В нашей статье мы рассмотрим строение прокариот и эукариот. Эти организмы существенно отличаются уровнем организации. А причина этого - особенности структуры генетической информации.

Особенности строения клеток прокариот

Прокариотами называют все живые организмы, клетки которых не содержат ядра. Из представителей пяти современных к ним принадлежат только одно - Бактерии. Прокариоты, строение которых мы рассматриваем, также включают представителей сине-зеленых водорослей и архей.

Несмотря на отсутствие в их клетках оформленного ядра, генетический материал они содержат. Это позволяет хранить и передавать наследственную информацию, но ограничивает разнообразие способов размножение. Воспроизведение всех прокариот происходит путем деления их клетки надвое. К митозу и мейозу они не способны.

Строение прокариот и эукариот

Особенности строения прокариот и эукариот, которые их отличают, достаточно существенны. Кроме структуры генетического материала, это касается и многих органелл. Эукариоты, к которым относятся растения, грибы и животные, содержат в цитоплазме митохондрии, комплекс Гольджи, эндоплазматический ретикулум, многие пластиды. У прокариот они отсутствуют. Клеточная стенка, которая есть и у тех, и у других, отличается химическим составом. У бактерий в ее состав входят сложные углеводы пектин или муреин, в то время как у растений ее основу составляет целлюлоза, а у грибов - хитин.

История открытия

Особенности строения и жизнедеятельности прокариот стали известны ученым только в 17 веке. И это несмотря на то, что эти существа существовали на планете с момента ее зарождения. В 1676 году их впервые рассмотрел в оптический микроскоп его создатель Антони ван Левенгук. Как и всех микроскопических организмов, ученый назвал их "анималикулами". Термин "бактерии" появился только в начале 19 столетия. Его предложил известный немецкий естествоиспытатель Христиан Эренберг. Понятие "прокариоты" возникло позже, в эпоху создания электронного микроскопа. Причем сначала ученые установили факт различия в строении генетического аппарата клеток разных существ. Э. Чаттон в 1937 году предложил объединить по этому признаку организмы в две группы: про- и эукариоты. Это деление существует и по сегодняшний день. Во второй половине 20 века было открыто различие среди самих прокариот: архей и бактерий.

Особенности поверхностного аппарата

Поверхностный аппарат прокариот состоит из мембраны и клеточной стенки. Каждая из этих частей имеет свои особенности. Их мембрана образована двойным слоем липидов и белков. Прокариоты, строение которых достаточно примитивно, имеют два типа строения клеточной стенки. Так, у граммположительных бактерий она состоит в основном из пептидогликана, имеет толщину до 80 нм и плотно прилегает к мембране. Характерной чертой этой структуры является и наличие в ней пор, через которые проникает ряд молекул. Клеточная стенка граммотрицательных бактерий очень тонкая - максимум до 3 нм. Она прилегает к мембране не плотно. У некоторых представителей прокариот снаружи находится еще и слизистая капсула. Она защищает организмы от высыхания, механических повреждений, создает дополнительный осмотический барьер.

Органеллы прокариот

Строение клетки прокариот и эукариот имеет свои существенные отличия, которые прежде всего заключаются в наличии определенных органелл. Эти постоянные структуры определяют уровень развития организмов в целом. У прокариот большинство из них отсутствует. Синтез белка в данных клетках происходит рибосомах. У водных прокариот содержатся аэросомы. Это газовые полости, которые обеспечивают плавучесть и регулируют степень погружения организмов. Только в клетках прокариот содержатся мезосомы. Эти складки цитоплазматической мембраны возникают только во время использования химических методов фиксации во время подготовки к микроскопии. Органеллами движения бактерий и архей являются реснички или жгутики. А прикрепление к субстрату осуществляют пили. Эти структуры, образованные белковыми цилиндрами, еще называют ворсинками и фимбриями.

Что такое нуклеоид

Но самое существенное отличие имеет строение гена прокариот и эукариот. обладают все эти организмы. У эукариот она находится внутри оформленного ядра. Эта двумембранная органелла имеет собственный матрикс, который называется нуклеоплазма, оболочку и хроматин. Здесь осуществляется не только хранение генетической информации, но и синтез молекул РНК. В ядрышках из них в последующем формируются субъединицы рибосом - органелл, отвечающих за синтез белка.

Строение генов прокариот проще. Их наследственный материал представлен нуклеоидом или ядерной областью. ДНК у прокариот не упакованы в хромосомы, а имеют кольцевую замкнутую структуру. В состав нуклеоида также входят молекулы РНК и белка. Последние по функциям напоминают гистоны эукариот. Они участвуют в удвоении ДНК, синтезе РНК, восстановлении химической структуры и разрывов нуклеиновых кислот.

Особенности жизнедеятельности

Прокариоты, строение которых не отличается сложностью, осуществляют довольно сложные процессы жизнедеятельности. Это питание, дыхание, воспроизведение себе подобных, движение, обмен веществ... И на все это способна лишь одна микроскопическая клетка, размеры которой колеблются в пределах от до 250 мкм! Так что говорить о примитивности можно только относительно.

Особенности строения прокариот обусловливают и механизмы их физиологии. К примеру, они способны получать энергию тремя способами. Первым является брожение. Его осуществляют некоторые бактерии. В основе этого процесса лежат окислительно-восстановительные реакции, в ходе которых синтезируются молекулы АТФ. Это химическое соединение, при расщеплении которого в несколько этапов выделяется энергия. Поэтому его не зря называют "клеточным аккумулятором". Следующим способом является дыхание. Суть этого процесса заключается в окислении органических веществ. Некоторые прокариоты способны к фотосинтезу. Их примерами являются сине-зеленые водоросли и , которые содержат в клетках пластиды. А вот археи способны к бесхлорофильному фотосинтезу. В ходе этого процесса не происходит фиксация углекислого газа, а непосредственно образуются молекулы АТФ. Поэтому, по сути, это настоящее фотофосфорилирование.

Тип питания

Формы размножения

Прокариоты, строение которых представлено одной клеткой, размножаются путем ее деления на две части или почкованием. Эта особенность обусловлена и структурой их Процессу бинарного деления предшествует удвоение, или репликация ДНК. При этом молекула нуклеиновой кислоты сначала раскручивается, после чего каждая нить дублируется по Образовавшиеся в результате этого хромосомы расходятся к полюсам. Клетки увеличиваются в размерах, между ними образуется перетяжка и далее происходит их окончательное обособление. Некоторые бактерии также способны к образованию клеток бесполого размножения - спор.

Бактерии и археи: отличительные признаки

Долгое время археи вместе с бактериями являлись представителями Царства Дробянки. И действительно, у них много сходных черт строения. Это прежде всего размеры и форма их клеток. Однако биохимические исследования показали, что у них есть ряд сходных черт с эукариотами. Это природа ферментов, под действием которых происходят процессы синтеза РНК и белковых молекул.

Археи освоили практически все среды обитания. Особенно они разнообразны в составе планктона. Первоначально всех архей относили к группе экстремофилов, поскольку они способны обитать и в горячих источниках, и в водоемах с повышенной соленостью, и на глубинах со значительным давлением.

Значение прокариот в природе и жизни человека

Роль прокариот в природе значительна. Прежде всего они являются первыми живыми организмами, которые возникли на планете. Ученые установили,что бактерии и археи возникли около 3,5 млрд лет назад. Теория симбиогенеза предполагает, что от них произошли и некоторые органеллы эукариотических клеток. В частности, речь идет о пластидах и митохондриях.

Многие прокариоты находят свое применение в биотехнологии с целью получения лекарственных средств, антибиотиков, ферментов, гормонов, удобрений, гербицидов. Человек издавна использует полезные свойства молочнокислых бактерий для изготовления сыра, кефира, йогурта, квашеных продуктов. С помощью этих организмов осуществляется очистка водоемов и почв, обогащение руд различных металлов. Бактерии формируют микрофлору кишечника человека и многих животных. Наряду с археями они осуществляют круговорот многих веществ: азота, железа, серы, водорода.

С другой стороны, многие бактерии являются возбудителем опасных заболеваний, регулируя численность многих видов растений и животных. К ним относятся чума, сифилис, холера, сибирская язва, дифтерия.

Итак, прокариотами называют организмы, клетки которых лишены оформленного ядра. Их генетический материал представлен нуклеоидом, состоящим из кольцевой молекулы ДНК. Из современных организмов к прокариотам относятся бактерии и археи.

Клетка прокариот устроена значительно проще клеток животных и растений. Снаружи она покрыта клеточной стенкой, выполняющей защитные, формирующие и транспортные функции. Жёсткость клеточной стенки обеспечивает муреин. Иногда бактериальная клетка покрыта сверху капсулой или слизистым слоем.

Протоплазма бактерий, как и у эукариот, окружена плазматической мембраной . В мешковидных, трубчатых или пластинчатых впячиваниях мембраны находятся мезосомы, участвующие в процессе дыхания, бактериохлорофилл и другие пигменты. Генетический материал прокариот не образует ядра, а находится непосредственно в цитоплазме. ДНК бактерий – одиночные кольцевые молекулы, каждая из которых состоит из тысяч и миллионов пар нуклеотидов. Геном бактериальной клетки намного проше, чем у клеток более развитых существ: в среднем ДНК бактерий содержит несколько тысяч генов.

В прокариотических клетках отсутствует эндоплазматическая сеть , а рибосомы свободно плавают в цитоплазме. Нет у прокариот и митохондрий ; частично их функции выполняет клеточная мембрана.

Прокариоты

Бактерии – мельчайшие из организмов, обладающих клеточным строением; их размеры составляют от 0,1 до 10 мкм. На обычной типографской точке можно разместить сотни тысяч бактерий среднего размера. Бактерии можно увидеть только в микроскоп, поэтому их называют микроорганизмами или микробами; микроорганизмы изучаются микробиологией . Часть микробиологии, изучающая бактерии, называется бактериологией . Начало этой науке положил Антони ван Левенгук в XVII веке.

Бактерии – древнейшие из известных организмов. Следы жизнедеятельности бактерий и сине-зелёных водорослей (строматолиты) относятся к архею и датируются возрастом 3,5 млрд. лет.

Из-за возможности обмена генами между представителями различных видов и даже родов систематизировать прокариот довольно сложно. Удовлетворительная систематика прокариот не построена до сих пор; все существующие системы являются искусственными и классифицируют бактерии по какой-либо группе признаков, не учитывая их филогенетического родства. Ранее бактерии вместе с грибами и водорослями включались в подцарство низших растений. В настоящее время бактерии выделены в отдельное надцарство прокариот. Наиболее распространённой системой классификации является система Берги , в основу которой положено строение клеточной стенки.

В конце XX века учёные обнаружили, что клетки сравнительно малоизученной группы бактерий – архебактерий – содержат р-РНК , отличные по своему строению и от р-РНК прокариот, и от р-РНК эукариот. Строение генетического аппарата архебактерий (наличие интронов и повторяющихся последовательностей, процессинг , форма рибосом ) сближает их с эукариотами; с другой стороны, архебактерии имеют и типичные признаки прокариот (отсутствие ядра в клетке, наличие жгутиков, плазмид и газовых вакуолей, размер р-РНК, азотфиксация). Наконец, архебактерии отличаются от всех остальных организмов строением клеточной стенки, типом фотосинтеза и некоторыми другими признаками. Архебактерии способны существовать в экстремальных условиях (например, в горячих источниках при температуре свыше 100 °С, в океанских глубинах при давлении 260 атм, в насыщенных солевых растворах (30 % NaCl)). Некоторые архебактерии выделяют метан, другие используют для получения энергии соединения серы.

По-видимому, архебактерии являются очень древней группой организмов; «экстремальные» возможности свидетельствуют об условиях, характерных для поверхности Земли в архейскую эру . Считается, что архебактерии наиболее близки к гипотетическим «проклеткам», породившим впоследствии всё многообразие жизни на Земле.

В последнее время стало ясно, что существуют три основных типа р-РНК , представленные, соответственно, первая – в клетках эукариот, вторая – в клетках настоящих бактерий, а также в митохондриях и хлоропластах эукариот, третья – у архебактерий. Исследования молекулярной генетики заставили по-новому взглянуть на теорию происхождения эукариот. В настоящее время считается, что на древней Земле одновременно эволюционировали три различные ветви прокариот – архебактерии, эубактерии и уркариоты , характеризовавшиеся разным строением и различными способами получения энергии. Уркариоты, являвшиеся, по сути, ядерно-цитоплазматическим компонентом эукариот, впоследствии включили в себя в качестве симбионтов представителей различных групп эубактерий, которые превратились в митохондрии и хлоропласты будущих клеток эукариот.

Таким образом, ранг класса, выделявшийся ранее для архебактерий, явно недостаточен. В настоящее время многие исследователи склонны разделять прокариот на два царства: архебактерии и настоящие бактерии (эубактерии ) или даже вовсе выделять архебактерии в отдельное надцарство Archaea.

Классификация настоящих бактерий приведена на схеме .

В бактериальной клетке отсутствует ядро, хромосомы свободно располагаются в цитоплазме. Кроме того, в клетке бактерии отсутствуют мембранные органоиды: митохондрии , ЭПС , аппарат Гольджи и пр. Снаружи клеточная мембрана покрыта клеточной стенкой.

Большинство бактерий передвигаются пассивно, с помощью водных или воздушных течений. Только некоторые из них имеют органеллы движения – жгутики . Жгутики прокариот очень просты по устройству и состоят из белка флагеллина, образующего полый цилиндр диаметром 10–20 нм. Они ввинчиваются в среду, продвигая клетку вперёд. По-видимому, это единственная известная в природе структура, использующая принцип колеса.

По своей форме бактерии делятся на несколько групп:

    кокки (имеют округлую форму);

    бациллы (имеют палочковидную форму);

    спириллы (имеют форму спирали);

    вибрионы (имеют форму запятой).

По способу дыхания бактерии делятся на аэробов (большинство бактерий) и анаэробов (возбудители столбняка, ботулизма, газовой гангрены). Первым для дыхания нужен кислород, для вторых кислород бесполезен или даже ядовит.

Бактерии размножаются путем деления примерно каждые 20 минут (в благоприятных условиях). ДНК реплицируется, каждая дочерняя клетка получает по своей копии родительской ДНК. Возможна также передача ДНК между неделящимися клетками (посредством захвата «голой» ДНК, при помощи бактериофагов или путём конъюгации , когда бактерии соединяются между собой копуляционными фимбриями), однако увеличения количества особей при этом не происходит. Размножению препятствуют солнечные лучи и продукты их собственной жизнедеятельности.

Поведение бактерий не отличается особой сложностью. Химические рецепторы регистрируют изменения кислотности среды и концентрацию различных веществ: сахаров, аминокислот, кислорода. Многие бактерии реагируют на изменения температуры или освещенности, некоторые бактерии могут чувствовать магнитное поле Земли.

При неблагоприятных условиях бактерия покрывается плотной оболочкой, цитоплазма обезвоживается, жизнедеятельность почти прекращается. В таком состоянии споры бактерии могут часами находиться в глубоком вакууме, переносить температуру от –240 °С до +100 °С.

Клеточные структуры Эукариотическая клетка Прокариотическая клетка
Цитоплазматическая мембрана Есть Есть; впячивания мембраны образуют мезосомы
Ядро Имеет двумембранную оболочку, содержит одно или несколько ядрышек Нет; имеется эквивалент ядра - нуклеоид - часть цитоплазмы, где содержится ДНК, не окруженная мембраной
Генетический материал Линейные молекулы ДНК, связанные с бе ками Кольцевые молекулы ДНК, не связанные с белками
Эндоплазматическая сеть Есть Нет
Комплекс Гольджи Есть Нет
Лизосомы Есть Нет
Митохондрии Есть Нет
Пластиды Есть Нет
Центриоли, микротрубочки, микрофиламенты Есть Нет
Жгутики Если есть, то состоят из микротрубочек, окруженных цитоплазматической мембраной Если есть, то не содержат микротрубочек и не окружены цитоплазматической мембраной
Клеточная стенка Есть у растений (прочность, придает целлюлоза) и грибов (прочность придает хитин) Есть (прочность придает пептидогликан)
Капсула или слизистый слой Нет Есть у некоторых бактерий
Рибосомы Есть, крупные (80S) Есть, мелкие (70S)

Тесты:

1.Поддержка жизни на каком-либо уровне связано с явлением репродукции. На каком уровне организации, репродукция осуществляется на основе матричного синтеза

А. Молекулярном

Б. Субклеточном

В. Клеточном

Г. Тканевом

Д. На уровне организма

2. Установлено, что в клетках организмов отсутствуют мембранные органеллы и их наследственный материал не имеет нуклеосомной организации. Что это за организмы?

А. Простейшие

Б. Вирусы

В. Аскомицеты

Г. Эукариоты

Д. Прокариоты

3. На занятии по биологии преподаватель попросил указать в лабораторной работе степень увеличения микроскопа, которая использовалась при изучении микропрепаратов. Один из студентов не смог самостоятельно справиться с поставленной задачей. Как правильно подсчитать этот показатель?

А. Умножить показатели, указанные на всех объективах микроскопа

Б. Разделить показатель объектива с меньшим увеличением на показатель объектива с большим увеличением

В. Умножить показатели увеличения объектива и окуляра

Г. Разделить показатели увеличения объектива на показатель окуляра

Д. Вычесть показатели, указанные на всех объективах микроскопа, из значения увеличения окуляра

4. При изучении микропрепарата студент после его фиксации на предметном столике и достижения оптимальной освещённости поля зрения установил объектив «х40» и посмотрел в объектив. Преподаватель остановил студента и сказал, что при работе допущена принципиальная ошибка. Какая ошибка была допущена?

А. Не стоило фиксировать микропрепарат

Б. Изучение микропрепарата нужно было начать с помощью объектива с малым увеличением

В. Освещение регулируется в последнюю очередь

Г. Фиксация препарата производится перед завершением исследования

Д. Все манипуляции стоило проводить в обратном порядке

5. Существование жизни на всех уровнях определяется структурой более низкого уровня. Какой уровень организации предшествует и обеспечивает существование жизни на клеточном уровне:

А. Популяционно-видовой

Б. Тканевой

В. Молекулярный

Г. Организменный

Д. Биоценотический

Задачи для контроля знаний:

1. При попытке изучения микропрепарата с помощью светового микроскопа исследователь обнаружил, что всё поле зрения затемнено. Что может быть причиной этого явления? Как устранить эту проблему?

2. При попытке изучения микропрепарата с помощью светового микроскопа исследователь обнаружил, что освещена только половина поля зрения. Что может быть причиной этого явления? Как устранить эту проблему?

3. Какие манипуляции необходимо провести в случае, если при использовании светового микроскопа наблюдаемый объект виден нечётко?

А) если на окуляре есть обозначение «х15», а на объективе «х8»

Б) если кратность увеличения линзы окуляра «х10» , а объектива «х40»

6. Материалы для разбора с преподавателем и контроля его усвоения:

6.1. Разбор с преподавателем узловых вопросов для освоения темы занятия.

6.2. Демонстрация преподавателем методик практических приемов по теме.

6.3. Материал для контроля усвоения материала:

Вопросы для разбора с преподавателем:

1. Медицинская биология как наука об основах жизнедеятельности человека, изучающая закономерности наследственности, изменчивости, индивидуального и эволюционного развития, а также вопросы морфофизиологической и социальной адаптации человека к условиям окружающей среды в связи с его биосоциальной сущностью.

2. Современный этап развития общей и медицинской биологии. Место биологии в системе медицинского образования.

3. Сущность жизни. Свойства живого. Формы жизни, ее фундаментальные свойства и атрибуты. Определение понятия жизни на современном уровне развития биологической науки.

4. Эволюционно обусловленные структурные уровни организации жизни; элементарные структуры уровней и основные биологические явления, их характеризующие.

5. Значение представлений об уровнях организации живого для медицины.

6. Особое место человека в системе органического мира.

7. Соотношение физико-химических, биологических и социальных явлений в жизнедеятельности человека.

8. Оптические системы в биологических исследованиях. Строение светового микроскопа и правила работы с ним.

9. Техника изготовления временных микропрепаратов, их изучение и описание. Методы изучения структуры клетки

Практическая часть

1. Используя методические указания изучить строение микроскопа и правила работы с ним.

2. Отработать навыки работы с микроскопом и изготовления временных препаратов волокон ваты, чешуек крыла бабочки. Изучить микропрепараты: кожица луковицы, лист элодеи, мазок крови лягушки, изучить типографский шрифт.

3. Занести в протокол граф логической структуры “Строение микроскопа”.

4. Занести в протокол “Правила работы с микроскопом”

5. Заполнить таблицу «Уровни организации и исследования многоклеточного организма».

Похожая информация:

Поиск на сайте:

Прокариотические клетки по своему строению мельче и проще клеток эукариот. Среди них не бывает многоклеточных организмов, лишь иногда образуют подобие колоний. У прокариот нет ни только клеточного ядра, но и всех мембранных органелл (митохондрий, хлоропластов, ЭПС, комплекса Гольджи, центриолей и др.).

К прокариотам относятся бактерии, синезеленые водоросли (цианобактерии), археи и др. Прокариоты были первыми живыми организмами на Земле.

Функции мембранных структур выполняют выросты (впячивания) клеточной мембраны во внутрь цитоплазмы. Они бывают трубчатыми, пластинчатыми, иной формы. Ряд из них называют мезосомами. Фотосинтезирующие пигменты, дыхательные и другие ферменты располагаются на таких различных образованиях и таким образом выполняют свои функции.

У прокариот в центральной части клетки находится только одна большая хромосома (нуклеоид ), которая имеет кольцевое строение. В ее состав входит ДНК. Вместо белков, придающих форму хромосоме как у эукариот, здесь находится РНК. Хромосома не отделена от цитоплазмы мембранной оболочкой, поэтому говорят, что прокариоты - безъядерные организмы. Однако в одном месте хромосома прикреплена к клеточной мембране.

Кроме нуклеоида в строении прокариотических клеток отмечается наличие плазмид (малых хромосом также кольцевой структуры).

В отличие от эукариот цитоплазма прокариот неподвижна.

У прокариот есть рибосомы, однако они мельче рибосом эукариот.

Прокариотические клетки отличаются сложным строением своих оболочек. Кроме цитоплазматической мембраны (плазмалеммы), у них есть клеточная стенка, а также капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид).

На поверхности прокариот часто имеются жгутики (один или множество) и различные ворсинки.

С помощью жгутиков клетки перемещаются в жидкой среде. Ворсинки выполняют разные функции (обеспечивают несмачиваемость, прикрепление, переносят вещества, участвуют в половом процессе, образуя конъюгационный мостик).

Прокариотические клетки делятся бинарным делением. У них нет митоза и мейоза. Перед делением нуклеоид удваивается.

Прокариоты часто образуют споры, которые являются способом переживания неблагоприятных условий. Споры ряда бактерий сохраняют жизнеспособность при высокой и крайне низкой температурах. При образовании споры прокариотическая клетка покрывается толстой плотной оболочкой. Ее внутреннее строение несколько изменяется.

Строение эукариотической клетки

Клеточная стенка эукариотической клетки, в отличие от клеточной стенки прокариот состоит главным образом из полисахаридов. У грибов основным является азотсодержащий полисахарид хитин. У дрожжей 60–70% полисахаридов представлены глюканом и маннаном, которые связаны с белками и липидами. Функции клеточной стенки эукариот те же, что и у прокариот.

Цитоплазматическая мембрана (ЦПМ) также имеет трехслойную структуру. Поверхность мембраны имеет выпячивания, близкие к мезосомам прокариот. ЦПМ регулирует процессы обмена веществ клетки.

У эукариот ЦПМ способна захватывать из окружающей среды большие капли, содержащие углеводы, липиды и белки. Это явление называется пиноцитозом. ЦПМ эукариотической клетки способна также захватывать из среды твердые частицы (явление фагоцитоза). Кроме того, ЦПМ ответственна за выброс в среду продуктов обмена.

Рис. 2.2 Схема строения эукариотической клетки:

1 – клеточная стенка; 2 – цитоплазматическая мембрана;

3 – цитоплазма; 4 – ядро; 5 – эндоплазматическая сеть;

6 – митохондрии; 7 – комплекс Гольджи; 8 – рибосомы;

9 – лизосомы; 10 – вакуоли

Ядро отделено от цитоплазмы двумя мембранами, в которых имеются поры. Поры у молодых клеток открыты, служат они для миграции из ядра в цитоплазму предшественников рибосом, информационной и транспортной РНК. В ядре в нуклеоплазме имеются хромосомы, состоящие из двух нитевидных цепочных молекул ДНК, соединенных с белками. В ядре имеется также ядрышко, богатое матричной РНК и связанное со специфической хромосомой – ядрышковым организатором.

Основной функцией ядра является участие в размножении клетки. Это носитель наследственной информации.

В эукариотической клетке ядро – важнейший, но не единственный носитель наследственной информации. Часть такой информации содержится в ДНК митохондрии и хлоропластов.

Митохондрии – мембранная структура, содержащая две мембраны – наружную и внутреннюю, сильно складчатую. На внутренней мембране сосредоточены окислительно-восстанови-тельные ферменты. Основной функцией митохондрии является снабжение клетки энергией (образование АТФ). Митохондрии – саморепродуцирующая система, так как в ней имеется собственная хромосома – кольцевая ДНК и другие компоненты, которые входят в состав обычной прокариотической клетки.

Эндоплазматическая сеть (ЭС) – мембранная структура, состоящая из канальцев, которые пронизывают всю внутреннюю поверхность клетки. Бывает гладкой и шероховатой. На поверхности шероховатой ЭС располагаются рибосомы, более крупные, чем рибосомы прокариот. На мембранах ЭС расположены также ферменты, осуществляющие синтез липидов, углеводов и ответственных за транспорт веществ в клетке.

Комплекс Гольджи – пакеты уплощенных мембранных пузырьков – цистерн, в которых осуществляется упаковка и транспорт белков внутри клетки. В комплексе Гольджи происходит также синтез гидролитических ферментов (место образования лизосом).

В лизосомах сосредоточены гидролитические ферменты. Здесь происходит расщепление биополимеров (белков, жиров, углеводов).

Вакуоли отделены от цитоплазмы мембранами. В запасных вакуолях содержатся запасные питательные вещества клетки, а в шлаковых – ненужные продукты обмена и токсические вещества.

Самое очевидное отличие прокариот от эукариот заключается в наличии у последних ядра , что отражено в названии этих групп: «карио» с древнегреческого переводится как ядро, «про» — до, «эу» — хорошо. Отсюда прокариоты - это доядерные организмы, эукариоты - ядерные.

Однако это далеко не единственное и возможно не главное отличие прокариотических организмов от эукариот. В клетках прокариот вообще нет мембранных органоидов (за редким исключением) - митохондрий, хлоропластов, комплекса Гольджи, эндоплазматической сети, лизосом.

Их функции выполняют выросты (впячивания) клеточной мембраны, на которых располагаются различные пигменты и ферменты, обеспечивающие процессы жизнедеятельности.

У прокариот нет характерных для эукариот хромосом. Их основной генетический материал - это нуклеоид, обычно имеющий форму кольца. В эукариотических клетках хромосомы представляют собой комплексы ДНК и белков-гистонов (играют важную роль в упаковке ДНК). Эти химические комплексы называются хроматином. Нуклеоид прокариот не содержит гистонов, а форму ему придают связанные с ним молекулы РНК.

Хромосомы эукариот находятся в ядре. У прокариот нуклеоид находится в цитоплазме и обычно крепится в одном месте к мембране клетки.

Кроме нуклеоида в прокариотических клетках бывает разное количество плазмид - нуклеоидов существенно меньшего размера, чем основной.

Количество генов в нуклеоиде прокариот на порядок меньше, чем в хромосомах. У эукариот есть множество генов, выполняющих регуляторную функцию по отношению к другим генам. Это дает возможность эукариотическим клеткам многоклеточного организма, содержащим одну и ту же генетическую информацию, специализироваться; изменяя свой метаболизм, более гибко реагировать на изменения внешней и внутренней среды. Отличается и структура генов. У прокариот гены в ДНК располагаются группами - оперонами. Каждый оперон транскрибируется как единое целое.

Отличия прокариот от эукариот есть и в процессах транскрипции и трансляции. Самое главное заключается в том, что в прокариотических клетках эти процессы могут протекать одновременно на одной молекуле матричной (информационной) РНК: в то время как она еще синтезируется на ДНК, на готовом ее конце уже «сидят» рибосомы и синтезируют белок. В эукариотических клетках мРНК после транскрипции претерпевает так называемое созревание. И только после этого на ней может синтезироваться белок.

Рибосомы прокариот меньше (коэффициент седиментации 70S), чем у эукариот (80S). Отличается количество белков и молекул РНК в составе субъединиц рибосом. Следует отметить, что рибосомы (а также генетический материал) митохондрий и хлоропластов схожи с прокариотами, что может говорить об их происхождении от древних прокариотических организмов, оказавшихся внутри клетки-хозяина.

Прокариоты отличаются обычно более сложным строением своих оболочек. Кроме цитоплазматической мембраны и клеточной стенки у них также имеется капсула и другие образования, в зависимости от типа прокариотического организма. Клеточная стенка выполняет опорную функцию и препятствует проникновению вредных веществ. В состав клеточной стенки бактерий входит муреин (гликопептид). Среди эукариот клеточная стенка есть у растений (ее основной компонент - целлюлоза), у грибов - хитин.

Прокариотические клетки делятся бинарным делением. У них нет сложных процессов клеточного деления (митоза и мейоза) , характерных для эукариот. Хотя перед делением нуклеоид удваивается, так же как хроматин в хромосомах. В жизненном цикле эукариот наблюдается чередование диплоидной и гаплоидной фаз. При этом обычно преобладает диплоидная фаза. В отличие от них у прокариот такого нет.

Клетки эукариот различны по размерам, но в любом случае существенно крупнее прокариотических (в десятки раз).

Питательные вещества в клетки прокариот поступают только с помощью осмоса. У эукариотических клеток кроме этого может также наблюдаться фаго- и пиноцитоз («захват» пищи и жидкости с помощью цитоплазматической мембраны).

В целом отличие прокариот от эукариот заключается в однозначно более сложном строении последних. Считается, что клетки прокариотического типа возникли путем абиогенеза (длительной химической эволюции в условиях ранней Земли). Эукариоты появились позже от прокариотов, путем их объединения (симбиотическая, а также химерная гипотезы) или эволюции отдельно взятых представителей (инвагинационная гипотеза). Сложность клеток эукариот позволила им организовать многоклеточный организм, в процессе эволюции обеспечить все основное разнообразие жизни на Земле.

Таблица отличий прокариот от эукариот

ПризнакПрокариотыЭукариоты Клеточное ядро Мембранные органоиды Оболочки клетки Генетический материал Деление Многоклеточность Рибосомы Обмен веществ Происхождение
Нет Есть
Нет. Их функции выполняют впячивания клеточной мембраны, на которых располагаются пигменты и ферменты. Митохондрии, пластиды, лизосомы, ЭПС, комплекс Гольджи
Более сложные, бывают различные капсулы. Клеточная стенка состоит из муреина. Основной компонент клеточной стенки целлюлоза (у растений) или хитин (у грибов). У клеток животных клеточной стенки нет.
Существенно меньше. Представлен нуклеоидом и плазмидами, которые меют кольцевую форму и находятся в цитоплазме. Объем наследственной информации значительный. Хромосомы (состоят из ДНК и белков). Характерна диплоидность.
Бинарное деление клетки. Есть митоз и мейоз.
Для прокариот не характерна. Представлены как одноклеточными, так и многоклеточными формами.
Мельче Крупнее
Более разнообразный (гетеротрофы, фотосинтезирующие и хемосинтезирующие различными способами автотрофы; анаэробное и аэробное дыхание). Автотрофность только у растений за счет фотосинтеза. Почти все эукариоты аэробы.
Из неживой природы в процессе химической и предбиологической эволюции. От прокариот в процессе их биологической эволюции.

Эукариотических клеток

Наиболее сложная организация присуща эукариотическим клеткам животных и растений. Строение клеток животных и растений характеризуется принципиальным сходством, но форма, размеры и масса их чрезвычайно разнообразны и зависят от того, является ли организм одноклеточным или многоклеточным. Например, диа-томовые водоросли, эвгленовые, дрожжи, миксомицеты и простейшие являются одноклеточными эукариотами, тогда как организмы подавляющего большинства других типов являются многоклеточными эукариотами, количество клеток у которых составляет от нескольких (например, у некоторых гельминтов) до миллиардов (у млекопитающих) на организм. Организм человека состоит из около 10 различных клеток, которые различаются между собой по осуществляемым ими функциям.

В случае человека насчитывают более 200 типов разных клеток. Наиболее многочисленными клетками в организме человека являются эпителиальные клетки, среди которых различают орого-вевающие клетки (волос и ногтей), клетки, обладающие всасывательной и барьерной функциями (в желуд очно-кишечном тракте, мочеполовых путях, роговице, влагалище и других системах органов), клетки, выстилающие внутренние органы и полости (пневмо-циты, серозные клетки и многие другие). Различают клетки, обеспечивающие метаболизм и накопление резервных веществ (гепатоциты, жировые клетки). Большую группу составляют эпителиальные и соединительнотканные клетки, секретизирующие внеклеточный матрикс (амилобласты, фибробласты, остеобласты и другие) и гормоны, а также сократительные клетки (скелетных и сердечных мышц, радужной оболочки и других структур), клетки крови и иммунной системы (эритроциты, нейтрофилы, эозинофилы, базофилы, Т-лимфоциты и другие). Существуют также клетки, выполняющие роль сенсорных преобразователей (фоторецепторы, осязательные, слуховые, обонятельные, вкусовые и другие рецепторы). Значительное число клеток представлено нейронами и гли-альными клетками центральной нервной системы. Существуют также специализированные клетки хрусталика глаза, пигментные клетки и питающие клетки, далее следует назвать подовые клетки. Известны и многие другие типы клеток человека.

В природе не существует некой типичной клетки, ибо все они характеризуются чрезвычайным разнообразием. Тем не менее все эукариотические клетки существенно отличаются от прокариотических клеток по ряду свойств и прежде всего по объему, форме и размерам. Объем большинства эукариотических клеток превышает объем прокариотов в 1000-10 000 раз. Такой объем прокариотических клеток связан с содержанием в них различных органелл, осуществляющих всевозможные клеточные функции. Для эукариотических клеток характерно также наличие большого количества генетического материала, сосредоточенного в основном в относительно большом количестве хромосом, что обеспечивает им большие возможности в дифференцировке и специализации.

Не менее важной особенностью эукариотических клеток является то, что им присуща компартментализация, обеспеченная наличием внутренних мембранных систем. В результате этого многие ферменты локализуются в определенных компартментах. Например, почти все ферменты, катализирующие синтез белков в животных клетках, локализованы в рибосомах, тогда как ферменты, катализирующие синтез фосфолипидов, в основном сосредоточены на клеточной ци-топлазматической мембране. В отличие от прокариотических клеток в эукариотических клетках имеется ядрышко.

Эукариотические клетки по сравнению с прокариотическими обладают более сложной системой восприятия веществ из окружающей среды, без чего невозможна их жизнь. Существуют и другие различия между эукариотическими и прокариотическими клетками.

Форма клеток бывает самой разнообразной и часто зависит также от выполняемых ими функций. Например, многие простейшие имеют овальную форму, тогда как эритроциты являются овальными дисками, а мышечные клетки млекопитающих вытянуты. Размеры эукариотических клеток являются микроскопическими (табл. 3).

Некоторые виды клеток характеризуются значительными размерами. Например, размеры нервных клеток у крупных животных достигают нескольких метров в длину, а у человека - до 1 метра. Клетки отдельных тканей растений достигают нескольких миллиметров в длину.

Считают, что чем крупнее организм в пределах вида, тем крупнее его клетки. Однако для родственных видов животных, различающихся по размерам, характерны и сходные по размерам клетки. Например, у всех млекопитающих сходны по размерам эритроциты.

Клетки различаются также и по массе. Например, одиночная клетка печени (гепатоцит) человека весит 19-9 г.

Соматическая клетка человека (типичная эукариотическая клетка) представляет собой образование, состоящее из множества структурных компонентов микроскопических и субмикроскопических размеров(рис. 46).

Использование электронной микроскопии и других методов позволило установить чрезвычайное разнообразие в структуре как оболочки и цитоплазмы, так и ядра. В частности, был установлен мембранный принцип строения внутриклеточных структур, исходя из которого различают ряд структурных компонентов клетки, а именно.

Прокариотические клетки - это наиболее примитивные, очень просто устроенные, сохраняющие черты глубокой древности организмы. К прокариотическим (или доядерным) организмам относят бактерии и синезеленые водоросли (цианобактерии). На основании общности строения и резких отличий от других клеток прокариотические выделяют в самостоятельное царство дробянки.

Рассмотрим строение прокариотической клетки на примере бактерий. Генетический аппарат прокариотической клетки представлен ДНК единственной кольцевой хромосомы , находится в цитоплазме и не отграничен от нее оболочкой. Такой аналог ядра называют нуклеоидом. ДНК не образует комплексов с белками и поэтому все гены, входящие в состав хромосомы, "работают", т.е. с них непрерывно считывается информация.

Прокариотическая клетка окружена мембраной, отделяющей цитоплазму от клеточной стенки, образованной из сложного, высокополимерного вещества. В цитоплазме органелл мало, но присутствуют многочисленные мелкие рибосомы (бактериальные клетки содержат от 5000 до 50 000 рибосом).

Цитоплазма прокариотической клетки пронизана мембранами, образующими эндоплазматическую сеть, в ней и находятся рибосомы, осуществляющие синтез белков.

Внутренняя часть клеточной стенки прокариотической клетки представлена плазматической мембраной, выпячивания которой в цитоплазму образуют мезосомы, участвующие в построении клеточных перегородок, репродукции, и являются местом прикрепления ДНК. Дыхание у бактерий осуществляется в мезосомах, у сине-зеленых водорослей в цитоплазматических мембранах.

У многих бактерий внутри клетки откладываются запасные вещества: полисахариды, жиры, полифосфаты. Резервные вещества, включаясь в обмен веществ, могут продлевать жизнь клетки в отсутствие внешних источников энергии.

(1-клеточная стенка, 2-наружная цитоплазматическая мембрана, 3-хромосома(кольцевая молекула ДНК), 4-рибосома, 5-мезосома, 6-впячивание наружной цитоплазмотической мембраны, 7-вакуоли, 8-жгутики, 9-стопки мембран, в которых осуществляется фотосинтез)

Как правило, бактерии размножаются делением надвое. После удлинения клетки постепенно образуется поперечная перегородка, закладывающаяся в направлении снаружи внутрь, затем дочерние клетки расходятся или остаются связанными в характерные группы - цепочки, пакеты и т.д. Бактерия - кишечная палочка каждые 20 минут удваивает свою численность.

Для бактерий характерно спорообразование. Оно начинается с отшнуровывания части цитоплазмы от материнской клетки. Отшнуровавшаяся часть содержит один геном и окружена цитоплазматической мембраной. Затем вокруг споры вырастает клеточная стенка, нередко многослойная. У бактерий наблюдается половой процесс в форме обмена генетической информацией между двумя клетками. Половой процесс повышает наследственную изменчивость микроорганизмов.

Большинство живых организмов объединено в надцарство эукариот, включающих царство растений, грибов и животных. Эукариотические клетки крупнее прокариотических клеток , состоят из поверхностного аппарата, ядра и цитоплазмы.

Прокариоты или доядерные клетки - первые живые организмы на Земле. Несмотря на примитивное строение прокариотической клетки, бактерии, археи и цианобактерии смогли дожить до наших дней.

Компоненты

Прокариоты состоят из трёх компонентов:

  • оболочки;
  • цитоплазмы;
  • генетического материала.

Оболочку прокариот образуют три слоя:

  • плазмалемма - тонкая мембрана, покрывающая цитоплазму;
  • клеточная стенка - жёсткая наружная оболочка, содержащая белок муреин;
  • капсула - защитная структура, состоящая из полисахаридов или белков.

Капсула (слизистый слой, чехол) - необязательный компонент клетки. Образуется для защиты от неблагоприятных условий, например, высыхания или заморозков. Это дополнительный барьер, способный защитить клетку от вирусов (бактериофагов). У некоторых бактерий капсула служит дополнительным источником запаса веществ.

Рис. 1. Оболочка прокариот.

Цитоплазма прокариот - гелеобразное вещество, содержащее:

ТОП-2 статьи которые читают вместе с этой

  • неорганические вещества;
  • белки;
  • полисахариды;
  • метаболиты (продукты метаболизма).

Главной особенностью строения прокариотической клетки является отсутствие ядра. Генетическая информация в виде кольцевой ДНК хранится непосредственно в цитоплазме и образует нехарактерную для эукариотов структуру - нуклеоид.
Помимо нуклеоида в цитоплазме прокариот постоянно находятся:

  • рибосомы - структуры, состоящие из двух субъединиц, которые осуществляют биосинтез белка;
  • мезосома - складка плазмалеммы, осуществляющая репликацию ДНК и клеточное дыхание (аналог митохондрии);
  • органеллы движения - длинные жгутики, состоящие из белка флагеллина, и короткие пили, образованные белком пилином.

В цитоплазме помимо органелл могут находиться запасы веществ - включения:

  • гликоген;
  • крахмал;
  • волютин (метахроматин) - гранулы полифосфорной кислоты;
  • жировые капли;
  • сера.

Плазмиды - непостоянные структуры прокариот. Состоят из небольших отдельных молекул ДНК, которыми бактерии могут обмениваться в ходе горизонтального переноса генов.

Рис. 2. Органоиды доядерной клетки.

Деление

Прокариоты размножаются прямым или бинарным делением - амитозом. К этому процессу клетка никак не подготавливается. Деление начинается с удвоения кольцевой ДНК на мезосоме без образования хромосом.
Процесс условно можно разделить на две стадии:

  • кариокинез - репликация и расхождение ДНК;
  • цитокинез - разделение путём перетяжки всего содержимого клетки.

Каждой дочерней клетке достаётся по одному кольцу ДНК. Однако остальные структуры распределяются неравномерно.

Рис. 3. Деление бактерии.

ДНК бактерий, составляющая нуклеоид, может включать несколько миллионов нуклеотидов. Однако бактерии быстро приспосабливаются к неблагоприятным условиям благодаря постоянному обмену генами, находящимися в коротких ДНК плазмид.

Что мы узнали?

Из урока 10 класса узнали о строении и функциональном назначении органелл прокариотической клетки. К прокариотам относятся бактерии, цианобактерии и археи. Они не имеют ядра, генетическая информация располагается непосредственно в цитоплазме в виде спутанной структуры - нуклеоида. Помимо одной кольцевой ДНК в клетках могут находиться небольшие молекулы ДНК в виде плазмид. Прокариоты размножаются посредством амитоза и способны обмениваться генами.

Тест по теме

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 246.