Фантасты описывают будущее как мир без докторов. Писатели уверены, что благодаря новейшим технологиям удастся победить все существующие сегодня болезни - от банального насморка до рака и вируса иммунодефицита человека.

Медицинская наука действительно развивается быстро. И не исключено, что когда-нибудь человечество доживёт до прекрасного времени, когда сможет забыть о болячках, вирусах и эпидемиях. А врачи станут ещё ближе к пациенту и будут предотвращать даже не начавшиеся болезни. Практически каждый из нижеприведённых 10 впечатляющих примеров медицины будущего - свидетельство такого максимально персонализированного подхода к каждому человеку.

В медицине будущего основное внимание будут уделять не лечению, а профилактике

Пройдёт совсем немного времени, и у медиков откроется чудесный дар предвидения. Они будут безошибочно предсказывать появление у человека болезней, которых пока что нет, и ничто их не предвещает. Зная уникальные особенности каждого конкретного индивидуума (включая его склонности и патологии), доктора смогут в полной мере взяться за профилактику. В первую очередь это коснётся сердечно-сосудистых и онкологических патологий.

Кроме того, обыденным явлением - как сейчас процедура УЗИ для будущих мам - может стать дородовая генетическая диагностика, которая расскажет всё о будущем младенце и о том, что его ждёт в жизни.

Результатом исследования будет преобразование ДНК таким образом, чтобы изменить дальнейшую судьбу человека и оградить его от определённых проблем со здоровьем. Добиться этого помогут специальные генетические зонды. Также на опережение будут использоваться вакцины и новейшие препараты, которые помогут «отремонтировать» повреждённые участки ДНК.

Каждый пациент получит свой генетический паспорт, что позволит врачам лечить болезни адресно, а продолжительность жизни увеличить как минимум на 10–20 лет.

Кстати, присутствие пациента при постановке диагноза очень скоро может стать необязательным. О текущем состоянии больного и будущих болезнях поведает его фотография. Компьютер, проведя анализ снимка, подготовит полную информацию о хронических и генетических болезнях человека по его физиогномике. Данную технологию (пока что требующую доработки) в примерном виде уже представили медики из Оксфорда.

Суставы будут печатать на 3D-принтере


Организм считает металлические и пластиковые протезы чужеродными, поэтому они не слишком эффективны

Для производства искусственных костей и суставов будут применять 3D-печать с использованием биоматериалов. В результате протезы смогут органично слиться с телом человека. Не исключено, что в некоторых случаях качество жизни пациента окажется даже выше, чем у здоровых людей: искусственные суставы, кости и мышцы будут более совершенными, а по своей силе превзойдут «настоящие».

Предпосылки для такого новшества начали появляться давно. Уже больше десяти лет протезы выпускают не из металла, а из более подходящих для этого материалов - пластика и керамики. Теперь на помощь медикам приходят 3D-сканирование и 3D-печать.

На словах технология выглядит довольно просто. Человеку делают рентген, на его основе создают цифровую модель повреждённого сустава и печатают его на 3D-принтере из биоразлагаемого материала. Затем с помощью стволовых клеток пациента наращивают реальные ткани. Постепенно они остаются, а биоматериал разрушается. В результате остаётся сустав, идентичный настоящему.

Революционную технологию опробовали в Великобритании. В госпитале Саутгемптона провели пробную установку импланта пожилому пациенту. При этом для закрепления были использованы стволовые клетки больного.

Аналогичные разработки активно ведутся и в Стране восходящего солнца. Причём японским медикам удалось создать искусственные суставы даже без использования биоматериала пациента. Для получения результата оказалось достаточно скомбинировать:

  • стволовые клетки;
  • белки, отвечающие за рост тканей;
  • близкие к коллагену синтетические вещества.

Важно, что 3D-печать не просто предоставляет большое количество интересных возможностей для развития медицины, но и позволяет врачам стать более мобильными. Напечатать компоненты тазобедренного сустава можно будет прямо у больничной койки. Врачу понадобятся только персональные замеры и снимки больного.

Освоение 3D в медицине - дело уже ближайшего будущего. При этом самым непростым моментом в разработке, судя по всему, окажется тестирование суставов из биоматериалов, ведь обычно испытания проводятся на животных, а придётся опробовать всё на реальных людях. Кроме того, на исследования медикам потребуется получить официальное разрешение, а пока что право на подобное «конструирование людей» законодательно не прописано нигде в мире.

Печать таблеток на дому


Таблетка формируется путём печати слоёв полимера, смешанного с лекарственным веществом

Судя по всему, 3D-технологии найдут широкое применение и при производстве лекарств. Причём необходимое средство в нужной дозировке пациент сможет напечатать сам, не выходя из своей квартиры.

Конечно, для того чтобы это стало реальностью, технологию придётся отточить до совершенства. Ведь производство таблеток дома несёт риски, связанные с контролем качества.

Первый опыт подобной печати, кстати, уже есть. В Соединённых Штатах Америки этим способом была произведена пробная партия препарата Спритам, который используется для предупреждения припадков при эпилепсии. В России данное лекарство (известное также как Леветирацетам) включено в перечень препаратов, которые Правительство РФ утвердило в качестве жизненно важных.

Интересно, что Спритам по 3D-технологии получился несколько иным по сравнению с оригиналом. Структура напечатанного лекарства оказалась более пористой, что скорее плюс, поскольку это помогает лучшей всасываемости препарата.

3D-печать позволяет делать таблетки любой формы, оттенка и вкуса, то есть привлекательными для пациента. Это особенно важно в случае с детьми и пожилыми людьми. Также появляется возможность варьировать дозировку в широком диапазоне.

О здоровье больного расскажет тату


Тату наносят с помощью электропроводящих красок, при этом вместе с ними на кожу помещается микроконтроллер с несколькими чипами

Важным источником информации о здоровье человека могут стать микродатчики, помещённые в организм. Они будут производить круглосуточный мониторинг самочувствия пациента, в режиме реального времени фиксировать полную карту состояния и передавать её лечащему врачу.

Вариантов микродатчика может быть несколько:

  • небольшая таблетка;
  • нанесённая на участок тела биометрическая татуировка;
  • микрочип под кожей.

Помимо измерения температуры, пульса и артериального давления, микрочип сможет проанализировать уровень насыщения кислородом. Анализ показателей будет доступен и самому человеку, что позволит вовремя заметить начало негативных изменений.

Устройство будет работать по принципу «умных» часов и фитнес-браслетов, только изнутри организма, а не снаружи.

Один из подобных микрочипов был недавно представлен американскими учёными. Специалисты Стэндфордского университета продемонстрировали серию датчиков, которые можно внедрить в организм человека, собрать с их помощью интересующую информацию, а затем в течение некоторого времени (до саморазложения прибора) использовать для отслеживания хода лечения и последующего состояния.

«Умные» линзы


«Умные» линзы не только вернут зрение, но и смогут собирать данные о состоянии здоровья, заменят паспорт и фотоаппарат

В ближайшем будущем о здоровье человека будут рассказывать практически все окружающие его предметы и гаджеты. В первую очередь - наручные часы, которые сообщат о состоянии пульса, пройденных за день шагах и уровне сахара в крови.

Процесс создания такой техники уже запущен. Например, всемирно известная компания Google представила контактные линзы, которые помогают скорректировать стремительно ухудшающееся зрение. Они имеют сразу несколько полезных в медицинском плане компетенций:

  • считывают кровяное давление у пациентов, страдающих от глаукомы;
  • проверяют уровень сахара в крови при диабете;
  • передают данные о здоровье человека на беспроводной приёмник, а оттуда - как самому пациенту, так и его лечащему врачу.

Линзы от Google внешне ничем не отличаются от обычных, но, по своей сути, это заявка на создание искусственного глаза или же вмонтированной в него камеры.

Конкуренцию Google собирается составить корейская компания Samsung.

Искусственная кожа сможет восстанавливаться


Принцип заживления искусственной кожи состоит в том, что молекулы материала легко разъединяются, а затем восстанавливают изначальный порядок

Искусственная кожа будет использоваться в процессе лечения пациентов всё чаще. И уверенность в этом дают прорывные открытия, сделанные недавно американскими учёными. Роберт Лангер из технологического института штата Массачусетс представил открытую им «вторую кожу» - очень тонкий материал, структура которого в момент создания совпадает с характеристиками реальной ткани. При этом таких свойств хватает всего на сутки: через день разработка теряет свою упругость и силу.

Ещё дальше пошёл другой американский исследователь - Чао Вонг. Он вместе со своими коллегами по Калифорнийскому университету замахнулся на создание кожи, которая обладает способностью к самовосстановлению. Профессор объявил, что его задача - создать «покрытие» для супергероев, наподобие того, что можно увидеть в голливудских фантастических картинах.

По словам Вонга, его самый любимый киногерой - это Росомаха, которого не брали ни пули, ни колюще-режущее оружие.

Некоторые материалы, обладающие способностью к самовосстановлению, уже можно найти на рынке. Подобным свойством, например, обладает покрытие телефона LG Flex - своего рода предшественник будущих подобных технологий для человека.

Кардиостимуляторы будут размером с витаминку


Исследования показали, что мини-кардиостимулятор гораздо эффективнее и безопаснее обычного

Самый первый в мире кардиостимулятор был создан 60 лет назад. С тех пор технология претерпела серьёзные изменения. Впрочем, пределов для совершенства не существует: компания Medtronic некоторое время назад представила крошечный «кардиостимулятор будущего». Достоинств у ноу-хау несколько:

  • размер не больше витаминки;
  • для введения в организм не требуется хирургического вмешательства;
  • не вызывает осложнений у большинства пациентов.

Технология от Medtronic не только произвела фурор в медицинских кругах, но и послужила толчком к дальнейшим разработкам мини-кардиостимуляторов, которые также не потребуют сложных хирургических процедур для внедрения в организм человека. Более того, можно прогнозировать и дальнейшее уменьшение технологии в размерах.

Кардиостимулятор Micra от Medtronic был представлен в 2013 году, но получил одобрение Управления продуктами питания и лекарствами США только в середине 2016 года.

Санитарами будут работать роботы


Уже сегодня существуют действующие прототипы роботов-санитаров, например, японский ROBEAR, который ухаживает за пожилыми людьми

Полностью отказаться от живых врачей и доверить процесс лечения пациентов роботам в обозримом будущем вряд ли получится. А вот возложить на разумные автоматы обязанности по уходу за больными - вполне реально. Например, весьма вероятно, что уже скоро роботов всё активнее будут привлекать к оказанию помощи лежачим больным. Электронные санитары смогут:

  • поднимать и аккуратно перемещать пациентов в постели;
  • помогать приподняться на кровати или встать с неё;
  • пересаживать с кровати на инвалидную коляску;
  • брать анализы;
  • доставлять лекарства в определённой доктором дозировке.

Ещё большее значение приобретут роботы при исследовании информации из полученных анализов. Всего за несколько секунд умные машины смогут смоделировать варианты развития заболевания с учётом возможных побочных эффектов. При этом устройство предложит и варианты лечения, которые затем будут рассматриваться наравне с предложениями медика-человека. И пока что сложно сказать, чей прогноз и вариант лечения окажется точнее. Ведь даже созданные на сегодняшний день компьютеры помнят до 40 миллионов медицинских документов, касающихся всех существующих болезней, вариантов их протекания и борьбы с ними.

Первые роботы-санитары уже прошли проверку в рядах американской армии. Умные машины способны выносить раненых с поля боя, но пока не наделены необходимым набором медицинской информации.

Лекарства не придётся тестировать на живых существах


Каждый год в лабораторных исследованиях задействуют более 100 млн животных

Сейчас перед началом клинического использования все препараты проходят испытания на живых существах - животных или людях. Этичность таких экспериментов нередко подвергается сомнениям. Кроме того, испытания занимают немало времени и дорого обходятся разработчикам.

Уже скоро лекарственная индустрия сможет отойти от этого. Для проверки свойств новых препаратов будут использовать технологию современных микрочипов с находящимися в них клеточными культурами, полностью повторяющими работу отдельных органов и даже целых систем пациента. При этом результат будет понятен практически сразу, в отличие от долгих испытаний с участием большого числа добровольцев.

Эксперты полагают, что подобный способ доклинических исследований будет способствовать созданию лекарств от болезней, которые пока не поддаются лечению. В частности, это касается рака.

Новое сердце можно будет вырастить


Технология развивается медленно из-за нехватки финансирования - первые опыты были проведены в 2005 году

Американская учёная Дорис Тейлор из Техасского института сердца придумала технологию, которая в будущем может свести на нет очереди из пациентов, ожидающих трансплантацию. На помощь придёт «призрак сердца». Так Тейлор назвала свой метод, уже продемонстрированный на животных. Суть его в следующем:

  • медики берут сердце животного, например, свиньи;
  • погружают орган в химическую ванную;
  • при замачивании очищают сердце от всех клеток, за исключением белка;
  • заполняют получившийся «призрак» стволовыми клетками конкретного пациента, которому требуется операция.

Далее данный биоматериал подключают к специальному устройству, которое помогает органу начать функционирование в полной мере - за счёт искусственной системы кровообращения и лёгких. Следующими шагом должна стать пересадка органа человеку.

Подобный опыт профессор с успехом осуществила на животных - подопытных свиньях и крысах. И достигла успеха. Кроме того, технологию удалось применить к другим органам - трахее и мочевому пузырю. Пока что метод требует серьёзной доработки. Но момент, когда его можно будет использовать в полной мере, не за горами.

Во многом авторы фантастических произведений правы: в будущем человечеству удастся победить многие заболевания. Но наверняка появятся и новые вызовы, которые потребуют новых подходов и технологий, ещё более удивительных.

22.12.2015

Здоровье человека — это наукоемкая индустрия, которая развивается с невероятной скоростью. Как ее изменят новые технологии и кто будет востребован на рынке труда в течение 20 следующих лет? «Учёба.ру» ставит диагноз будущему медицины.

За последние 100 лет наука спасения человеческих жизней сделала огромный шаг вперед, проникнув в тайны человеческого тела и психики. Она научилась бороться с инфекционными заболеваниям, разработала пластическую хирургию, освоила новые средства хирургического вмешательства, шла нога в ногу с последними достижениями миниатюризации. Мы больше не болеем оспой, забыли, что такое чума, знаем, как пересаживать сердце. Все это привело к тому, что в течение XX века средняя продолжительность жизни на планете выросла с 35 до 65 лет.

Медицина продвинулась очень далеко в решении самых разных проблем, связанных со здоровьем человека, но, увы, не решила их все. Сегодня перед ней стоят вызовы не меньшего масштаба чем век назад. До сих пор не покорен рак, неизвестные ранее вирусы возникают с завидной регулярностью, антибиотики теряют свою силу, новые привычки и образ жизни приносят новые болезни. При этом мы находимся в эпицентре генетической революции, усиленно изучаем структуру мозга, надеемся на большие данные и роботов, ждем прорывов в борьбе со старением. Тот, кто сегодня планирует связать свою жизнь с медициной, должен повнимательнее присмотреться к передовому краю ее развития и понять, как она может измениться к 2035 году.

Робот-хирург Da Vinci

Основным поставщиком новых технологий и профессий во всех областях человеческого труда сегодня являются информационные технологии. Врачи не исключение. Медицинские учреждения поголовно переходят с аналогового учета на цифровой, осваивают системы компьютерного анализа и прогнозирования. Тектонические сдвиги в системе здравоохранения в обозримом будущем связаны с возрастающей мощностью вычислений и работой с большими данным. В 2015 году компания Google объявила о запуске первого квантового компьютера D-Wave. Каким он будет через 20 лет, можно только гадать, но совершенно точно - очень и очень быстрыми. Таким скоростям и объемам понадобятся специалисты с продвинутым знанием IT, которые в состоянии управлять огромными массивами данных и заниматься их поддержкой - в будущем IT-медики и аналитики будут востребованы в медицине не меньше, чем медсестры или стоматологи.

Рука об руку с суперкомпьютерами идут системы автоматизации и робототехнические комплексы. Роботы-хирурги Da Vinci, выполняющие операция различной сложности, главным образом гистерэктомии и простатэктомии, уже присутствуют в более чем 2000 медицинских учреждений, 25 из которых находятся в России. Эти машины еще не полностью автономны, и вряд ли станут такими в скором времени. Они нуждаются в квалифицированных инженерах и операторах с навыками программирования - профессиях, которые точно будут необходимы и через 20 лет. Хирург и изобретатель из MIT Катерина Мор рассказывает в своей лекции на TED о том, что роботы могут дать врачами настоящие суперспособности, - а ведь их использование в медицине еще даже не начиналось.

Сетевые технологии и компьютеризация отрасли выводит на первый план персонализированные медицинские сервисы. Развитие трикодеров, аппаратов, способных ставить диагнозы автономно от врача, мобильных приложений и нательных датчиков-гаджетов только добавит масла в огонь. Известный генетик и исследователь цифровой медицины Эрик Тополь называет этот процесс «эмансипацией пациента» и считает, что информация и быстрая экспертиза вскоре будет не только доступна каждому без посещения кабинета доктора, но и позволит предсказывать и предотвращать большинство серьезных заболеваний на лету.

Здравоохранение выйдет за порог поликлиник и больниц, разгрузив их от мелких процедур и ненужной бюрократии. Так сформируется огромный рынок персонализированной терапии. Личные онлайн-врачи существуют и сегодня, но в течение ближайших десятилетий именно они будут доминировать в профессиональной среде. Ни один заинтересованный в здоровом образе жизни человек не откажется от мгновенного доступа к экспертному мнению, особенно, если для этого существует удобная платформа, а средства диагностики находятся под рукой. Работа врача будет схожа с работой персонального тренера и психоаналитика. Чтобы построить успешную карьеру в таком мире, понадобится квалификации, которые сегодня преподаются не в медицинских, а маркетинговых институтах - клиенториентированность и умение работать с людьми.


Дмитрий ШАМЕНКОВ,

врач, основатель «Системы управления здоровьем»,

эксперт по разработке и внедрению новых технологий в медицине,

член Экспертной коллегии Фонда развития Инновационного центра

«Сколково» по биомедицинским проектам.

«В вопросах здравоохранения не стоит отделять Россию от всего мира. Мы имеем те же самые проблемы, что и граждане европейских стран, стран Азии или Америки. Новые вызовы возникают очень быстро, однако на подходе новые решения. Думаю, что в ближайшем будущем стоит уделить внимание интеграции медицины и других наук. В первую очередь, биотехнологий, информационных технологий и когнитивных технологий. Появление новых материалов, роботехнических устройств, глубокого машинного обучения, генной инженерии, развитие социальных сетей и искусственного интеллекта полностью и непредсказуемым образом меняют нас самих и наш подход к медицине.

Уверенно можно сказать, что медицина будущего - это информационная медицина, ориентированная на раннюю профилактику и высокотехнологичное протезирование. Я думаю, что доктор будущего - это сеть саморегулируемых квантовых компьютеров, глубоко изучивших геном человечества, наши поведенческие характеристики, а также все научные исследования, когда-либо проведенные нами. Главная проблема, которую останется решить человеку в будущем - это научиться жить свободным от диктата такой системы. Чтобы успеть это сделать, учиться нужно уже сегодня. Мы живем в самое удивительное время за всю историю человечества».

Процесс персонализации медицины будет подхвачен прорывами в области генетики. В начале XXI века был завершен международный проект «Геном человека» по расшифровке ДНК. Исследования обошлись в 3 млрд долларов, а уже через 15 лет стоимость персонального секвенирования генома упала ниже 1000 долларов. Через 20 лет эта процедура будет проводиться в момент рождения, и каждый будет знать особенности своего генома, как группу крови. На рынке труда появятся консультанты-генетики. Они помогут в интерпретации результатов, проанализируют общее состояние здоровья и отправят пациента к нужному специалисту.

Схема работы CRISPR/Cas9

Еще интереснее, как новые технологии в области генетических исследований затронут здоровье человека напрямую. Например, наделавшая много шума система CRISPR/Cas9 - метод монтирования ДНК, который уже сегодня позволяет манипулировать генами напрямую. На данный момент технология выступает подспорьем в борьбе с тяжелыми болезнями и открывает фантастические перспективы в области перестройки ДНК эмбрионов. И хотя до полного понимания влияния механизмов работы человеческого генома на здоровье пока далеко - требуются дополнительные исследования - генетика кардинально меняет лицо медицины. «Это больше не научная фантастика», - так доктор Джордж Дэйли из Гарвардской медицинской школы характеризует происходящие изменения. В течение 20 лет CRISPR/Cas9 станет тем более обычным делом, требующим квалифицированных специалистов.

Генетические манипуляции и некоторые другие новые технологии, вроде пересадки лица, нейробиологии и изготовления искусственных органов, потребуют от общества поисков новых норм и правил регулирования медицинской отрасли. Для этого понадобятся эксперты с кардинально новым багажом знаний - медицинских, философских, социальных и политических. Сегодня это направление известно как «биоэтика» и уже появилось в программах ведущих университетов. Востребованность специалистов, обеспечивающих этические рамки работы с новыми технологиями, будет расти с каждым новым научным прорывом. Клонирование, трансплантология, моделирование ДНК, эвтаназия и другие чувствительные вопросы будут решаться под пристальным надзором специалистов в области биоэтики.

Кроме генетики, наука предоставит медицинской отрасли ряд специалистов в области биоимиджинга, таргетированой терапии, нейробиологии, оптогенетики, регенеративной медицины и нанотехнологий. Эти научные области сегодня вызывают наибольший интерес не только у экспертов, но и у бизнес-сообщества. Предприниматель и член стратегического комитета ИНВИТРО Сергей Шуплецов отмечает, что «в ближайшие 15 лет многие механические технологии будут вытеснены биотехнологиями. В первую очередь, это коснется здоровья. К примеру, будут изобретены препараты, которые нельзя назвать в полной мере лекарственными. Они будут контролировать и стимулировать естественные защитные силы организма».

Особенно хорошо в России представлены технологии 3D-биопринтинга. Так, российские специалисты одними из первых напечаталио рганный конструкт щитовидной железы мыши с помощью российского же биопринтера Fabion. Биопечать - это процесс воссоздания с копии органа на основе живых клеток организма. «Волшебство» происходит в специальном многофункциональном устройстве, чей масштаб совсем скоро дорастет до человеческих нужд. Лидеры индустрии в России - первая отечественная частная лаборатория, работающая в области трехмерной органной биопечати, 3D Bioprinting Solutions. Успешные опыты сегодня свидетельствуют о том, что через 20 лет в этом поле не будет недостатка работы.


Чтобы расширить понимание процессов, в результате которых происходит поражение клеток, и получить новые инструменты противодействия тяжелым заболеваниям, важно развитие новых техник лабораторных наблюдений, наподобие биоимиджинга. Российские специалисты преуспели и в этой области. Представители ИПФ РАН делают одни из самых качественных установок для флуоресцентного биоимджинга, которые играют большую роль в онкологических исследованиях и фармакологии. Другие актуальные разработки в области биотехнологий касаются наночипов, стволовых клеток и нейроинтерфесов. Специалисты в этих областях сегодня ценятся на вес золота и не потеряют свой статус до 2035 года.

Развитие современной медицины и общее повышение уровня жизни привели к тому, что демографическая структура населения сильно поменялась. В развитых и развивающихся странах появляется всё больше пожилых людей. По данным Росстата, к 2030 году треть населения России будет пенсионного возраста. Вероятно, это не предел, учитывая развитие совершенно новой области знаний - life science, которая ставит своей целью увеличить продолжительность жизни или вовсе победить старение. Группа филантропов во главе в Юрием Мильнером и Марком Цукербергом ежегодно вручает премию Breakthrough Prize и 3 млн долларов лучшим исследователям именно в этом направлении. Идея, что человек может, в среднем, жить больше 100 лет, находит всё больше приверженцев среди серьезных ученых.

Изменение демографической ситуации окажет заметное влияние на здравоохранение будущего. Во-первых, это приведет к появлению нового типа медицинских работников - специалистов по достойной старости, чьи способности и знания будут нарасхват в обществе, где доминируют люди старше 60 лет. Во-вторых, наука о продлении жизни сможет серьезно изменить структуру отрасли, став буфером всех новых технологий, которые будут необходимы стареющему населению для поддержания высокого качества жизни: от пластической хирургии до биопечати новых органов взамен обветшавших. Спрос на качественные медицинские услуги будет пропорциоанльно расти.

Медицину ждут большие, но вполне прогнозируемые перемены. Следующие 20 лет станут эпохой персонализации, компьютеризации и биотехнологизации отрасли. Это не значит, что индустрия испытает серьезный кризис. Совсем наоборот. Новые технологии скорее приоткрывают перед человечеством золотую эру здравоохранения. Всё больше болезней поддаются лечению. Затраты на здоровье растут с каждым годом. Инновации расширяют рынок медицинских услуг, добавляя россыпь новых рабочих мест, а процессы автоматизации пока не угрожают даже самому низкоквалифицированному персоналу. В будущем медицина останется при лучших своих качествах - будет интересной, благородной и выгодной профессией, и главное - на любой вкус.

Врачи будущего

IT-медик Специалист по биоэтике Хирург-оператор
Специалист в области IT, баз данных и медицинского программного обеспечения. Изучает и решает спорные медицинские вопросы с точки зрения закона и морали. Оператор автоматизированных хирургических систем.
Генетический консультант ДНК-хирург Онлайн-терапевт
Занимается проведением генетического анализа и интерпретацией его результатов. Специалист в области монтирования ДНК и манипуляции с генами. Специалист широкого профиля, оказывающий персональные медицинские услуги в удаленном режиме.
Эксперт в области life science Специалист по трансляционной медицине Клинический геронтолог
Специалист, занимающийся вопросами максимизации здорового образа жизни и ее продления. Способствует переносу фундаментальных исследований в биомедицине в общую медицинскую практику. Специалист по здоровой старости.
Тканевый инженер
Профессионал в области биопечати.


Точки входа в медицину будущего в России

Российское медицинское образование сегодня продолжается от шести до 18 лет. Сразу после вузовской «шестилетки» выпускники могут стать только терапевтами или педиатрами. Постдипломное образование для получения специальности займет еще от двух до пяти лет. Дольше всего учатся те, кто хочет стать доктором наук: в этом случае продолжительность образования будет сравнима с продолжительностью жизни человека, достигшего совершеннолетия.

Учёба.ру

Правообладатель иллюстрации Getty Images

Пока в обществе спорят о потенциальном "восстании машин", об угрозах со стороны больших данных и искусственного интеллекта, новые технологии трансформируют одну из главных областей жизни человека - медицину. Каким будет ее будущее?

Здоровье человека - в руках IT-гигантов

На этой неделе СМИ заметили, что недавно компания Apple без широкой огласки запустила проект собственных медицинских клиник первичной медико-санитарной помощи для сотрудников и членов их семей. Сеть получила название AC Wellness.

В списке открытых вакансий "дочки" Apple есть позиция врача-дизайнера оздоровительных программ для населения.

В описании вакансии говорится, что этот специалист должен будет не только отслеживать хронические заболевания пациентов, но и отвечать за укрепление здоровья клиентов, предупреждение и раннее выявление недугов.

Для Apple как работодателя гораздо лучше предоставить своим сотрудникам первоклассную медицинскую помощь, которая будет играть на опережение, нежели тратить деньги на лечение уже заболевших сотрудников.

За эту мысль ухватились и такие крупные компании, как Amazon, J.P. Morgan и Berkshire Hathaway. Совместными усилиями компании решили развивать медицинские технологии и объявили о запуске независимой некоммерческой организации, которая будет заниматься вопросами инноваций и улучшения системы оказания медицинской помощи.

Правообладатель иллюстрации Getty Images Image caption Фитнес-трекеры стали по сути новыми "драгоценными украшениями" для современного человека.

По данным Центров по контролю и профилактике заболеваний США, ежегодная потеря производительности из-за болезней работников компаний оценивается в 260 млрд долларов. Неудивительно, что крупнейшие американские компании всерьез заинтересовались развитием превентивной медицины.

Выступая ранее на ежегодном собрании акционеров, глава Apple Тим Кук заявил, что его компания способна внести значительный вклад в здравоохранение. Казалось бы: где медицина, и где - производитель айфонов?

Доктор в кармане

В некоторых американских больницах уже пользуются особыми медицинскими платформами на смартфонах и планшетах, которые позволяют пациенту изучать историю болезни, все предписания врачей и при необходимости задать уточняющие вопросы в чате со специалистом. Но это далеко не единственное, что новые технологии могут подарить медицине.

Например, в ноябре 2017 года Apple объявила о запуске совместного исследования с учеными из Стэнфорда. Специально для этого компания выпустила приложение Apple Heart Study, которое позволяет отслеживать отклонения сердечного ритма у пользователей "умных часов" Apple Watch.

Компания, наряду с FitBit, Samsung и другими, также работает над проектом по регулированию в области "цифровой медицины". Проект курирует Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США.


Как селфи может спасти вашу жизнь

По мнению Лу Чанг, главы Fusion Fund, венчурной компании, инвестирующей в инновационные проекты, для коммерциализации мобильного сервиса не важно, нравится ли он потребителям, а важно то, нуждаются ли они в нем.

"Здравоохранение - это определенно то, в чем будут нуждаться все," - заключила Чанг в разговоре с Русской службой Би-би-си.

Чанг видит несколько главных аспектов медицины будущего: это персонализированное лечение, индивидуальная диагностика, создание новых лекарств с помощью искусственного интеллекта, роботизация хирургии и терапии, а также курирование цифровыми платформами восстановления пациента после операции или болезни.

"Человечество мечтает найти ключ к борьбе с раком. Он кроется именно в индивидуальных особенностях пациентов и даже в индивидуальных особенностях их раковых клеток. Я сама инвестировала в компанию Mission Bio, которая занимается индивидуальной диагностикой клеток при помощи технологии капельной микрофлюидики и целенаправленно проводит диагностику мелкоклеточного рака, который так сложно обнаружить", - рассказала Чанг.

Такой детальный подход, по ее мнению, позволит находить персонализированный метод лечения рака для каждого пациента.


Media playback is unsupported on your device

Миниробот в костюме супергероя - революция в медицине?

Заведующий лабораторией геномной географии Института общей генетики им. Н.И. Вавилова, доктор биологических наук, профессор РАН Олег Балановский тоже считает, что индивидуальный подход к пациенту - это магистральное направление развития современной медицины.

Практика анализа больших биоданных, по его мнению, должна привести к повышению качества диагностики и более точному назначению лекарств, однако происходить это будет не сразу, а постепенно, полагает ученый.

Искусственный интеллект должен помочь человеку не только более корректно подбирать лечение, но и создавать более эффективные препараты. "Открытие новых лекарств при помощи глубокого обучения и возможность быстро анализировать химический состав [препаратов] позволят сильно сэкономить на научно-исследовательских и опытно-конструкторских работах", - уверена Чанг.

Уже сейчас существуют "фармацевтические компании будущего": такой, например, можно назвать BenevolentAI, хотя прежде всего компания занимается развитием искусственного интеллекта.

Создатель фирмы Кен Мэлвени считает, что мир должен и может видеть гораздо больше научных открытий, в том числе в области фармацевтики, чем мы видим сейчас. Цель его компании - увеличивать эффективность работы ученых, помогая им обрабатывать огромный объем существующего научного знания мощностями искусственного интеллекта.

Мэлвени верит, что искусственный интеллект может перевернуть мир медицинских препаратов. Более того, на сайте его компании высказывается мнение, что ИИ может сделать из любого человека научного эксперта, даже если он не медик.

Эту мысль ярко выразил Эрик Тополь, кардиолог и писатель, в названии своей книги о будущем медицины, которая вышла в 2015 году: "The Patient Will See You Now", что можно перевести как "Теперь пациент вас увидит". И действительно, при помощи инновационных сервисов пациент в какой-то момент может почувствовать себя чуть ли не доктором.

Правообладатель иллюстрации CHRISTOPHE ARCHAMBAULT/AFP/Getty Images Image caption Основатель компании BenevolentAI верит в то, что искусственный интеллект перевернет мир медицинских препаратов.

Искусственный интеллект и большие медданные

"Мы живем в счастливую эпоху: чтобы создать персонализированную медицину, нужно собрать огромные базы данных, и раньше это было проблемой. Теперь же у нас есть множество дешевых способов для интеграции данных в разные сервисы. Современные технологии позволяют молниеносно и дешево отправлять данные сразу в облачный сервис. В результате мы можем использовать полный набор данных о людях с целью разработки персонализированного плана лечения", - замечает Чанг.

Возможности машинного обучения уже сейчас позволяют компьютерным алгоритмам быстро ориентироваться в огромном пласте информации и делать определенные выводы о состоянии здоровья пользователя.

В России анализом больших биоданных занимается проект CoBrain. Его цель - создание информационно-аналитической системы по обработке больших нейроданных, которая должна стать своего рода сигналом для появления новых медицинских сервисов, считает руководитель проекта Димитрий Дождев.

CoBrain рассматривает мозг человека в комплексе, что потенциально позволит наблюдать организм пациента в целом, эффективнее контролировать состояние ремиссии, а также назначать более точную терапию, считает Дождев.

По его мнению, CoBrain должен приблизить создание персонализированной медицины в России. К этому готовы уже не только исследователи в медицинских лабораториях, но и врачи на местах. "Основной постулат проекта - мы в вопросах диагностики не заменяем врача. Наша задача - дать инструментарий, который позволит освободить врача от рутины", - добавил Дождев.

По мнению Чанг, искусственный интеллект необходим в области медицинской визуализации.

"По каждому пациенту есть огромный объем визуальной информации, и теперь к нему можно будет "подключать" компьютерное зрение. Компьютеры не собираются никого лишать работы! Просто они могут быстро просканировать изображения и из сотен вариантов выбрать парочку, которые можно будет показать доктору и из которых тот сможет сделать важные выводы. К тому же ИИ может спасти пациента в тех ситуациях, где доктор просмотрел нечто важное", - уверена Чанг.

Правообладатель иллюстрации CRIS BOURONCLE/AFP/Getty Images Image caption ИИ может спасти пациента в ситуациях, где доктор просмотрел нечто важное, говорит о проблемах медицинской визуализации Чанг.

Сам себе врач?

Новые медицинские сервисы, о которых сейчас мечтают инноваторы в индустрии здравоохранения, будут не только молниеносно анализировать физические показатели пациента, но и предоставят ему инструментарий для здорового образа жизни.

Согласитесь, если приложение на вашем смартфоне часто посылает вам уведомление о том, что у вас скачет пульс, скорее всего, вы невольно начнете следить за своим образом жизни, чтобы избежать ухудшений. Кто-то, возможно, даже возьмется за самолечение. И именно этот момент вызывает множество споров среди специалистов.

Показателен случай Сергея Фаге, предпринимателя, основателя сервиса "Островок". Его статья "Мне 32 года, и я потратил 200 тысяч долларов на биохакинг" вызвала бурное обсуждение в российском научном и медийном сообществе, при этом получив одобрительные отзывы от видных футурологов Кремниевой долины. В ней Фаге рассказывает, как он "взламывает" биологию своего организма (в том числе анализируя своей геном), чтобы сделать себя "быстрее, выше, сильнее" - а точнее здоровее, моложе и эффективнее.

Некоторые эксперты критиковали Фаге за передиагностику, самоуправство и накачивание своего организма губительным коктейлем из препаратов. Одни трансгуманисты поддержали его, а другие - нашли изъяны в его подходе, хотя и похвалили за пропаганду персонализированной "медицины будущего".

Понять, кто прав, а кто виноват в этом споре почти нереально: в пользу и той, и другой стороны всегда найдется вдоволь научных доводов.

Как поясняет Марина Демидова, директор портала-агрегатора медицинских анализов и лабораторий Lab24, человеку действительно жизненно необходимо знать о ряде мутаций в определенных генах, но только реально значимых, что было доказано серьезными научными исследованиями. Все остальное действительно может привести к передиагностике.

Например, угрозу может нести ген, отвечающий за развитие рака груди - история боровшейся с ним Анджелины Джоли известна многим. "Хорошо, что это происходит. Мы, конечно, сейчас ко всему этому скептически относимся, к тем [генетическим] анализам, которые делают некоторые [коммерческие] компании. Особенно врачи-генетики с вопросами на это все поглядывают. Но в любом случае мы к этому придем", - говорит Демидова.

Правообладатель иллюстрации JONATHAN NACKSTRAND/AFP/Getty Images

Персонализированная превентивная и предиктивная медицина, которая занимается полным мониторингом организма по различным показателям, в том числе и с точки зрения генетики, является для медицинской науки сейчас ориентиром. Многие специалисты и визионеры видят потенциал в переходе медицины в онлайн. Сервисы удаленных консультаций с врачами уже запускаются (взять к примеру тот же "Яндекс.Здоровье"), и это только начало.

Исследование генома сейчас - одно из самых популярных направлений не только в лабораториях, но и в открытой пациентам медицине. Появляется все больше сервисов, которые предлагают "разложить ДНК по полочкам" - то есть проанализировать наличие генетических предрасположенностей к тем или иным заболеваниям.

При этом предполагается, что человек каким-то образом сможет предупредить их развитие. Что бывает попросту невозможно, как в случае с болезнью Альцгеймера.

Демидова уверена, что за персонализированной медициной будущее, несмотря на то что постоянное отслеживание биологических показателей пациента, в том числе им самостоятельно, может представлять угрозу для его благополучия.

По мнению Демидовой, в будущем все риски персонализированного и удаленного лечения будут предупреждаться за счет тщательного тестирования гаджетов и мобильных приложений.

Биотех и медицина – одни из самых модных, востребованных и интересных направлений в высокотехнологичном бизнесе. Тысячи амбициозных стартапов привлекают миллиарды инвестиций и представляют продукты, которым место скорее на страницах фантастических романов. Хирурги, которые видят ваше тело насквозь, неразличимые глазом датчики, анализирующие информацию о вашем самочувствии, кибернетические конечности для инвалидов, лазерные скальпели, генная терапия, роботы-сиделки и многое другое. Как все это меняет мир медицины и что нас ждет в ближайшем будущем?

Диагностика

Основа лечения - правильный диагноз, поэтому почти треть современных компаний в биотехе так или иначе связаны с мониторингом физического состояния человека. Наиболее перспективное направление развития - внедрение в организм микродатчиков. Это могут быть небольшие таблетки вроде создаваемых FitBit, или биометрические татуировки, такие как VivaLNK, или RFID - микрочипы, имплантируемые под кожу. Подобные датчики не только в режиме реального времени измеряют все важные параметры здоровья, но и создают полноценную медицинскую карту в облаке, которую может использовать лечащий врач.

Проекты вроде Qualcomm Tricorder X Prize или Viatom Check Me, измеряющие пульс, температуру тела, насыщение ее кислородом, систолическое и артериальное давление, физическую активность и сон, открывают новую страницу в медицинской помощи. Вместо текущих симптомов врач видит динамику на протяжении месяцев. Сами пациенты получают возможность оперативнее замечать негативные изменения в своем состоянии, а медицинские и страховые компании использовать больше данных для оптимизации расходов на лечение и страхование.

Замена и модификация органов

Кростехнологичные проекты обеспечивают прорывы в большинстве медицинских направлений. Например, сочетание 3D-сканирования, 3D-печати, продвинутого софта и новых полимеров произвели революцию в области стоматологии. Если раньше люди вынуждены были выпрямлять зубы и исправлять прикус посредством болезненных, долгих операций, вроде протезирования или брекетов, то сейчас на рынке появилась технология «элайнеров», индивидуальной программы использования прозрачных фиксаторов с минимум неудобств. Еще пять лет назад, когда я только основал компанию StarSmile, об элайнерах в России знали единицы, сегодня – эта технология прочно входит в нашу действительность, особенно с появлением большего количества биосовместимых материалов. В мире уже появились специализированные компании, типа немецкой Next Dent, сосредоточенных только на разработке новых материалов. И их усилия уже приносят свои плоды: сегодня доступны материалы, из которых можно печатать пластиковые временные коронки или целые съемные протезы в нескольких цветах.

Медицинская 3D-печать и биотехнологическая промышленность заново проектируют весь мир фармацевтики и донорских органов. 2016 был годом успешной 3D-печати печени, артерии и кости. Пересаженные органы показали успешное приживление: поскольку новые ткани основаны на генетической карте самого пациента, то риск отторжения при удачной пересадке минимален. Более того, новые органы сами развивали в себе сеть сосудов и капилляров. В этом году Harvard’s Wyss Institute вплотную приблизился к созданию искусственной почки. И уже в ближайшем будущем врачи смогут напечатать замену для любого органа в нашем теле. Аналогичная ситуация в фармацевтике – 3D-принтеры будут готовить для пациентов дозы лекарств, распечатанных на месте по модели, подготовленной индивидуально лечащим врачом.

Параллельно с печатью живых органов развивается индустрия создания киборгов. Сейчас автоматизированные протезы имеют замещающий характер: миллионы пациентов носят имплантированные дефибрилляторы или кардиостимуляторы, роботизированные конечности, подключенные к нервной сети. Но потенциал развития данного направления гораздо выше, чем простое замещение. Достижения в области будущей медицинской техники будут направлены не столько на ремонт физических недостатков, сколько на создание органов более совершенных, чем спроектированные эволюцией. Зрение во всех областях спектра, усиленные мышцы, сердце, которое никогда не перестанет биться, легкие, позволяющие дышать под водой или в удушливом дыму и т. д. Но пока такие направления остаются чисто теоретическими, работают гораздо более простые, но тем не менее эффективные проекты вроде е-NABLING. Это программа по свободному обмену 3D-моделями доступных протезов плюс инструкции по их печати и эксплуатации.

Исследования

Следующее важнейшее направление биотеха - модернизация процесса R&D. В этой области отчетливо заметны два крупнейших направления: изучение генома человека и моделирование физических процессов с помощью специализированных программ. В мире уже испытывается целая серия микрочипов, которые могут быть использованы в качестве моделей человеческих клеток, органов или целых физиологических систем. Преимущества такой инновации неоспоримы: вместо долгих и опасных исследований компании могут программировать поведение и реакцию человека на тот или иной раздражитель в контексте биотеха на разрабатываемые лекарства. Эта технология спровоцирует революцию в области клинических испытаний и полностью заменит тестирование на животных и людях.

Проект расшифровки генома человека начался около 30 лет назад, но настоящие прорывы были связаны с ростом вычислительной производительности компьютеров. Сейчас эта работа близка к завершению, определено большинство функций генов в ДНК-цепочке человека. На практике это означает начало эры персонализированной медицины, когда каждый пациент сможет получить индивидуальную терапию с настраиваемыми лекарствами и дозировками. Уже сейчас существуют сотни основанных на фактических данных приложений для персональной геномики. Метод быстрого генетического секвенирования был впервые применен командой Стивена Кингсмора для спасения жизни маленького мальчика в 2013 году. Тогда это было невероятным, крайне затратным и уникальным по своей эффективности случаем. Уже в ближайшем будущем это станет обыденной медицинской практикой.

Операции будущего и новое образование

В медицине еще долго будет необходимо присутствие живых врачей. Но благодаря технологиям у них в распоряжении будет нечто большее, чем два обычных глаза: на помощь придет дополненная реальность. Уже сейчас эта, на первый взгляд развлекательная, технология начинает проникать в медицинскую сферу. Цифровые контактные линзы от Google корректируют курс лечения диабета через измерение уровня глюкозы в слезных протоках. Разработка Microsoft Hololens (использование AR во время операций) уже проходит тестирование в Германии. Получаемые через сканирование данные проецируются на очки хирургу, так что доктор буквально может смотреть сквозь тело пациента, видеть кровеносные сосуды перед началом разреза, определять плотность и структуру ткани. Как дополнительное улучшение можно использовать интеллектуальные инструменты: например, хирургический нож iKnife от Imperial College работает как световой меч джедаев. Электрический ток позволяет делать надрезы с минимальной потерей крови, а испаренный дым анализируется масспектрометром в режиме реального времени, давая хирургу полную картину по составу тканей организма.

Еще одна сфера применения AR – программы медицинского обучения. В 2016 году доктор Шафи Ахмед провела первую операцию с использованием камер виртуальной реальности в больнице Royal London. Каждый желающий мог наблюдать за ней в режиме реального времени через две камеры, дающие обзор в 360 градусов. Технологии могут совершенно изменить форматы профильного образования: молодые медики будут изучать анатомию на виртуальных таблицах рассечения, а не на человеческих трупах, а сотни учебных томов будут преобразованы в виртуальные 3D-решения и модели с использованием дополненной реальности. Именно в этом направлении сейчас работают такие компании, как Anatomage, ImageVis3D и 4DAnatomy: интерактивный софт, построенный на дополненной реальности и моделировании ресурсов.

Забота о пациентах и медицинский суперкомпьютер

Роботы постепенно входят в мир заботы о пациентах. Работа врача – поставить диагноз, назначить лечение или провести операцию, а круглосуточный уход можно переложить на плечи разумных автоматов. Сейчас на рынке развиваются сразу несколько подобных проектов. Робот TUG – мобильное устройство, способное нести несколько стоек, тележек или отсеков, содержащих препараты, лабораторные образцы или другие чувствительные материалы. RIBA и Robear используются в работе с пациентами, которые нуждаются в помощи: оба могут поднимать и перемещать пациентов в постели, помочь пересесть в инвалидную коляску, встать или приподняться, чтобы предотвратить пролежни, взять ряд анализов и передать их врачи.

Помимо механических помощников в медицине активно используются методики машинного обучения. Разрабатываемый IBM Watson – искусственный интеллект в области медицины, будет помогать врачам в анализе больших данных, мониторинге как отдельных пациентов, так и целых социальных групп, принятии важных клинических и профилактических решений. Watson имеет возможность прочитать 40 млн. документов в течение 15 секунд и предложить наиболее подходящие методы лечения. Также суперкомпьютеры привлекаются к разработке лекарственных средств для моделирования их влияния на различные болезни, сокращения побочных эффектов и поиска оптимальных химических формул. Еще одно направление – статистика и администрирование. Google Deepmind Health использует данные медицинской документации, чтобы обеспечить наиболее востребованные, эффективные и быстрые услуги в области здравоохранения.

В качестве резюме

Нельзя не упомянуть и о рисках, которые несут в себе прогрессивные технологии. Например, развитие видеоигр спровоцировало синдром зависимости и даже посттравматические расстройства, шлемы виртуальной реальности вызывают привыкание и проблемы со зрением и координацией. Медицинский 3D-принтер наверняка сможет распечатывать не только полезные витамины, но и героин. А лекарства на основе генома в руках террористов – потенциальная угроза появления биологического оружия. Как и любой аспект прогресса, развитие медицины несет в себе множество угроз, и какая чаша весов в итоге перевесит, предсказать невозможно.