализатором. У высших животных возникают новые ассоциационные области: лобная доля, а затем и височно-теменная, с наиболее крупным объемом у человека. Так, лобные доли у кролика составляют 2%, у кошки 3, у собаки 7, у обезьян 8-16, у человека 29% общей массы головного мозга.

Абсолютная масса головного мозга колеблется в широких пределах, а относительная его масса обратнопропорциональна массе животного. Абсолютная масса мозга у китов 4600-7000 г, а относительная масса 1/10 000-1/14 000; у слонов соответственно 4300-5400 г и 1/375-1/560; у лошади 372-570 г и 1/480-1/1000; у крупного рогатого скота 410-550 г и 1/600-1/770; у свиней 96-145 г и 1/1200-1/1900; у собак 46-138 г и 1/30-1/400; у темной цепкой обезьяны 126 г и 1/15; у человека 1350-1450 г и 1/35-1/45. У молодых животных относительная масса мозга значительно выше, чем у взрослых: у 5-недельного львенка 1/18, а у взрослого льва 1/546; у новорожденного ребенка 1/8, а у взрослого человека до 1/35.

Процентное отношение серого мозгового вещества к белому у мелких животных выше, чем у крупных: у лошади 52,1 и 47,6%; у овцы 54,9 и 45,1; у собаки 61,1 и 38,9; у хряка 80,7 и 19,3; у человека 40 и 60%.

ПРОМЕЖУТОЧНЫЙ МОЗГ - diencephalon располагается между полосатыми телами конечного мозга (спереди) и средним мозгом (сзади). Дорсально он прикрыт сосудистой покрышкой третьего мозгового желудочка и аммоновыми рогами. Состоит из трех отделов различного строения и функции: эпиталамуса, таламуса и гипоталамуса. Эпиталамус - epithalamus образован сосудистой покрышкой третьего мозгового желудочка, эпифизом и парным узлом уздечки. Таламус - thalamus состоит из зрительных бугров, между которыми находится кольцевидный третий желудочек мозга. Гипоталамус - hypothalamus составляют зрительный выступ с концевой пластинкой, серый бугор с воронкой и придатком мозга - гипофизом и сосцевидным телом. Все части гипоталамуса видны на базальной поверхности мозга между ножками большого мозга, позади перекреста зрительных нервов.

Таламус, или зрительный бугор, - thalamus парное образование, самая массивная часть промежуточного мозга. Ростролатерально они срастаются с хвостатыми ядрами полосатого тела; зрительные бугры отделяются от последних пограничной полоской, от четверохолмия - поперечной бороздой, а друг от друга - ямкой зрительных бугров, прикрытой сосудистой покрышкой третьего мозгового желудочка. Бугры построены из скопления многочисленных ядер серого мозгового вещества. Наиболее крупные из них следующие:

1) переднее ядро лежит в толще переднего бугорка, в ростромедиальном отделе зрительного бугра; оно является центром переключения обонятельных и вкусовых афферентных путей на рефлекторные пути;

2) каудальное ядро заключено в толщу каудолатерального отдела латерального бугорка и построено из промежуточных зрительных и слуховых центров. От перекреста зрительных нервов на базальной поверхности мозга отходят зрительные тракты - tractus opticus. Каждый тракт огибает латерально таламус и переходит в латеральное коленчатое тело - corpus geniculatum laterale, теряющееся в каудальном ядре зрительного бугра. Само коленчатое тело является центром переключения зрительных путей, идущих в кору. Между латеральным коленчатым телом и четверохолмием выступает медиальное коленчатое тело - corpus geniculatum mediale. Оно соединяет каудальные (слуховые) холмы четверохолмия с каудальным ядром зрительного бугра и служит промежуточным слуховым центром на пути в кору;

3) латеральное ядро состоит из центров переключения проводящих путей кожного анализатора, идущих в кору;

4) медиальное ядро представляет собой промежуточный двигательный центр для экстрапирамидной системы;

5) сетчатое образование располагается между ядрами, оно содержит вегетативные центры.

Третий желудочек мозга - ventriculus tertius залегает между зрительными буграми, имеет кольцевидную форму, так как в него прорастает промежуточное слияние зрительных бугров. В стенках желудочка находится центральное серое вещество третьего желудочка мозга - substantia grisea centralis. В нем располагаются подкорковые вегетативные центры. Третий желудочек мозга каудально сообщается с мозговым водопроводом среднего мозга, а рострально позади назальной спайки мозга - commissura rostralis с боковыми желудочками конечного мозга посредством межжелудочкового отверстия.

Эпиталамус. По краям ямки зрительных бугров видны мозговые полоски зрительных бугров - striae medujlares, а на них парный узел уздечки - ganglion habenulae. Узел переходит в уздечку, или поводок, - habenula. На нем укреплен грушевидной формы эпифиз (шишковидная железа) - epiphysis. Это железа внутренней секреции. Лежит в ямке между зрительными буграми и четверохолмием, является датчиком времени. Ганглий уздечки служит промежуточным центром для рефлекторных путей между мозгом, ядрами V пары и межножковым ядром.

Сосудистая покрышка третьего желудочка - tela choroidea vent-riculi tertii образована складкой эпителиальной пластинки мягкой оболочки мозга и сосудистым сплетением. Эпителиальные пластинки покрышки прикрепляются по краю ямки зрительных бугров и свода. Сосудистая покрышка отделяет зрительные бугры от аммоновых рогов и от свода; она проникает через межжелудочковое отверстие в боковые желудочки мозга в виде сосудистых сплетений боковых желудочков мозга - plexus choroideum ventriculi lateralis. Сосудистая покрышка формирует впереди эпифиза и непосредственно позади валика мозолистого тела выступ.

Подталамическая область - hypothalamus. Находится вентрально от третьего мозгового желудочка мозга, а серый бугор - tuber cinereum лежит непосредственно позади зрительного перекреста, между ножками большого мозга. Он является вегетативным центром и соединяется со зрительным бугром и с обонятельным мозгом. В центре серого бугра имеется бухта воронки (выпячивание вентральной стенки желудочка). Сама воронка - infundibulum тонкостенная; к ней прикрепляется гипофиз. Придаток мозга, или гипофиз, - hypophysis cerebri представляет собой плоскоокруглое тело сложного строения с небольшой центральной полостью. Гипофиз состоит из трех частей: мозговой (краниальной), промежуточной и железистой (каудальной). Он, являясь мощной железой внутренней" секреции, выделяющей разнообразные гормоны, выполняет роль вегетативного центра.

Сосцевидное тело - corpus mamillare лежит непосредственно позади серого бугра и служит промежуточным рефлекторным обонятельным центром, который через комплекс образований свода соединяется с обонятельным мозгом. Кроме того, сосцевидное тело связано со зрительными буграми и с сетчатым образованием. У собаки сосцевидное тело парное.

Околобугорье - metathalamus. На заднелатеральной части зрительного бугра находится подушка - pulvinar, которая переходит в два небольших возвышения - латеральное и медиальное коленчатые тела - corpus geniculatum laterale et mediale. Латеральное коленчатое тело вентрально переходит в зрительный тракт, а медиальное - в передние ножки четверохолмия среднего мозга, от которого оно отделено поперечной бороздой. В основе подушки и латерального коленчатого тела находится каудальное зрительное ядро. Само коленчатое тело - центр переключения зрительных путей, идущих в кору большого мозга. Каудальные коленчатые тела обеих сторон зрительных бугров соединяют каудальные (слуховые) холмы четверохолмия с каудальными ядрами зрительного бугра и являются промежуточными слуховыми центрами на пути в кору.

Развитие промежуточного мозга. Промежуточный мозг в примитиве закладывается из небольшого количества клеток в стенке обширного третьего желудочка мозга, лишь у наземных животных, и особенно у млекопитающих, он достигает значительного размера.

1. Хорошо выраженная эмбриональная пластинка покрышки у всех взрослых млекопитающих формирует эпиталамус. Эпифиз сохраняется в качестве рудимента третьего непарного теменного глаза. Лишь у некоторых водных животных и у рептилий обнаруживают глазообразный пузырь под кожным покровом. У млекопитающих эпифиз становится железой внутренней секреции, функция которой еще недостаточно изучена.

2. Своеобразно и сильно развитая эмбриональная пластинка дна формирует подталамическую часть промежуточного мозга - hypothalamus.

Гипофиз происходит из трех разных источников. Так, эктодерма глотки (карман Ратке) превращается в разветвленную железу. Просвет железы впоследствии исчезает, но остаются тяжи из железистых клеток разнообразного строения, окруженные большим количеством сосудов. У наземных животных из стенки воронки возникает нервная часть гипофиза из нервных (глиальных) клеток и нервных волокон. И, наконец, обособляется промежуточная часть гипофиза из эпителиальных клеток. Гипофиз в целом выделяет свыше десятка разнообразных гормонов, которые из железистой части поступают непосредственно в кровь, а из нервной и промежуточной частей - в спинномозговую жидкость. Гипофиз находится во взаимодействии с вегетативными центрами, заложенными в стенках третьего желудочка мозга.

3. Эмбриональная боковая пластинка дает начало зрительным буграм - thalami. В состав таламуса входят ядра зрительных бугров.

Рис. 170. Средний мозг на поперечном срезе

Они служат: 1) промежуточными центрами всех проводящих путей, которые направляются в кору полушарий и проводят различные импульсы - обонятельные, кожной и мышечной чувствительности, вкусовые, а у наземных животных, кроме того, зрительные и статоакустические; 2) промежуточным центром всех проводящих путей, идущих из коры плаща в различные отделы мозга. Этим и объясняется, почему зрительные бугры начинают формироваться с появлением обонятельного плаща (у рептилий) и достигают максимального развития у млекопитающих в связи с образованием вторичного плаща. Мощной эволюции зрительных бугров содействуют также перемещение зрительных центров из среднего мозга в промежуточный и, наконец, связь с мозжечком. В результате обогащения таламуса промежуточными центрами возрастает промежуточная масса зрительных бугров, которая, внедряясь в полость третьего желудочка мозга, превращает его в кольцевидный канал. В сером веществе стенок третьего мозгового желудочка находятся многочисленные высшие подкорковые вегетативные центры.

СРЕДНИЙ МОЗГ - mesencephalon состоит (рис. 170): из ножек большого мозга; пластинки четверохолмия и покрышки или чепца. Полость среднего мозга превратилась в мозговой водопровод - aqueductus mesencephali; он соединяет третий и четвертый мозговые желудочки. В стенках водопровода заложено центральное серое мозговое вещество.

Ножки большого мозга - pedunculi cerebri выступают на базальной поверхности мозга в виде двух толстых валиков между зрительными трактами и мозговым мостом. Они разделены межножковой бороздой. Из ножек отделяется III пара черепных нервов - глазодвигательный нерв - п. oculomotorius. Через ножки проходят все проводящие пути, соединяющие кору и зрительные бугры со средним, ромбовидным и спинным мозгом. Поэтому ножки крупнее у тех животных, у которых мощнее кора полушарий.

Пластинка крыши (четверохолмия) - lamina tecti представляет дорсальную часть среднего мозга; она лежит каудально от зрительных бугров и назально от мозжечка. Пластинка состоит из парных ростральных и каудальных холмов - colliculi rostrales et caudales.

Холмы разделяются поперечной и серединной бороздами. С поверхности пластинка четверохолмия покрыта белым мозговым веществом, под которым залегает серое мозговое вещество; в ростральных холмах оно является подкорковым зрительным центром, а в каудальных - подкорковым слуховым центром.

В целом пластинка четверохолмия является координационным центром ряда импульсов: зрительных, слуховых, обонятельных, общей чувствительности (из медиальной петли) и импульсов из коры больших полушарий. Двигательные импульсы передаются в спинной мозг, а также к глазным мышцам, в красное ядро, мозжечок и в мост.

Между пластинкой четверохолмия и ножками большого мозга находится покрышка ножек, или чепец, - tegmentum mesencephali. В нем залегают парные ядра серого мозгового вещества; в плоскости передних холмов лежат: красное ядро - nucleus ruber двигательный центр спинного мозга; ядро глазодвигательного нерва - nucleus motorius п. oculomotorii (III пара); парасимпатические ядра глазодвигательного нерва (см. ниже); каудальнее располагаются ядро блокового нерва - nucleus motorius п. trochlearis (IV пара) и часть ядра V пары нервов. Через весь чепец из продолговатого мозга в промежуточный проходит сетчатое образование - formatio reticularis, образующее nuclei tegmenti, а также проводящие пути из спинного мозга и мозжечка в четверохолмие, в зрительные бугры и в спинной мозг.

Развитие среднего мозга. Средний мозг у низших животных и у эмбрионов высших животных достигает значительных размеров. Серое мозговое вещество эмбриональных боковых пластинок среднего мозгового пузыря, разрастаясь, формирует свод среднего мозга, из которого у низших животных (до птиц включительно) происходит двухолмие, или зрительные доли. Первоначально двухолмие было высшим зрительным центром, поскольку в нем оканчиваются зрительные нервы и проводящие пути из поло-сатого тела. Но уже у рептилий часть волокон, а у млекопитающих почти все волокна зрительного нерва перемещаются в зрительные бугры промежуточного мозга. В силу этого зрительные доли отстают в росте, а зрительные бугры, напротив, разрастаются.

У наземных животных в своде среднего мозга закладываются равновесно-слуховые центры, первоначально в виде микроскопических образований, а позднее и макроскопических (у некоторых рептилий и птиц). Лишь у млекопитающих вместо двухолмия появляется четверохолмие - tectum mesencephali. У животных с хорошим слухом (у ночных хищников) преобладают задние слуховые холмы, а у животных, обладающих хорошим зрением, передние зрительные холмы, например у домашних копытных.

Из эмбриональной основной пластинки в вентральной стенке среднего мозгового пузыря формируется чепец. В результате образования свода чепца полость мозгового пузыря превращается в мозговой водопровод. В чепце лежат ядра III и IV пар черепно-мозговых нервов ц специальные двигательные ядра чепца. К последним относятся красное ядро, связывающее мозжечок со спинным мозгом, и межкорковое ядро, соединяющееся через ганглий уздечки с обонятельным мозгом.

В связи с развитием у млекопитающих вторичного плаща чепец вентрально покрывается слоем белого мозгового вещества из проводящих путей, идущих из коры полушарий и зрительных бугров в ромбовидный и спинной мозг, и афферентных путей, направляющихся в кору полушарий. Эти проводящие пути формируют ножки большого мозга, выраженность которых соответствует степени развития коры полушарий большого мозга.

РОМБОВИДНЫЙ МОЗГ-rhombencephalon подразделяют на продолговатый и задний мозг. Задний мозг состоит из мозжечка и мозгового моста. Между мозжечком и продолговатым мозгом находится четвертый мозговой желудочек.

Продолговатый мозг - medulla oblongata каудально продолжается без заметного перехода в спинной мозг. На базальной поверхности его хорошо видна вентральная срединная борозда - fissura mediana ventralis. По обе стороны от нее проходят боковые борозды; каудально они вливаются в вентральную срединную борозду. Между этими тремя бороздами выступают два узких валика - пирамиды - pyrames medullae oblongatae. В них проходят латеральные пирамидные проводящие пути от коры большого мозга в спинной мозг. При переходе в боковые канатики спинного мозга они перекрещиваются справа налево и наоборот и формируют перекрест пирамид - decussatio pyramidum, который образует вершины пирамид. Латерально от основания пирамид из мозга выходит VI пара черепно-мозговых нервов - отводящий нерв - п. abducens. Вблизи перекреста у вершин пирамид и латерально от них отделяется XII пара - подъязычный нерв - п. hypoglossus. Латерально же от подъязычного нерва отходят один за другим еще три нерва: XI пара - добавочный нерв - п. accessorius, непосредственно впереди от него X пара - блуждающий нерв - п. vagus и еще более рострально - IX пара - языкоглоточный нерв - п. glossopharyn-geus.

Серое мозговое вещество продолговатого мозга сгруппировано в отдельные ядра, из которых выходят V, VI, VII, IX, X и XII пары, черепных нервов: а) чувствительные и двигательные; б) промежуточные ядра; в) ядра VIII пары и связанные с ними ростральные и каудальные оливы (моторные центры). Среди ядер залегает сетчатое образование - formatio reticularis из переплетающихся нервных волокон и нервных клеток между ними, которое из продолговатого мозга переходит в чепец среднего мозга, и в промежуточный мозг. Оно выполняет прежде всего ассоциационную и координационную функции между различными ядрами ромбовидного и среднего мозга и является центром дыхания и сердечно-сосудистой системы, а также генератором энергии.

Рис. 171. Схема проводящих нервов головного и спинного мозга

Белое мозговое вещество продолговатого мозга содержит большое количество пучков проводящих путей, идущих из спинного мозга в различные отделы головного мозга и проводящие пути, соединяющие головной мозг со спинным (рис. 171).

В продолговатом мозге заслуживают особого внимания моторные ядра чепца - nuclei tegmenti (иначе-сетчатое образование - formatio reticularis), которые впервые возникают у рыб и являются древнейшим ассоциационным и двигательным центром.

У наземных животных за счет моторного ядра чепца формируются ростральные и каудальные оливы как ассоциационные центры. Ростральные оливы появляются только у наземных животных, начиная с амфибий (в связи с развитием у них органа слуха). Они служат промежуточным центром на пути от улиткового нерва (VIII пара) к зрительным буграм. Пучок этих волокон образует трапециевидное тело. Каудальные оливы формируются еще позднее - у птиц и млекопитающих. Они связаны с ядрами дорсальных канатиков со зрительными буграми, с мозжечком и спинным мозгом. По своим связям каудальные оливы имеют самое ближайшее отношение к сохранению равновесия.

Задний мозг -metencephalon. Имеет две части: мозговой мост и мозжечок.

Мозговой мост - pons лежит на переднем конце продолговатого мозга, на границе его со средним мозгом, в виде поперечного валика, который концами загибается дорсально к мозжечку, образуя боковые ножки мозжечка - brachia pontis. Мост и ножки состоят из проводящих путей, соединяющих ядра моста - nuclei pontis с ядрами мозжечка. В ядрах моста заканчиваются проводящие пути из коры большого мозга и начинаются проводящие пути в полушарии мозжечка. Из боковых отделов моста отделяется V пара - тройничный нерв - п. trigeminus, самый массивный из всех черепных нервов. Он выходит двумя корнями: вентральным двигательным и дорсокаудальным чувствительным. На последнем находится большой полулунный (тройничный) ганглий - ganglion trigeminal. Каудально от моста также в поперечном направлении лежит трапециевидное тело - corpus trapezoideum в виде узкого и низкого валика. Оно сформировано проводящими путями, идущими от ядер слухового нерва. Из боковых частей трапециевидного тела выходят VIII пара - преддверно-улитковый нерв - п. vestibulocochlearis и VII пара - лицевой нерв - п. facialis.

Мозжечок - cerebellum имеет почти шаровидную форму; двумя бороздами он разделяется на среднюю часть - червячок и две боковые доли. Серое мозговое вещество образует кору мозжечка - cortex cerebelli и, кроме того, отдельные ядра, залегающие в центрально расположенном белом мозговом веществе мозжечка.

Поверхность коры червячка изрезана поперечными бороздами и щелями. Двумя основными щелями червячок разграничивается на переднюю, среднюю и заднюю доли. Каждая из них связана с ножками мозжечка - передними, средними и задними, состоящими из проводящих путей. Передний и задний концы червячка загнуты вентрально и навстречу друг другу; между ними остается лишь небольшая щель - верхушка шатра, или крыша четвертого желудочка - tegmentum ventriculi quarti. Белое мозговое вещество червячка на сагиттальном разрезе напоминает ветку туи, вследствие чего оно и получило название древо жизни - arbor vitae (так прежде называлась туя). В белом мозговом веществе червячка находится шатровое ядро- nucleis fastigii, которое является подкорковым центром равновесного анализатора.

С продолговатым мозгом червячок соединяется посредством каудального мозгового паруса - velum medullare caudale, а с четве-рохолмием-посредством рострального мозгового паруса - velum medullare rostraie.

Полушария мозжечка - hemispheria cerebelli, как и червячок, построены из многочисленных долек, из которых одна - клочок - flocculus в виде небольшого придатка примыкает непосредственно сзади к боковой ножке. В белом мозговом веществе полушарий мозжечка находится зубчатое ядро - nucleus dentatus, служащее передаточным центром двигательных импульсов.

Мозжечок соединяется с продолговатым мозгом посредством каудальных ножек мозжечка, с мозговым мостом - боковыми ножками и со средним мозгом - назальными ножками.

Каудальные ножки мозжечка - pedunculi caudale, или верев-чатые тела, в виде двух валиков выступают на дорсальной поверхности продолговатого мозга. В них проходят проводящие пути.

Ростральные ножки мозжечка - pedunculi rostraie, или соединительные ножки, выступают под задними холмами четверохолмия в ножки большого мозга. Ростральные ножки лежат на дорсальной поверхности продолговатого мозга. В них проходят проводящие пути: а) из спинного мозга в червячок; б) из зубчатых ядер полушарий мозжечка в красное ядро и в) в ядра зрительных бугров. Собственные проводящие пути мозжечка представлены волокнами между корой мозжечка и его ядрами и ассоциационными волокнами, соединяющими друг с другом отдельные извилины в сагиттальной плоскости.

Мозжечок развивается в связи с выполняемой им функцией сохранения равновесия тела и поддержания мышечного тонуса. Поэтому он выражен наиболее сильно у животных, быстро плавающих, бегающих, прыгающих или летающих, и слабее у животных, передвигающихся медленно. В примитивном виде мозжечок представляет непарную пластинку из белого или серого мозгового вещества. Мозжечок закладывается в средней части эмбриональной пластинки покрышки ромбовидного мозга, а из передней и задней частей последней формируются передний и задний мозговые паруса. Пластинка мозжечка, разрастаясь спереди назад, изгибается дугообразно в дорсальном направлении. Благодаря появлению продольных борозд обособляется средняя часть пластинки - тело мозжечка и парные боковые части - ушки мозжечка. Тело мозжечка у наземных животных подразделяется поперечными бороздами на переднюю, среднюю и заднюю доли, на которых возникают добавочные поперечные борозды. Передняя доля связана с мышцами головы, а средняя и задняя - с мышцами туловища и конечностей.

У млекопитающих преобладает средняя доля. Продольные борозды на ней отделяют среднюю, непарную часть - червячок - vermis. В червячке находятся центры координированных, синхронных движений туловища и конечностей. Полушария мозжечка сильнее всего выражены у высших млекопитающих, обладающих в большей или меньшей степени способностью обособленных движений конечностей. Совершенствование этой способности, в свою очередь, зависит от мощности коры большого мозга как высшего центра нервной деятельности и от возникновения связей мозжечка с корой большого мозга через боковые его ножки и мост. В силу сказанного полушария мозжечка и мост достигают максимального своего развития у приматов и особенно у человека.

Однородной в ряду животных функцией мозжечка объясняется довольно однообразное гистологическое строение его коры, в которой различают поверхностный молекулярный слой, средний зернистый и глубокий слой из крупных клеток Луркине.

Ушки примитивного мозжечка у водных животных имеют отношение к органам равновесия, т. е. органам боковой линии, и к мускулатуре хвоста. С редукцией этих органов у наземных животных уменьшаются и ушки. У млекопитающих от них сохраняются клочки - floculi, соединяющиеся с задней долей червячка.

Рис. 172. Продолговатый мозг с дорсальной поверхности

Четвертый мозговой желудочек - ventriculus quartus помещается между мозжечком и продолговатым мозгом (рис. 172). Сводом ему служат червячок и мозговые парусы, а дном - продолговатый мозг и мост.

На дне четвертого желудочка находится ромбовидная ямка - fossa rhomboidea. Срединной и двумя боковыми бороздами на дне ямки выделяется парное срединное возвышение - eminentia medialis, на котором против латеральной ножки мозжечка заметен лицевой холмик - colliculus facialis. В области лицевого холмика залегают ядра отводящего (VI пара) и лицевого (VII пара) нервов. На каудальном конце срединного возвышения простирается поле подъязычного нерва с одноименным ядром.

Латерально от поля подъязычного нерва выступают ядра IX й X пар нервов. Они формируют серое крыло. Область заднего конца серых крыльев известна под названием «писчее перо» - calamus scriptorius.

Непосредственно позади боковых ножек мозжечка и медиально от них выступают в виде небольших возвышений вестибулярные поля - areae vestibulares. Они содержат вестибулярные и улитковые ядра VIII пары нервов. Улитковые ядра лежат латерально.

Развитая нервная система - один из основных прогрессивных признаков млекопитающих, благодаря которым они занимают высшее положение в животном мире.

Центральная нервная система

Нервная система млекопитающих делится на центральную и периферическую.

Головной и спинной мозг образуют центральную нервную систему (ЦНС).

Головной мозг

Головной мозг имеет те же 5 отделов, что и мозг других позвоночных:

  • передний;
  • промежуточный;
  • средний;
  • мозжечок;
  • продолговатый.

Рис. 1. Головной мозг млекопитающего.

Но, если у рептилий масса спинного мозга примерно равна массе головного, то у млекопитающих головной мозг весит в 3 - 15 раз больше.

ТОП-3 статьи которые читают вместе с этой

Увеличение массы и объёма головного мозга млекопитающих происходит за счёт увеличения коры больших полушарий переднего мозга.

У высших отрядов (хищные, приматы, ластоногие и китообразные) кора образует борозды, которые значительно увеличивают площадь её поверхности.

Впереди полушарий находятся обонятельные доли. У млекопитающих они наиболее развиты, что связано с большим значением у них обоняния и языка запахов.

Отношение массы полушарий к массе всего головного мозга у зверей различно:

  • ежи 48 %;
  • белки 53 %;
  • волки 70 %;
  • дельфины 75 %.

Мозжечок также значительно более развит, чем у других классов. Он имеет несколько отделов и складчатую кору. В мозжечке происходит управление сложными движениями.

Слово кора в отношении структур мозга имеет условное значение. Она не является защитным слоем. В ней находятся центры, обеспечивающие сложное поведение млекопитающих.

В промежуточном мозге находятся:

  • гипофиз;
  • эпифиз;
  • гипоталамус.

Они регулируют:

  • рост организма;
  • обмен веществ;
  • теплоотдачу;
  • постоянство внутренней среды организма.

Средний мозг разделён бороздами на 4 холма. В нём расположены центры слуха и зрения.

Продолговатый мозг является продолжением спинного и управляет дыханием, пищеварением и кровообращением.

Спинной мозг

Спинной мозг находится в канале позвоночника. Он выполняет проводящую и рефлекторную функции.

Рис. 2. Спинной мозг млекопитающего.

Спинной мозг передаёт импульсы от головного мозга к органам и назад.

Рефлексами спинного мозга называют простые реакции на раздражение, например, почёсывание в ответ на чувство зуда.

Периферическая нервная система (ПНС)

Все нервы, нервные окончания и нервные узлы, лежащие за пределами ЦНС, относят к периферической нервной системе.

Рис. 3. Схема периферической нервной системы млекопитающих.

К ней относят нервы, отходящие от головного (12 пар) и спинного (31 пара) мозга.

Эти нервы трёх типов:

  • чувствительные;
  • двигательные;
  • смешанные.

Так, обонятельный, слуховой и зрительный нервы являются чувствительными. Глазодвигательный нерв - двигательным. Подъязычный и языкоглоточный нервы - смешанные.

Что мы узнали?

Мы рассказали кратко о нервной системе млекопитающих. Она отличается значительным развитием всех отделов головного мозга, особенно мозжечка и переднего мозга.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 117.

Остановимся на вопросе об изменении относительного размера мозга млекопитающих.

Этот размер часто характеризуют коэффициентом энцефализации, который равен отношению объема мозга к условному объему, определяемому как произведение среднего эмпирического параметра на объем тела, возведенный в степень 2/3. Коэффициент энцефализации млекопитающих изменяется примерно от 0,1-0,2 для наиболее примитивных животных до значения около 6, относящегося к современному человеку.

Хотя коэффициент энцефализации или другие показатели, характеризующие объем мозга, по ряду причин могут служить только очень приближенной характеристикой уровня высшей

нервной деятельности животного, существуют возможности использования соответствующих материалов для получения важной информации о развитии интеллекта ископаемых животных.

Развитие головного мозга млекопитающих было длительным процессом, который происходил на протяжении всего третичного периода. Данные таблицы следует дополнить сведениями об эволюции размера мозга у мезозойских млекопитающих. Хотя получить такие сведения трудно из-за ограниченности материалов о сравнительно малочисленных млекопитающих мезозойской эры, Джерисон сделал вывод, что уже первые наиболее примитивные группы млекопитающих обладали мозгом, относительные размеры которого были больше мозга рептилий. Затем, на протяжении свыше ста миллионов лет относительный размер мозга млекопитающих существенно не изменялся и только в третичном периоде размер их головного мозга начал возрастать.

Джерисон считает, что средний коэффициент энцефализации Для архаических млекопитающих эоцена равнялся 0,25, для животных олигоцена 0,50, для современных 1,00. Наряду с этим он отмечает, что на протяжении третичного периода эволюция головного мозга сопровождалась возрастанием «дивертификации», т. е. диапазона изменений относительных величин мозга у различных групп животных.

Можно думать, что эволюция мозга млекопитающих существенно зависела от условий окружающей их среды. Дотретичные млекопитающие были небольшими по размеру ночными животными, которые активизировались в условиях более низкой температуры темного времени суток. Они, по-видимому, в малой степени конкурировали с господствовавшими тогда разнообразными пресмыкающимися. Быстрая эволюция млекопитающих, начавшаяся после произошедшего в конце мелового периода вымирания большинства групп рептилий, в начале третичного периода не сопровождалась заметным увеличением относительного размера мозга животных, так как млекопитающие могли без острой конкуренции с другими животными заполнять различные экологические ниши, освобожденные ранее вымершими пресмыкающимися.

Как отмечает Джерисон, значительные изменения в строении мозга млекопитающих произошли в позднем эоцене, когда структура головного мозга у многих млекопитающих существенно усложнилась. В позднем эоцене число семейств млекопитающих впервые приблизилось к максимуму, соответствующему «экологической емкости» биосферы. В этих условиях возможность появления новых семейств была ограничена необходимостью вытеснения ранее существовавших сходных в экологическом отношении групп, что могло осуществиться только при значительном прогрессе новых организмов. В такой ситуации появление новых семейств должно было сопровождаться вымиранием занимавших те же экологические ниши старых групп.

Это подтверждается данными таблицы, из которой видно, что в позднем эоцене скорости появления новых и вымирания старых семейств были высокими и почти одинаковыми по величине. Возрастание среднего объема головного мозга в олигоцене, о котором говорит Джерисон, вероятно, объясняется резким изменением природных условий, что, в частности, ускорило вымирание архаических форм, обладавших меньшим размером мозга.

Хотя изменения климата в миоцене и плиоцене были меньшими олигоценового похолодания, они усложняли задачу приспособления животных к меняющимся природным условиям, что способствовало выживанию животных с более высоким уровнем высшей нервной деятельности.

Из приведенных выше соображений следует, что развитие головного мозга ускоряется: а) при высоком уровне заполнения «экологической емкости» биосферы прогрессивными группами животных; б) при существенных изменениях природных условий.

Это заключение можно подтвердить, кроме приведенных выше данных, материалами об эволюции третичных животных на двух изолированных континентах - Южной Америке и Австралии.

Оба эти континента в третичном периоде размещались в основном в зоне низких широт, где климатические колебания были наименьшими. Как Южная Америка, так и Австралия в это время были изолированы от других континентов.

В Южной Америке основными группами плацентарных млекопитающих были разнообразные копытные. Джерисон отмечает, что на протяжении 50 млн. лет размер мозга этих животных практически не увеличился. Нечто подобное произошло в Австралии, населенной в основном сумчатыми животными.

Можно думать, что медленное развитие мозга животных на этих континентах объяснялось, с одной стороны, сравнительным постоянством природных условий, с другой - неполным использованием «экологического пространства», которое имелось для млекопитающих на этих континентах. В частности, в Южной Америке до конца третичного периода плацентарных хищников заменяли сумчатые, которые менее эффективно преследовали копытных животных. Внешнее сходство разнообразных сумчатых в Австралии с экологически аналогичными плацентарными животными других континентов отнюдь не означает, что сумчатые могли поддерживать характерный для плацентарных животных высокий уровень межвидовой конкуренции, способствующей значительной скорости эволюции.

К этому нужно добавить, что территории Южной Америки и Австралии были малы по сравнению с обширной системой связанных между собой континентов, которую составляли Африка, Евразия и Северная Америка. Так как возникновение новых групп животных основано на процессах, имеющих вероятностный характер, размер территории, на которой осуществляется соответствующий «эволюционный эксперимент», часто оказывается решающим фактором для его успешного завершения.

В заключение остановимся на эволюции мозга приматов.

Хотя низшие приматы имели сравнительно большой относительный размер мозга уже в палеогене, быстрое возрастание размера мозга началось с появлением высших приматов и в особенности человекообразных обезьян, ветвь которых отделилась от общего родословного дерева приматов в олигоцене. Тогда же или несколько позже образовалась ветвь обезьяноподобных предков человека.

У всех высших приматов относительный размер мозга заметно больше среднего для других современных групп млекопитающих, у австралопитеков и непосредственных предков человека этот размер был еще большим.

Можно думать, что скорость эволюции приматов существенно зависела от степени изменчивости окружающей их среды. Хотя приматы существовали на протяжении всего третичного периода, в течение его первой половины, когда условия окружающей среды были наиболее устойчивыми, прогресс этой группы млекопитающих был сравнительно невелик. Скорость эволюции приматов (в том числе скорость роста коэффициента энцефализации) резко возросла во второй половине третичного периода, в эпоху значительных колебаний природных условий, происходивших начиная с олигоцена.

Неоднократно высказывалось предположение о том, что происхождению современного человека способствовали резкие изменения природной среды, имевшие место в четвертичном периоде.

Представление о связи эволюции приматов с изменениями условий окружающей среды может быть использовано для ответа на вопрос о месте исходного центра антропогенеза. Как известно, по этому вопросу имеются две точки зрения. Соглашаясь, что первые этапы этого процесса происходили в низких широтах, часть ученых (в том числе Дарвин и Уоллес) считали центром антропогенеза Африку, где до настоящего времени сохранились наиболее близкие к человеку виды обезьян. Другие, основываясь на ряде палеонтологических находок, предполагали, что первые прямые предки человека появились в Южной Азии. Экологические соображения позволяют поддержать первый из этих взглядов.

Как указано выше, даже при крупных изменениях глобального климата температура в тропиках менялась сравнительно мало. Главный результат колебаний климата в тропиках - изменение режима осадков, которое во многих случаях было значительным.

Так как в Южной Азии преобладают условия избыточного увлажнения, влияние некоторого изменения сумм осадков на растительный покров и другие компоненты природной среды для основной части этой территории было сравнительно малосущественным.

Совершенно другие последствия имели колебания глобального климата в Африке, большая часть территории которой находится сейчас и находилась в прошлом в условиях умеренного, недостаточного и крайне недостаточного увлажнения. Колебания режима осадков в Африке неизбежно приводили к значительным изменениям границ природных зон, что сопровождалось разрушением старых экологических систем и открывало условия для возникновения новых форм экологических взаимоотношений между организмами. В таких условиях скорость эволюции многих групп живых существ, включая приматов, должна быть более высокой.

Принимая во внимание соображения, приведенные в этом и предыдущих разделах, можно сделать вывод, что возникновение ноосферы стало возможным в результате двух различных форм изменений состояния среды, окружающей организмы.

Первая из них - сравнительно медленные колебания газового состава атмосферы, в ходе которых заметно увеличивалось количество атмосферного кислорода. В эпохи повышения количества кислорода возникли многие прогрессивные группы животных, включая основные классы позвоночных. Вторая форма изменений окружающей среды - кратковременные резкие изменения термического режима, которые неоднократно приводили к вымиранию многочисленных групп животных, создавая возможность для широкого распространения более прогрессивных форм, сохранившихся в эпохи вымирания.

Можно высказать предположение, что при постоянных условиях окружающей среды эволюция была бы слишком медленной не только для создания ноосферы, но и для возникновения сколько-нибудь сложных организмов за время существования биосферы.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

§ 49. Возникновение мозга млекопитающих

Небольшие рептилийные предки млекопитающих вышли из древесных завалов карбона с развитым обонянием, вестибулярным аппаратом, неважным зрением и ассоциативными центрами в среднем мозге. Эти существа начали загадочный эволюционный путь, который не отмечен внятными палеонтологическими следами на протяжении почти 60 млн лет. Только в позднем триасе появляются триконодонты (Megazostrodon), которых можно считать древними, но вполне сложившимися млекопитающими. За несколько десятков миллионов лет произошли события, приведшие к формированию совершенной ассоциативной системы переднего мозга, теплокровности, плацентарному развитию и кормлению детёнышей молоком (Kemp, 1982; Tyndale-Biscoe, Rentree, 1987).

Попробуем оценить изменения нервной системы, предварившие появление триконодонтов. Карбоновые предки млекопитающих обладали набором качеств, свойственных большинству рептилий того периода. Для того чтобы стать млекопитающими, им надо было оказаться в такой среде, где их морфофункциональные особенности дали бы максимальные биологические преимущества.

Большинство современных млекопитающих обладают развитым обонянием. Оно вторично утрачено у зубатых китов и относительно мало используется хоботными, летучими мышами и приматами. В остальных случаях млекопитающие широко используют как основной орган обоняния, так и вомероназальную систему. Для наиболее примитивных млекопитающих обоняние играет ведущую роль, а представительство хеморецепторных центров в переднем мозге может превышать все остальные структуры вместе взятые (см. рис. III-19, а). Очевидно, что на первых этапах эволюции млекопитающих обоняние играло основную роль. Это послужило причиной преимущественного развития полушарий переднего мозга. Следствием развития обонятельной системы стали переднемозговые полушария, которые доминируют над остальными отделами головного мозга. Объём парных полушарий млекопитающих всегда больше объёма других структур нервной системы, какой бы специализацией ни обладал конкретный вид (см. рис. III-18; III-19; III-21; III-25).

Развитие обоняния и переднего мозга стало первым крупным неврологическим событием в истории этой группы. Можно допустить, что предки млекопитающих использовали обоняние в качестве ведущей системы афферентации. В каких условиях это могло произойти? Очевидная ситуация - ночная активность архаичных млекопитающих, но для ночной охоты можно успешно применять слух, зрение, осязание и терморецепторы. Млекопитающие предпочли использовать обоняние, хотя остальные органы чувств не подверглись существенной редукции.

На заре эволюции млекопитающих строение переднего мозга было сходно со строением мозга современных лиссэнцефальных представителей грызунов и зайцеобразных (см. рис. III-18, б; III-19, а, б; III-24, а). Архаичные млекопитающие занимались поиском пищи, половых партнёров и ориентировались в пространстве при помощи обоняния. С этой точкой зрения согласно большинство авторов, занимавшихся проблемами их эволюции (UIinski, 1986). На этом этапе эволюции рептилийные предки млекопитающих были лишены возможности использовать другие органы чувств с той же эффективностью, как обоняние. По- видимому, они обитали в темноте нижних ярусов карбоновых завалов, где обоняние было наиболее эффективным дистантным рецептором. Кроме обоняния, там можно было также использовать слух и тактильную чувствительность. Зрительная система и цветовое зрение были практически бесполезны и постепенно утратили свои исходные характеристики.

В этом состоянии архаичные млекопитающие пребывали долго. Времени хватило для создания интегративных связей между половыми корковыми центрами вомероназальной системы и сенсомоторными системами других отделов мозга. На базе скромного коркового зачатка рептилийной системы полового обоняния возник новый центр принятия решений. В него явно первоначально входили вомероназальные, моторные и вкусовые центры.

Слуховая система на первом этапе эволюции млекопитающих совершенствовалась за счёт задних бугорков четверохолмия. Они у млекопитающих развиты больше, чем у рептилий и птиц (см. рис. III-22, г). Таким образом, к моменту выхода из карбоновых лабиринтов потенциальный предок млекопитающих обладал развитым обонянием, слуховыми бугорками в крыше среднего мозга и зачатком коры, интегрировавшим обонятельные половые, моторные и вкусовые центры (рис. III-27, а, б).

Возникает вполне естественный вопрос о дальнейшей судьбе этих существ. Обычно предполагается, что мелкие предки млекопитающих по ночам вынюхивали свою добычу в подстилке лесов, а днём скрывались в норах или среди корней деревьев. Это вполне справедливое предположение, хотя объясняет только возможность развития обоняния. Однако при таком образе жизни никаких дополнительных стимулов для развития неокортекса и тем более полушарий мозжечка обнаружить невозможно. Наоборот, сумеречные норные животные обладают более чем скромным мозжечком. Для быстротечной эволюции сенсомоторных корковых центров и мозжечка требовалась невероятно сложная трёхмерная среда, которая ранее позвоночным никогда не встречалась. Следует допустить, что не почва, а иная среда была причиной появления развитой соматической чувствительности.

В поисках среды эволюционирования млекопитающих значительную помощь может оказать анализ ещё одной рецепторной системы, которую трудно переоценить - соматической чувствительности. Покровы млекопитающих приобрели удивительный набор механорецепторов различных типов. Они специализированы для восприятия различных видов вибраций, давления, прикосновения, нагревания и охлаждения. Почвенным обитателям столь разнообразный набор кожных рецепторов абсолютно не нужен, тем более что у современных почвенных млекопитающих (голые землекопы) редуцируется даже волосяной покров. Маловероятно, что развитая соматосенсорная система и волосяной покров могли возникнуть у животных, ведущих полуподземный образ жизни.

По-видимому, рептилийные предки млекопитающих, покинув карбоновые завалы, переместились в кроны деревьев (см. рис. III-27, в, г). Вертикальная «миграция» из плохо освещённых растительных буреломов в сумеречный мир крон деревьев выглядит вполне естественной. Этот переход не был радикальным изменением биологии рептилийных предков млекопитающих. Сохранились аналогичная трёхмерная жизненная среда и значение уже хорошо развитого вестибулярного аппарата. Вполне вероятно, что переход из нижних уровней карбоновых лесных завалов в крону деревьев происходил неоднократно, но с разными результатами. Только после появления первичной специализации головного мозга рептилий по обонятельному типу смогли сложиться необходимые предпосылки для формирования «древесной» группы архаичных млекопитающих. В сумеречных кронах деревьев необходим именно тот набор нейросенсорных, аналитических и репродуктивных приобретений, который известен у современных млекопитающих.

Жизнь макросматиков в кронах деревьев практически исключала размножение в гнёздах или дуплах. Для небольших животных с развитым обонянием чужая кладка яиц была и остаётся идеальной и доступной пищей, поэтому доставшееся от рептилийных предков живорождение получило дальнейшее развитие. Было необходимо максимально продлить внутриутробное развитие эмбриона. Это позволяло избежать формирования гнезда и привязки к конкретной территории. Мать перемещалась за пищей вместе с детёнышем, что повышало вероятность их выживания.

Наиболее простой способ увеличения продолжительности внутриутробного развития связан с отказом от питания эмбриона за счёт желтка. Запасы желтка нельзя бесконечно увеличивать в материнской матке. Намного эффективнее использовать простой диффузионный обмен кислорода, воды и метаболитов между стенкой желточного мешка и маткой. По-видимому, этим способом и была решена проблема внутриутробного развития архаичных млекопитающих. Древесные предки млекопитающих были весьма некрупными животными. Это позволяло им при помощи желтковой плаценты доращивать эмбрионы до вполне жизнеспособных размеров. Похожую репродуктивную стратегию используют современные сумчатые. Однако их желтковая плацента позволяет вырастить только небольшой эмбрион, который надо переводить в сумку с молочными железами. Поскольку архаичные млекопитающие были небольшими, необходимость в сумочном доращивании эмбрионов, наверное, отсутствовала. Только с увеличением размеров животных могли возникнуть трудности с выращиванием крупных зародышей. Низшие звери решили этот вопрос при помощи сумки, а высшие млекопитающие - при помощи плаценты (Jameson, 1988).

Вместе с развитием эффективных репродуктивных стратегий у архаичных млекопитающих наиболее заметным изменениям должна была подвергнуться сенсомоторная система. В кронах деревьев нагрузка на вестибулярный аппарат в несколько раз выше, чем даже в водной трёхмерной среде. Если рыба и совершает ошибочное движение при плавании, то это не приводит к фатальным последствиям. Опора на воду сохраняется в любой ситуации и позволяет исправить моторную ошибку. Для первичноводных позвоночных требования к сенсомоторной системе намного менее критичны, чем для животных, обитающих на ветвях деревьев и не умеющих летать. Сенсомоторные ошибки на ветвях деревьев могут приводить к фатальным последствиям. Гравитация планеты стала жестоким экзаменатором для рептилий, переместившихся из карбоновых завалов в верхний ярус леса. Она наложила ограничение и на размер тела предков млекопитающих. Большие животные просто не могли бы пережить ошибок становления совершенного вестибулярного аппарата и сенсомоторной системы. Падение крупных животных со значительной высоты почти всегда приводит к гибели или некомпенсируемым повреждениям, поэтому линейный размер предков млекопитающих не мог превышать нескольких десятков сантиметров. Небольшое и подвижное животное должно было быстро приобрести не только совершенный вестибулярный аппарат, но и развитую соматическую чувствительность. Этот сенсорный комплекс широко представлен в полушариях мозжечка и неокортексе млекопитающих.

Среди рецепторов покровов выделяются рецепторы, адаптированные к различны типам вибрации. Специальные системы с различным временем адаптации возникли для того, чтобы воспринимать колебания. Столь разнообразные и специализированные вибрационные рецепторы кожи были бы абсолютно не нужны, если бы предки позвоночных искали добычу на земле и в подстилке из опавших листьев. Наоборот, ветви и стволы деревьев идеально передают любые колебания. Эти колебания могут содержать информацию о добыче, животном противоположного пола или о приближении опасного хищника. Такие сигналы надо было дифференцировать с безопасными, но разнообразными колебаниями самих деревьев, поэтому развитие соматической чувствительности древесных рептилий было биологически вполне оправдано. На первом этапе эволюции рептилийных предков млекопитающих чувствительность механорецепторов покровов могла быть далеко не столь совершенной, как у современных животных. Этот недостаток мог быть компенсирован развитием специализированных чувствительных образований. Однако такие сложные капсулированные рецепторы, как тельца Руффини, Пачини, Мейсснера или концевые колбы Краузе, не могли возникнуть мгновенно для выполнения своих специализированных функций.

По-видимому, на первом этапе развития соматической чувствительности были использованы свободные нервные окончания, которые хорошо развиты у всех позвоночных. Сложность состоит в том, что свободные нервные окончания обладают ограниченными сенсорными возможностями. Простое увеличение их количества в дерме не смогло бы решить сложных соматосенсорных проблем древесных предков млекопитающих.

Повышение соматической механочувствительности было обеспечено с помощью волос (Spearman, Riley, 1980). Волосы стали своеобразным усилителем механического сигнала. Действительно, проще всего усилить механический сигнал, создав неравноплечий архимедов рычаг. Длинное плечо станет механическим детектором, а короткое - ассоциированным со свободным нервным окончанием рецептором. Понятно, что чувствительность такой системы будет определяться формой, размером и массой рычага, его жёсткостью и чувствительностью нервного окончания. Если таких рецепторов много, то дифференцированность соматической информации по направлению, силе и частоте будет гарантирована. Вполне возможно, что развитие такой специализированной соматической рецепторной системы привело к возникновению рецепторного волосяного покрова (Hudspeth, 1985). Впоследствии он стал использоваться для сохранения тепла, что замаскировало его первичную функцию. На рецепторное происхождение волос указывает и развитие их мышечного аппарата. Тонкая регуляция теплообмена может осуществляться и другими физиологическими способами, но для динамического изменения чувствительности механорецепторов, оплетающих волосяную сумку, другого способа нет, поэтому в случае опасности волосы многих животных рефлекторно поднимаются дыбом. Так увеличивается механочувствительность волосяного покрова в результате напряжения рецепторного «рычага».

В далёком прошлом напряжение рецепторных волосков предков млекопитающих повышало точность соматосенсорной информации. Это позволяло выбрать адекватную форму поведения в ответ на возникшую ситуацию. Судя по неврологическому обеспечению, этот механизм повышения соматической чувствительности возник ещё на заре эволюции млекопитающих. Он сохранился до настоящего времени как непроизвольная реакция на любое неожиданное возбуждение. Следовательно, первичная соматическая чувствительность рептилийных предков млекопитающих сложилась на основе свободных нервных окончаний, ассоциированных с рецепторным волосяным покровом. Косвенным свидетельством в пользу этой точки зрения является высокая иннервация стержней волос и волосяных фолликулов. У некоторых животных вокруг основания волоса может группироваться до 20 сенсорных нервных волокон. Эта механорецепторная система обладает самым низким порогом возбуждения и чувствительна к вибрациям частотой около 35 Гц.

Самым примитивным способом обеспечив повышение соматической чувствительности, предки млекопитающих заложили фундамент для долговременной эволюции совершенных капсулированных рецепторов. Они станут эффективнее свободных нервных и ассоциированных окончаний только спустя миллионы лет. Побочным результатом становления первичной соматосенсорной системы стал примитивный волосяной покров. Его дальнейшее развитие уже как термоизоляционного слоя, по-видимому, произошло значительно позднее формирования механосенсорных функций.

Параллельно с периферическим чувствительным аппаратом развивались центральные механизмы анализа соматических и проприоцептивных сигналов. Именно соматическая чувствительность и моторная система представлены обширными полями в неокортексе лиссэнцефальных млекопитающих (см. рис. III-24). По- видимому, необходимость развития коркового контроля за этими двумя системами стала одной из основных причин эволюции переднего мозга. На это указывает параллельное развитие неостриатума (базальных ядер) млекопитающих. Таких крупных специализированных новообразований в вентральной части переднего мозга у других позвоночных ранее не возникало (Reiner, Brauth, Karten, 1984). Интересно отметить, что эти огромные ядерные центры обеспечивают обработку сенсомоторной и кинестетической информации, которая поступает от других отделов головного мозга. Они избавляют сенсомоторную кору от контроля за непроизвольными движениями.

Надо подчеркнуть, что параллельно с расширением представительства соматических рецепторов в неокортексе формировались аналогичные связи кожных рецепторов с полушариями мозжечка. Парные полушария мозжечка встречаются только у млекопитающих в связи с развитием феноменальной соматической чувствительности и координации сложных движений. Такое развитие мозжечка не может быть связано ни с какими стандартными условиями в истории позвоночных до млекопитающих. Даже трёхмерная водная среда, в которой сотни миллионов лет эволюционировали первичноводные позвоночные, не смогла привести их сенсомоторные системы к столь же высокому развитию, как у млекопитающих.

«Маммальный» мозжечок триконодонтов сформировался всего за 30–40 млн лет. Причину его появления следует искать в кронах высоких деревьев, где от эффективности анализа соматических сигналов и координации движений всего тела зависит жизнь любого животного. У млекопитающих вся поверхность мозжечка занята сложноорганизованной корой, которая состоит из специализированных нейронов. Каждая рецепторная поверхность тела представлена строго определённым участком коры полушарий мозжечка. Это привело к тому, что площадь поверхности корковых структур мозжечка млекопитающих возросла в тысячи раз по сравнению с мозжечком рептилий. Собственно говоря, в результате латерального расширения и появились парные полушария мозжечка. Следствием развития межполушарных мозжечковых связей стало формирование моста заднего мозга млекопитающих, которого нет у рептилий и птиц. Причиной формирования моста стали необходимость постоянного оперативного сравнения соматической информации, поступающей от правой и левой половины тела, и моторная коррекция положения тела. Выживание архаичных млекопитающих в кронах деревьев непосредственно зависело от развития аналитического аппарата соматической и сенсомоторной чувствительности. Мозжечок стал своеобразным кинестетическим автоматом, который интегрировал соматические, сенсомоторные и вестибулярные сигналы. Выполняя эти функции, он позволял предкам млекопитающих неосознанно решать проблемы перемещения в сложной трёхмерной среде.

Эволюция архаичных млекопитающих в кронах деревьев позволяет объяснить специфическое развитие других органов чувств и их мозгового представительства. Сложная трёхмерная среда потребовала от упрощённого зрения предков млекопитающих совершенно новых способов оценки окружающего пространства. Надо было не просто увидеть предмет, а предельно точно определить расстояние до него и оценить его свойства. Ошибочная оценка расстояния до ветки в кроне деревьев обычно стоит жизни. Бинокулярное зрение и корковое представительство этой системы в переднем мозге вполне оправданны.

Надо подчеркнуть, что зрение, соматическая чувствительность, проприоцепция и вестибулярный аппарат внутреннего уха являются основными сенсорными входами в вестибулярные ядра ствола мозга. Интеграция этих сигналов позволяет млекопитающим позиционировать своё тело в пространстве и контролировать точность движений. Вестибулярные ядра млекопитающих являются уникальным образованием. Они намного более развиты, чем у рептилий и птиц. По-видимому, такая многофункциональная система вестибулярного и кинестетического контроля могла сложиться только в жёстких условиях крон деревьев. В такой среде были все условия для формирования своеобразной слуховой системы млекопитающих. Наружное ухо, которое можно ориентировать на источник звука, могло возникнуть в сложной акустической среде крон деревьев. Современные древесные млекопитающие обладают именно такими наружными слуховыми раковинами. Приобретя перечисленные особенности строения нервной системы в кронах деревьев, млекопитающие неоднократно «спускались» на землю. К неземному существованию первыми вернулись однопроходные (см. рис. 111-27, в-е), затем сумчатые и позднее всех плацентарные млекопитающие (см. рис. III-27, д-м). По- видимому, рукокрылые и приматы полностью сформировались в кронах деревьев. Переход приматов к наземному существованию стал первым шагом к появлению человека.

Важнейшим приобретением мозга млекопитающих, обитавших в кронах деревьев, стала способность к прогнозированию событий. Умение предугадать событие, результат движения, последствия охоты или внутривидового конфликта отличает и современных млекопитающих. Способность нервной системы предсказывать результат ещё не совершённого действия отсутствовала у других позвоночных. Млекопитающие дорого заплатили за такую способность ошибками, совершёнными вдалеке от земли. Вторично спустившись на землю, млекопитающие обладали не только ассоциативными центрами рептилийного типа, но и скромной возможностью оценивать результаты ближайших действий. Это функциональное приобретение млекопитающих основано на переизбытке нейронов и связей, которые сформировались в неокортексе. Только избыточная память и индивидуальный опыт позволили млекопитающим занять доминирующее положение в животном мире.

Теория переходных сред

В основе эволюции нервной системы позвоночных лежат общие морфологические закономерности. Они сводятся к количественным и качественным изменениям в центральной и периферической нервной системе. Однако в отличие от других систем организма, любые структурные изменения вызывают глубокую перестройку поведения. Результатом становится изменение форм взаимодействия организма с внешней средой. Новые морфофункциональные свойства нервной системы не всегда приводят к положительным результатам. Одни из этих свойств становились основой для кратковременного процветания группы или тупиковой специализации, другие давали позвоночным возможность освоить бескрайние ресурсы и открывали перспективные пути эволюции. В естественной истории нервной системы были и остаются морфологические решения, обрекающие своих владельцев как на неизбежное вымирание, так и на процветание. Большинство современных животных представляют собой образцы более или менее удачных, но тупиковых адаптаций. Их исчезновение было предопределено в момент начала структурной специализации нервной системы.

Нервная система обладает одним примечательным свойством: она может практически мгновенно изменить поведение животного и физиологическую активность его органов, а затем столь же быстро восстановить исходную ситуацию. Обратимость быстротечных и абсолютно необходимых изменений делает её бесценным инструментом в биологическом мире. Однако диапазон возможных перестроек нервной системы ограничен её структурой. Мозг может предоставить только тот набор инстинктивных или ассоциативных решений, который обеспечен сенсомоторными системами организма. Медведь не станет махать лапами, даже если реально сможет взлететь. На такие поступки легко решается только цивилизованный человек, поскольку его мозг почти утратил связь с реальным миром планеты. Иначе говоря, все позвоночные животные оказываются пленниками эволюционного прошлого своей нервной системы. Позволяя животным быстро приспосабливаться к сиюминутным изменениям окружающей среды, мозг формирует своеобразные скрытые рамки предельно возможных изменений. Именно эти рамки и предопределяют пределы обратимых адаптивных изменений поведения конкретного вида.

Морфологическая эволюция нервной системы необходима как инструмент по расширению границ адаптивных возможностей. Структурные изменения мозга снимают ограничения с одних поведенческих реакций и формируют другие. Этот процесс может продолжаться до тех пор, пока не возникнет слишком специализированный для дальнейших перестроек мозг. Тем не менее количественные или качественные изменения нервной системы остаются единственным выходом за пределы стандартных возможностей. Надо подчеркнуть, что количественные изменения в нервной системе могут происходить намного быстрее, чем качественные. Именно они являются первичным ресурсом для структурных адаптаций нервной ткани. Качественные морфологические перестройки мозга крайне затруднены и обычно требуют специальных условий или продолжительного времени. Эта разница между количественными и качественными изменениями нейральных структур опосредована особым положением головного и спинного мозга в системе органов и тканей позвоночных.

Центральная нервная система не участвует в биомеханических взаимодействиях организма с внешней средой. Это не значит, что при сокращении мускулатуры, движении суставов, деформациях кожи или при движении пищи по кишечнику нервы не подвергаются механическим нагрузкам. Они обладают известной прочностью и пластичностью и могут выдерживать небольшие и краткосрочные нагрузки. Однако речь идёт не о механических свойствах нервной системы. Наоборот, для эволюционной морфологии наиболее интересно, что нервная система предельно защищена от любых нагрузок, за исключением специализированных механорецепторов. Вся эволюция головного и спинного мозга проходит внутри черепа и под защитой невральных дужек позвонков. От элементов скелета они отделены тремя мозговыми оболочками и спинномозговой жидкостью. Однако форма центральной нервной системы незначительно зависит от скелета. Достаточно упомянуть, что в эмбриональном периоде развития головной и спинной мозг является индуктором дифференцировки скелета, а не наоборот. Справедливее сказать о том, что форма черепа и невральных дужек позвонков вторична по отношению к анатомии центральной нервной системы. Следовательно, головной и спинной мозг изменяет свою форму независимо от каких-либо биомеханических преобразований в организме животного.

В этом особом положении мозга заключён огромный потенциал любых структурных преобразований. Реальным источником количественных изменений является стабильная индивидуальная изменчивость нервной системы. Специальные исследования, проведённые на амфибиях, рептилиях и млекопитающих, показали, что у жизнеспособных личинок или молодых животных, полученных от одной пары родителей, стандартной является 20–22 % количественная изменчивость головного мозга. Нейроны подсчитывали как во всех отделах мозга, так и в основных периферических анализаторах. Был обнаружен некоторый разброс значений изменчивости в зависимости от отдела головного мозга. Наиболее древним структурам (задний и продолговатый мозг) была свойственна 7-13 % изменчивость, а для эволюционно новых - 18–25 %. Тем не менее количественной вариабельностью были охвачены практически все отделы головного мозга. Выявленные пределы изменчивости установлены в генетически однородной группе животных - потомков только одной пары родителей.

Если использовать человека для оценки изменчивости нервной системы, то двукратная разница по массе мозга далеко не исчерпает все встречающиеся и жизнеспособные варианты (Савельев, 1996), поэтому наиболее объективным будет вывод о нормальной внутривидовой 15–25 % изменчивости головного мозга. Это означает постоянное отличие одного животного от другого на некоторое количество нервной ткани. Для анамний этот ресурс может составлять от нескольких тысяч до десятков миллионов нейронов, а для амниот от сотен тысяч до нескольких миллиардов клеток. Учитывая, что каждый нейрон обладает множеством контактов с другими клетками и может быть носителем памяти, мы можем предполагать заметную разницу в поведении отдельных особей даже в самой однородной популяции. Этологические подтверждения индивидуализации поведения многочисленны и охватывают практически все группы позвоночных. Это означает, что в любой популяции существуют особи, которые могут решать определённые задачи лучше или хуже, чем другие. Если биологическая ситуация стабильна, то указанной разницей в потенциальных возможностях мозга никто и никогда не воспользуется.

Количественные различия мозга становятся значимыми при нестабильности окружающей среды, высокой половой конкуренции или явном, но малодоступном пищевом ресурсе. Они оказываются решающим резервом при полной исчерпанности инстинктивно-ассоциативных наборов видоспецифических форм поведения. Если индивидуализированная форма поведения даёт заметный выигрыш в доступе к пище, то она и закрепляется последующими репродуктивными преимуществами, вероятность сохранения количественных особенностей мозга данной особи возрастает. По-видимому, именно этот механизм лежит в основе масштабных приспособительных изменений головного мозга большинства первичноводных позвоночных. В зависимости от типа питания и развития органов чувств их мозг дифференциально увеличивается в размерах (см. § 27). Этот путь в эволюции нервной системы эффективен для решения частных адаптивных проблем в рамках существующей конструкции нервной системы. Крупные эволюционные события, приводящие к смене среды обитания и возникновению новых систематических таксонов высоких порядков, требуют качественных изменений в нервной системе.

Появление в нервной системе качественно новых структур требует продолжительного времени и совершенно особых условий. Эти условия должны отличаться от традиционной среды обитания и обладать непреодолимой притягательностью для позвоночных. Гарантиями такой привлекательности остаются обильная пища и успешное размножение. Если столь биологически выгодная среда долго сохраняется, то у животных появляется шанс обретения качественно новой нейроморфологической структуры.

Таких экологических условий в истории позвоночных возникало немного, и все они отмечены появлением животных с качественно новыми структурами нервной системы. Первым событием такого рода стало возникновение хордовых. Как описано выше, появление хордовых было довольно случайным событием, а не фатальной эволюционной закономерностью (см. § 26). Группа похожих на турбеллярий небольших плоских червей продолжала обитать на мелководьях, богатых пищей. Будучи фильтраторами и ведя пассивный образ жизни, эти плоские червеобразные существа пытались закрепиться на максимально выгодных пищевых территориях. Для этого они погрузили заднюю часть своего тела в придонные отложения. Такое заякоривание широко распространено среди современных придонных беспозвоночных. Отдалёнными последствиями этих несложных адаптивных действий древних червей стали дорсальный нервный тяж и мышечная хорда, предотвращающая его деформацию. Сутью качественных изменений двух- или четырёхцепочечной нервной системы червеобразных предков хордовых стали несколько последовательных событий. При двухцепочечном варианте произошёл 90-градусный поворот червя на одну из боковых поверхностей тела. При четырёхцепочечной схеме строения нервной системы отмечено слияние парных дорсальных и вентральных нервных цепочек. В обоих случаях качественная перестройка нервной системы завершилась рострокаудальным слиянием сегментарных ганглиев дорсальной нервной цепочки с последующим образованием центрального желудочка. Параллельно произошло разделение узлов вентральной нервной цепочки до уровня соматических ганглиев (см. § 26). Они стали основой для иннервации внутренних органов. Хордовые не появились бы без специфической переходной среды. Небольшая глубина воды, обилие пищи и подходящие для размножения условия гарантировали процветание любых придонных фильтраторов. Среди множества вариантов адаптации к столь благоприятной среде возникновение морфотипа хордовых было только одним из успешных вариантов. В этой ситуации решающую роль играла богатая пищей среда, которая стала стимулом для морфологических изменений многих видов. Дальнейшая эволюция хордовых протекала в более разнообразных условиях и привела к возникновению всего многообразия первичноводных позвоночных (см. § 29).

Вторым принципиальным качественным изменениям мозг подвергся после выхода позвоночных на сушу. Это событие привело к крупным морфологическим перестройкам как в нервной системе, так и других органах. Сформировались конечности, лёгочное дыхание, специализированные покровы и ряд других признаков, позволивших архаичным тетраподам перейти к наземному существованию. Столь обширные морфофункциональные перестройки анализаторного и эффекторного аппаратов нервной системы не могли произойти за короткий промежуток времени и вне особой переходной среды. Они были особенно необходимы для качественных изменений в нервной системе, поскольку в количественном отношении мозг амфибий явно проигрывает специализированным первичноводным животным. При выходе на сушу в нервной системе древних амфибий возникли вомероназальная обонятельная система, контроль за дыханием и комплекс стволовых центров управления конечностями. Изменениям подверглась зрительная, слуховая и вестибулярная системы. Переходной экосистемой между водной и наземной средой обитания могли быть своеобразные почвенные лабиринты или карбоновые лесные завалы (см. § 31). В такой переходной среде можно было долго использовать как плавательные движения, так и опору на плавники. При высокой влажности лабиринтов одновременно функционировали кожное дыхание, жабры и зачатки лёгких. Развитие водно-воздушных органов чувств и моторных систем в переходной среде было оправдано биологическими преимуществами, которые давало освоение богатых пищей и хорошо защищённых территорий (см. § 33). По- видимому, и почвенные лабиринты, и карбоновые завалы из стволов деревьев создали уникальную переходную среду для постепенной эволюции нервной системы древних амфибий. Только при длительном развитии морфологических изменений могли бы появиться спинномозговые центры и красное ядро для управления конечностями, вомероназальный орган и дополнительная обонятельная луковица, вторичные слуховые и вестибулярные центры.

Третьим историческим периодом развития нервной системы можно считать формирование мозга архаичных рептилий. Рептилийный период стал самым плодотворным в истории позвоночных. Рептилии заложили основные принципы структурной эволюции мозга амниот. У рептилий в нервной системе впервые сформировался ассоциативный отдел. Он возник на базе среднего мозга и оказался настолько успешным приобретением, что рептилии на миллионы лет стали самой доминирующей группой позвоночных. Ассоциативный средне-мозговой центр никогда не сформировался бы без серьёзной биологической необходимости. Она возникла ещё в начале эволюции рептилий как способ адаптации к агрессивной среде. Архаичным рептилиям требовалось постоянно сравнивать информацию, приходящую от различных органов чувств, и принимать сложные решения. Решения были вызваны постоянной адаптацией поведения к быстро меняющейся ситуации. Этими свойствами мозг первичноводных позвоночных и амфибий не обладал. Они выбирали одну из инстинктивных форм поведения по совершенно другим принципам. Выбор амфибий был построен на конкуренции между мозговыми центрами представительства анализаторов (рис. III-28). Простое сравнение уровня возбуждений было достаточным условием для реализации одной из инстинктивных программ. Рептилии впервые стали обладателями аналитического устройства совершенно нового типа (см. рис. III-28). Оно действовало по принципу сравнения информации, поступающей от каждого органа чувств. Решающую роль стало играть содержание анализаторного сигнала, а не сам факт возбуждения (см. § 37). Собственно говоря, у рептилий появились основы ассоциативного принципа поиска решений. Понятно, что мы видим самые зачаточные признаки этого губительного свойства мозга, но они возникли именно у рептилий. История рептилий, наверное, была намного богаче неврологическими экспериментами, чем мы можем себе представить. Достаточно упоминания о ещё одном историческом приобретении рептилий - кортикальных структурах переднего мозга (см. § 39). Половая конкуренция в сочетании с невероятным развитием обоняния и вомероназальной системы рептилий стала основой для появления кортикальных структур. Кортикальные структуры переднего мозга сформировались на основе нового центра, обеспечивающего интеграцию половых сигналов с остальными органами чувств. Этот половой интегративный центр непродолжительное время конкурировал с ассоциативной крышей среднего мозга, но его активность проявлялась только в период размножения. По-видимому, для успешного размножения архаичным рептилиям нужно было подчинять все системы организма этой задаче, а любые побочные занятия вплоть до поиска пищи должны были игнорироваться (рис. III-29).

Ассоциативные и кортикальные центры мозга рептилий не могли бы появиться без весьма своеобразных условий. Однако допустим, что архаичные рептилии просто расселились по поверхности Земли. Без серьёзной конкуренции со стороны амфибий, насекомых и растений они быстро стали бы доминирующей группой без глубоких перестроек нервной системы. В таких условиях для её совершенствования нельзя представить никаких реальных оснований. Тем более невозможно отыскать внешние причины для формирования настолько гипертрофированного обоняния, что это привело к возникновению кортикальных структур переднего мозга. Следовательно, реальные события развивались по совершенно иному сценарию и к идиллическому разбреданию рептилий по поверхности планеты отношения не имели.

Наиболее вероятна довольно длительная эволюция архаичных рептилий в специализированной переходной среде. Эта экологическая ниша, очевидно, была не приспособлена для безмятежного процветания молодой группы позвоночных. Скорее всего все неврологические приобретения рептилий возникли как адаптивные приспособления к крайне сложной среде обитания и агрессивному конкурентному окружению. Такой средой вполне могли быть карбоновые древесные завалы из стволов растений (см. § 38). Эту среду отчасти использовали ещё амфибии, но они явно пришли туда за обильной и гарантированной пищей. Пищей скорее всего были первичноводные позвоночные, которые использовали карбоновые завалы в качестве удобных мест для размножения. Со временем они сменили места размножения или отступила вода. Когда источник пищи по тем или иным причинам иссяк, амфибии стали использовать в пищу себе подобных. Это привело к невиданной конкуренции и быстрому отбору по свойствам и ассоциативным возможностям мозга.

Переходной средой для формирования рептилий стали карбоновые растительные завалы, где трёхмерная среда предъявляла повышенные требования к вестибулярной системе и дистантным анализаторам. Отсутствие света выводило обоняние на качественно иной уровень морфофункционального развития. Он использовался как важнейший дистантный анализатор и система контроля полового поведения. Активно эволюционировала слуховая система, которая не менее эффективна для ориентации в темноте.

За несколько десятков миллионов лет жесточайшей конкуренции в карбоновых растительных лабиринтах сложился уникальный рептилийный мозг с довольно совершенным набором неврологических структур и эффективным ассоциативным центром. С его помощью решались проблемы поиска пищи, конкуренции, избегания опасности и др. Когда наступал период размножения, весь мозг подчинялся новой корковой структуре в стенке переднего мозга. Она стала специализированным центром управления половым поведением, которого не было ни у кого из позвоночных до рептилий. Таким образом, мозг архаичных рептилий стал совершеннейшей системой для решения самых главных биологических задач любого вида - выживания и размножения. Для каждой задачи появилась собственная интегративная система, которая в состоянии перенацелить весь организм рептилий на её решение. С таким поведенческим ресурсом рептилии вышли из своей агрессивной колыбели и очень быстро стали доминирующей группой на планете.

Возникновение мозга птиц нельзя считать принципиальным эволюционным событием, связанным с качественной перестройкой мозга. Птицы, вероятно, должны были исчезнуть вскоре после своего появления. Это была тупиковая адаптивная специализация, которую спасла утрата обоняния. Огромный неврологический субстрат обонятельной системы достался архаичным птицам из-за смены пищевых пристрастий. Перейдя к питанию в мелководных заводях или с плавника, они перестали использовать обоняние в качестве ведущей системы афферентации. Основной анализаторной системой стало зрение, а дополнительной - слух (см. § 43). Добывая пищу в воде, архаичные птицы передвигаться на задних конечностях, что постепенно привело к значительному снижению нагрузки на передние конечности и частичной рудиментации кисти. Роль переходной среды в этом случае играло богатое пищей прибрежное мелководье, которое сохранило притягательность для птиц до настоящего времени.

Хотя узкая специализация птиц гарантировала им быстрое вымирание, переход к плаванию и нырянию за пищей привёл к развитию крылоподобных передних конечностей. На этом этапе эволюции птиц, по-видимому, появились пингвины, которые никогда не летали. Ныряние и плавание с использованием передних конечностей создали физические условия для развития полых костей, мощных грудных мышц, системы воздушных мешков лёгких и перьевого покрова. Судя по всему, добывание пищи в холодных водах стало одним из основных стимулов к обретению теплокровности. Крылоподобные плавательные конечности использовались не только для плавания. Древние птицы применили машущие движения передних конечностей для своеобразного «бега по воде», который стал переходной фазой к активному полёту (см. § 44).

Крылья и перьевой покров сформировались для охоты в водной среде, но были адаптированы и использованы для полёта. В этой ситуации переходной средой стала вода. Она создала все необходимые условия для постепенного накопления изменений в нервной системе птиц, поэтому появление крыльев и переход к полёту не вызвали радикальных перестроек в центральной нервной системе (см. § 43). В связи с редукцией обоняния у птиц на основе базальных структур переднего мозга сформировались ассоциативные центры. Эти центры представлены нео- и гиперстриатумом, которые стали основой становления сложного поведения птиц, памяти и индивидуализации поведения.

Млекопитающие представляют собой довольно странную в неврологическом отношении группу. Преимущества их мозга возникли на основе развития интегративных функций половой системы. Как сказано выше, основной причиной появления кортикальных структур мозга рептилий было развитие вомероназального (якобсонова) органа. Его центральное представительство сформировалось вне древних обонятельных ядер переднего мозга. Основными вторичными центрами вомероназального обоняния стали скромные кортикальные структуры рептилий (см. § 39). На этом морфологическом субстрате сложилась

интеграция полового поведения всего организма рептилий. Такое централизованное управление позволяло подчинять весь организм одной задаче и эффективнее достигать успеха в размножении.

Млекопитающие пошли намного дальше рептилий. На этой репродуктивно-интегративной морфологической структуре переднего мозга сформировался ассоциативный центр совершенно нового типа. Он стал выполнять функции контроля за работой уже сложившихся сенсорных систем. Автономные механизмы мозга остались на уровне древних центров, а все сложные благоприобретённые функции складывались на уровне коры переднего мозга. Кроме обоняния и половых интегративных центров, для мозга млекопитающих характерно развитие сенсомоторной системы и механизмов кинестетического контроля. Только у млекопитающих мозжечок сформировал парные полушария. Он достиг столь гигантских размеров, что его поверхность зачастую превосходит размеры неокортекса. Более того, значительная, а иногда и большая, часть самого неокортекса обеспечивает соматические, сенсомоторные и моторные функции.

Для появления столь странной специализации нужна весьма оригинальная среда. Сами карбоновые растительные завалы были сложной трёхмерной средой для рептилий, но их мозжечок не достиг даже развития мозжечка птиц. Переходная среда возникновения млекопитающих должна была предъявить необычно высокие требования к анализу положения тела и координации движений. На поверхности земли только в ветвях деревьев могут оказаться столь жёсткие требования к кинестетическому контролю. По-видимому, в кронах деревьев сформировались все основные сенсомоторные, обонятельные и слуховые преимущества млекопитающих. Этой переходной средой можно объяснить как появление неокортекса, так и развитие соматической чувствительности, которая стала одним из основных органов чувств (см. § 48).

Результатом становления соматической чувствительности стали рецепторные образования дермы - волосы. Волосы, иннервированные свободными нервными окончаниями, эффективно повысили соматическую чувствительность и затем стали причиной появления волосяного покрова. Дальнейшее использование волос для терморегуляции замаскировало их первичное предназначение. В кронах деревьев впервые возникло совершенно новое требование к нервной системе (см. § 49). Для архаичных древесных млекопитающих было недостаточно сравнительного анализа информации, поступающей от различных органов чувств. Этот способ работы ассоциативных систем не позволял сделать прогноза событий. В кронах деревьев предвидение развития событий стало решающим условием как для добывания пищи, так и для элементарного сохранения жизни. Только полёт мог бы избавить млекопитающих от этих проблем. Однако к нему прибегли лишь рукокрылые после формирования основных принципов строения мозга млекопитающих. Основными структурными последствиями обитания в кронах деревьев стали неокортекс, двухполушарный мозжечок и небольшая способность прогнозирования развития событий. Эта особенность млекопитающих после их переселения на почву и в водную среду создала им значительные поведенческие преимущества. Способность к оценке возможных событий стала для млекопитающих инструментом доминирования на планете.

Все перечисленные глубокие изменения в строении нервной системы позвоночных вызваны приспособлением мозга к обитанию животных в специфической среде. Без длительно существующей переходной среды не будет достаточного времени для изменения структурной организации нервной системы. Она слишком качественно консервативна и количественно пластична для быстрых и радикальных морфологических преобразований. Предположение о существовании переходных сред может объяснить причины возникновения мозга современных позвоночных.

Из книги Муравей, семья, колония автора Захаров Анатолий Александрович

ВОЗНИКНОВЕНИЕ КОЛОНИИ Образование отводка происходит обычно в определенные для каждого вида сроки. Вот как происходил начальный этап выделения нового муравейника у волосистого лесного муравья в 1967 г. в подмосковном ельнике (Солнечногорский лесокомбинат). В течение

Из книги Десять великих идей науки. Как устроен наш мир. автора Эткинз Питер

Пролог Возникновение понимания Галилей указал точку поворота, в которой научные усилия приняли новое направление, в которой ученые - анахронический, конечно, для того времени термин - поднялись со своих кресел, поставили под вопрос состоятельность прошлых попыток

Из книги Недостающее звено автора Иди Мейтленд

Мейтленд Иди Недостающее звено (Возникновение человека - 2) Вторая книга из серии "Возникновение человека" рассказывает о поисках фактов, относящихся к недостающему звену преемственной эволюции человека. Она посвящена австралопитековым - по убеждению подавляющего

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Возникновение сегментов Сегментация зародыша дрозофилы в своей основе выглядит как ряд латеральных впячиваний зародышевой полоски, образующихся почти одновременно на стадии гаструляции. Несмотря на кажущийся мозаичный характер этого процесса, можно показать, что

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

9.3. Возникновение клеток Предполагается, что этапом возникновения жизни на Земле следует считать период, когда сформировались простейшие клеточные системы, ставшие элементарной ячейкой живого. Сведения, касающиеся этой проблемы, освещены в обзорах, посвященных

Из книги Как возникла и развилась жизнь на Земле автора Гремяцкий Михаил Антонович

VI. Возникновение жизни на Земле Из опытов Спалланцани и Пастера мы уже знаем, что при высокой температуре жизнь прекращается. Большинство организмов погибает уже при 70–80 градусах тепла. Значит, для их жизни требуются определенные условия температуры. Требуются для

Из книги Мозг, разум и поведение автора Блум Флойд Э

Пейсмейкеры мозга млекопитающих - супрахиазменные ядра В конце 60-х годов физиолог Курт Рихтер провел ряд экспериментов на крысах, пытаясь найти участки мозга, ответственные за ритмичность. Он разрушал отдельные области мозга - всего более чем в 200 различных местах - у

Из книги Жизнь в глубинах веков автора Трофимов Борис Александрович

ВОЗНИКНОВЕНИЕ ЖИЗНИ Происхождение жизни, ее сущность - одна из наиболее трудных загадок науки, ибо жизнь - это самое сложное из известных нам явлений природы. Никто не видел и не наблюдал ее возникновения; более того, в природе не сохранилось никаких прямых или косвенных

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Глава II. Возникновение нервных клеток и мозга Причиной возникновения нервной системы стала низкая скорость получения информации о внешнем и внутреннем мире организма с донервной организацией. Его ткани состояли из клеток со сходной химической, электромагнитной и

Из книги Рождение сложности [Эволюционная биология сегодня: неожиданные открытия и новые вопросы] автора Марков Александр Владимирович

§ 28. Возникновение отделов головного мозга Ранний период истории возникновения предков позвоночных, до формирования хорошо структурированного скелета, довольно туманен. Если допустить, что предковые формы хордовых были мягкотелыми существами размером около 10–15 см,

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Возникновение и наследование модификаций на примере Metazoon Еще один важный теоретический вопрос, который можно рассмотреть на нашем примере с Metazoon, - это вопрос о возникновении адаптивных модификаций. Так называют способность организма более или менее осмысленно (то

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

4.2. Возникновение клеточной организации Учеными было доказано, что после испарения воды из реакционного объема в амфифильных липидоподобных и липидных молекулах формируются жидкокристаллические агрегаты, в которых молекулы расположены периодическими слоями, как в

Из книги автора

Возникновение рода Homo Поскольку эволюция гоминид происходила неравномерно, имела «мозаичный» характер, граница между древними представителями рода Homo и австралопитеками весьма размыта. Условными критериями отнесения к роду Homo принимаются объем мозга (не менее

Из книги автора

Возникновение и эволюция человека современного типа Происхождение современного человека – наиболее интригующая загадка антропогенеза. В антропологии все формы человека современного типа получили рабочее наименование «сапиенсы». Большинство их представителей были

Из книги автора

Особенности эволюции мозга млекопитающих и человека Исключительно высокие темпы эволюции мозга млекопитающих, и особенно человека, до сих пор не имеют единого объяснения. Тем более, что для носителей крупного мозга обычно характерны значительные размеры тела, большая