Трехкамерное сердце с 1 общим желудочком встречается нечасто. J. Darsinos и соавт. наблюдали его у 2 извсех рожденных детей и из 369 детей, имевших врожденные пороки сердца (0,55%). Н. Bankl (1980) определил частоту нахождения одного желудочка по материаламвскрытий людей различного’ возраста (обнаружено 729 пороков сердца) у 15 (2%) среди всех врожденных пороков сердца. По А. П. Колесову, А. Б. Зорину (1983), этот порок встречается в 1% среди всех врожденных пороков сердца. Г. С. Кирьякулов (1969) при анатомическом изучении 75 препаратов сердца с врожденными пороками выявил 10 сердец с трехкамерным сердцем и одним желудочком у детей, умерших в возрасте от 16 дней до 9 лет. На 6 сердцах из 10 наблюдалась полная транспозиция аорты и легочного ствола. Межжелудочковая перегородка отсутствовала. Лишь на задней стенке общего желудочка имелся мышечный гребень, на котором располагались сосочковые мышцы. С общим желудочком обычно связан лишь один из магистральных стволов (чаще аорта) (рис. 112). Второй берет начало от небольшой бухты общего желудочка, которую обозначают [Константинов Б. А., 1965, Кирьякулов Г. С., 1969] как выпускник. Как правило, выходной путь из общего желудочка делится мышечным гребнем на 2 обособленных канала, один из которых ведет в аорту, другой в легочный ствол. При этом возможны различные соотношения между желудочком и артериями. Толщина общего желудочка достигала 21 мм.

А. П. Колесов, А. Б. Зорин (1983) в зависимости от анатомических особенностей и характера гемодинамики выделяют 5 форм трехкамерного сердца с единым желудочком: I - из выпускника (бухты общего желудочка) выходит гипоплазированная аорта, резко расширенный легочный ствол из общего желудочка; II - аорта и легочный ствол начинаются от общего желудочка; III - из выпускника выходит гипоплазированный легочный ствол, а из общего желудочка аорта (сердце Холмса); IV - легочный ствол и аорта берут начало из выпускника; V - сосочковые мышцы трехстворчатого клапана прикреплены к краям отверстия, ведущего в выпускник, от которого начинается гипоплазированный легочный ствол, аорта берет начало от общего желудочка (сердце Ламбера). При I форме, которая обнаруживается чаще всего - в 80% наблюдений, значительная часть крови проходит через малый круг кровообращения. Гиперволемия представляет условия для достаточного насыщения крови кислородом. Отмечается легочная гипертензия. При II-V формах, когда имеется стеноз легочного ствола, появляется гипоксемия большого круга кровообращения.

1 - правое и левое предсердия с предсердно-желудочковыми отверстиями; 2 - аорта; 3 - легочный ствол; 4 - «выпускник»; 5 - полость общего желудочка.

F. N. Ellis и соавт. (1959) наблюдали у таких больных общее атриовентрикулярное отверстие; Ch. Dubost, Ph. Blondeau (1963) - как общее предсердно-желудочковое отверстие, так и раздельные.

У кого трехкамерное сердце?

Рыбы имеют двухкамерное сердце.

Между ними существует огромный пласт существ с трёхкамерным сердцем. Это земноводные или рептилии.

Исключение составляет крокодил.

Это единственное земноводное с четырёхкамерным сердцем.

Сердце есть у всех животных, оно им жизненно необходимо для обеспечения кровотока по всему организму для транспортировки кислорода, различных питательных веществ. Но само строение сердца у разных существ различается.

По количеству камер в сердце лидируют млекопитающие (и крокодил), их у них целых четыре.

На втором месте с количеством камер сердца 3 находятся пресмыкающиеся и земноводные.

Трехкамерным сердцем обладают пресмыкающиеся и земноводные. Их сердце, в отличии от сердца рыб, получило перегородку между предсердиями, но вот желудочек сердца у них один, а не разделен на две половины, как в сердце млекопитающих и человека. Появлению перегородки земноводные и пресмыкающиеся обязаны своему выходу на сушу и соответственно появлением у них легких. У этих животных уже появился второй, легочный круг кровообращения, в то время как у рыб кровь через сердце шла напрямую к жабрам и только потом к органам тела. Второй круг кровообращения привел к появлению перегородки между предсердиями, а у крокодилов, как наиболее эволюционировавших пресмыкающихся даже к перегородке между желудочками - сердце у них четырехкамерное.

Обычно трехкамерное сердце есть у земноводных и пресмыкающихся, к ним относятся почти все рептилии: ящерицы, лягушки, вараны, жабы и так далее.

Но есть и исключение из правил, у крокодила (хотя он и является представителем рептилий) сердце четырехкамерное. Так, крокодил считается самым развитым из всех представителей рептилий.

Такой орган как сердце можно назвать самым главным органом - мотором для нашего организма. Именно сердце обеспечивает ток крови по нашим кровеносным сосудам. Так вот у человека имеется сердце с четырьмя камерами. А вот трёхкамерное сердце можно встретить у рептилий и у земноводных.

Сердце - это очень важный орган у всего живого на земле, оно обеспечивает ритмичный сокращенный ток крови по кровеносным сосудам.

Трёхкамерное сердце у всех земноводные и рептилий.

Сердце человека же состоит из четырех камер.

У рыб же сердце двухкамерное.

У земноводных: лягушки, ящерицы и им подобные

Кастинг во вселенной

4-х камерное сердце включает в себя левое предсердие и желудочек и правое предсердие и желудочек. Четырехкамерное сердце есть у птиц и млекопитающих, в том числе и у человека. Считается, что впервые четырёхкамерное сердце появилось у динозавров и примитивных млекопитающих. Единственное земноводное с 4-х камерным сердцем - крокодил. В дальнейшем такое строение сердца унаследовали прямые потомки динозавров - птицы и потомки примитивных млекопитающих - современные млекопитающие.

Считается, что самые первые четырехкамерные сердца появились на заре времён у динозавров, а затем эта особенность в ходе эволюции перешла к их прямым потомкам. Если говорить о земноводное виде, то следует отметить крокодила, потому что именно у него есть четырёх камерное сердце. В первую очередь это конечно же мы с вами, то есть люди имеют 4-х камерное сердце.

Топография сердца

Строение сердца у всех перечисленных особей очень похоже. У хордовых сердце - непарный орган. У моллюсков и членистоногих количество может меняться. Большинство вопросов получают ответ в течение 10 минут Войди и попробуй добавить свой вопрос. Палеонтологические находки позволяют сказать, что примитивные хордовые уже имеют некое подобие сердца.

Земноводные (амфибии) и пресмыкающиеся (рептилии или гады) уже имеют два круга кровообращения и сердце у них трёхкамерное (появляется межпредсердная перегородка). Единственная современная рептилия, имеющая хотя и неполноценное (межжелудочковая перегородка частично разделяет желудочек), но уже четырёхкамерное сердце - крокодил.

Иннервация сердца

Рептилии обладают четырёхкамерным сердцем, однако, желудочки объединены при помощи межжелудочкового отверстия. Через сердце человека в течение суток проходит отдолитров крови, за год около литров. В 2015 году ученые Калифорнийского университета в Беркли (США) создали уменьшенную копию человеческого сердца. На такой модели можно изучать все этапы развития сердца младенца в утробе матери.

Рентгеноанатомия сердца

Воздействия со стороны нервной системы оказывают лишь модулирующее влияние на автономную работу проводящей системы сердца. Под пороком понимают патологическое состояние сердца, в ходе которого наблюдаются дефекты клапанного аппарата, или его стенок, приводящие к сердечной недостаточности. ВПС) - дефект в структуре сердца и/или крупных сосудов, присутствующий с момента рождения.

Пороки сердца являются наиболее частыми врождёнными дефектами и являются основной причиной детской смертности от пороков развития. Являются результатом инфекционного поражения, воспаления или аутоиммунных реакций, перегрузки и дилатации (расширения) камер сердца. Однако окончательный диагноз выставляется по ЭКГ-признакам: отсутствие зубцов P, которые присутствуют при нормальном ритме сердца и характеризуют электрическую активность при сокращении предсердий.

Эндокардит (новолат.endocarditis; от др.-греч.ἔνδον - внутри, καρδία - сердце, + itis) - воспаление внутренней оболочки сердца - эндокарда. Проявления болезни складываются из симптомов инфекционного процесса, иммунных нарушений и признаков поражения клапанов сердца.

СЕРДЦЕ, центральный орган кровеносной системы, обеспечивающий кровообращение или циркуляцию гемолимфы. У членистоногих сердце трубчатое, в виде спинного сосуда, имеющего парные щелевидные отверстия (остии), через которые засасывается гемолимфа (сердце работает как откачивающий насос). Венозная кровь, нагнетаемая сердцем, поступает в жабры, где обогащается кислородом.

У костистых рыб артериальный конус редуцирован (не имеет мышечной ткани и клапанов), поэтому называется «артериальная луковица». Кровеносные системы зверей и птиц в школьных учебниках изложены очень близко к истине (всем остальным позвоночным, как мы видели, с этим не так повезло).

Закладка сердца появляется у зародыша 1,5 мм длиной в конце 2-й недели внутриутробного развития в виде двух эндокардиальных мешков, возникающих из мезенхимы. Рис. 139. Эмбриональное развитие сердца. Сердце, cor, представляет собой полый мышечный орган, имеющий неправильную коническую форму, уплощенную в передне-заднем направлении.

Птицы и млекопитающие

Задняя межжелудочковая борозда вблизи верхушки сердца соединяется с передней межжелудочковой бороздой, образуя на правом крае сердца верхушечную вырезку, incisura apicis cordis. Размеры сердца индивидуально различны. Предсердия принимают кровь, притекающую к сердцу, а желудочки, наоборот, выбрасывают ее в артерии.

Бесплатная помощь с домашними заданиями

Или помоги другим с ответом! Для небольших организмов не возникает проблемы с доставкой питательных веществ и удаления продуктов обмена из организма (достаточно скорости диффузии). Понятие «сердце» не применимо к червям и подобным живым организмам. Брюшная аорта рыб несёт кровь к жабрам, где происходит оксигенация (насыщение кислородом) и по спинной аорте кровь доставляется к остальным частям тела рыбы.

Двоякодышащие рыбы

У рыб септирование не происходит, в случае амфибий стенка образуется только между предсердиями. И только у птиц и млекопитающих развивается плёночная перегородка, которая закрывает межжелудочковое отверстие и отделяет левый желудочек от правого.

Аортальный клапан формируется между артериальным конусом (лат.conus arteriosus) левого желудочка и аортой, клапан лёгочной вены - между артериальным конусом правого желудочка и лёгочной артерией.

Также 4-х камерное сердце имеют птицы, млекопитающие, пресмыкающиеся. У пресмыкающихся сердце трёхкамерное (у крокодилов – четырёхкамерное). Также такое сердце есть и у рептилии (пресмыкающегося) - крокодила, но это условно, так как предсердия имеют между собой сообщение.

У каких земноводных трехкамерное сердце?

Одни и те же органы у разных видов могут отличаться строением и функциональностью. Наше собственное сердце имеет четыре отдельных камеры, в то время как лягушки, жабы, змеи и ящерицы могут обойтись всего тремя. Узнать о функциональности трехкамерных сердец можно в этой статье.

Классы позвоночных и камеры сердца

Позвоночные животные представлены различными классами: рыбы, земноводные, пресмыкающиеся, млекопитающие и птицы. У позвоночных сердце выполняет функцию перекачивания крови по всему телу это называется кровообращение. Хотя кровеносные системы во многом похожи, сердца позвоночных разных классов обладают разным количеством камер. Эти камеры определяют, насколько эффективно сердце разносит поток богатой кислородом крови и несёт назад к сердцу бедную кислородом.

Позвоночных можно разделить по количеству камер сердца:

  • Две камеры: одно предсердие и один желудочек (рыба)
  • Три камеры: два предсердия и один желудочек (земноводные, амфибии и рептилии)
  • Четыре камеры: двух предсердий и двух желудочков (птиц и млекопитающих)

Кровообращение

Самое жизненно важное вещество - кислород, поступает в кровь через жабры или лёгкие. Для достижения более эффективного использования кислорода, многие позвоночные имеют два отдельных этапа кровообращения: лёгочного и системного.

При камерном лёгочном кровообращении, сердце посылает кровь в лёгкие, чтобы обогатить кислородом. Процесс начинается в желудочке, оттуда, через лёгочные артерии поступает в лёгкие. Кровь возвращается из лёгких через лёгочные вены и впадает в левое предсердие. Оттуда она попадает в желудочек, где начинается большой круг кровообращения.

Круг кровообращения заключается в распределении богатой кислородом крови по всему телу. Желудочек нагнетает кровь через аорту, массивную артерию, которая ответвляется во всех частях тела. После того как доставляется кислород в органы и конечности, возвращается через вены, которые приводят её к нижней полой вене или верхней полой вене. Затем из этих двух основных вен попадает в правое предсердие. Оказавшись там, кровь, обеднённая кислородом, возвращается в малый круг кровообращения.

Сердце - это сложный насос и главный орган кровеносной системы, обеспечивающий обогащение организма кислородом.

Сердце состоит из камер: предсердия и желудочка. По одному с каждой стороны, каждый с различными функциями. Левая сторона обеспечивает системную циркуляцию, в то время как правая сторона сердца отвечает за лёгочное кровообращение, то есть за обогащение кислородом.

Предсердия

Предсердия - это камеры, через которые кровь поступает в сердце. Они находятся на передней стороны сердца, по одному предсердию с каждой стороны. В правое предсердие поступает венозная кровь через верхнюю полую вену и низкую полую вену. Левое получает обогащённую кислородом кровь из лёгких через левую и правую лёгочные вены.

Потоки крови попадают в предсердие, минуя клапаны. Предсердия расслабляются и расширяются, в то время, как они наполняются кровью. Этот процесс называется фибрилляцией диастолы, мы с вами называем это пульсом. Предсердия и желудочки разделены митральным и трехстворчатым клапаном. Предсердия проходят около предсердной систолы, создавая краткие сокращения предсердий. Они, в свою очередь, выталкивает кровь из предсердий через клапаны далее в желудочки. Эластичные сухожилия, которые крепятся к клапану желудочков расслабляются во время систолы, и переходят в диастолу желудочка, но клапан закрывается во время систолы желудочков.

Одна из определяющих характеристик предсердий заключается в том, что они не препятствуют венозному кровотоку в сердце. Венозная кровь, попадающая в сердце, имеет очень низкое давление по сравнению с артериальной кровью, и клапаны принимают на себя венозное кровяное давление. Предсердная систола является неполной и не блокирует поток венозной крови через предсердия в желудочки. Во время предсердной систолы, венозная кровь продолжает течь непрерывно через предсердия в желудочки.

Предсердные сокращения обычно незначительны, они лишь предотвращают значительное противодавление, которое препятствует венозной крови. Расслабление предсердий скоординировано с желудочком, чтобы начать расслабляться до начала сокращения желудочков, что помогает предотвратить слишком медленный пульс.

Желудочки

Желудочки находятся в задней части сердца. Желудочек получает кровь из правого предсердия и перекачивает её через лёгочную вену в малый круг кровообращения, который поступает в лёгкие для газообмена. Далее получает обогащённую кислородом кровь из левого предсердия и перекачивает её через аорту в большой круг кровообращения для снабжения тканей организма кислородом.

Стенки желудочков толще и крепче, чем у предсердий. Физиологические нагрузки, которые качают кровь по всему организму из лёгких, гораздо больше, чем давление, создаваемое для заполнения желудочков. Во время желудочковой диастолы, желудочек расслабляется и заполняется кровью. Во время систолы желудочек сокращаться и качает кровь через полулунные клапаны в системный кровоток.

Трехкамерное сердце

Люди иногда рождаются с врождёнными аномалиями, в виде единственного желудочка с двумя предсердиями. Рудиментарные части желудочковой перегородки могут присутствовать, но не работают. Заболевание называется порок сердца.

Единственный вид земноводных, кто имеет 4 камеры сердца - это обычный крокодил. Три камеры, то есть два предсердия и один желудочек есть у ряда животных.

В природе у амфибий и большинства рептилий предкамерное сердце и состоит из двух предсердий и одного желудочка. Эти животные также имеют раздельные цепи кровеносных сосудов, где за насыщение кислородом отвечают отдельные камеры, а венозная возвращается и впадает в правое предсердие. Оттуда, кровь проводится к желудочку, а затем перекачивается в лёгкие. После обогащения кислородом и освобождения от углекислого газа, кровь возвращается к сердцу и впадает в левое предсердие. Затем поступает в желудочек во второй раз и далее распределяется по организму.

Тот факт, что это холоднокровные животные, их организм не расходуют много энергии на производство тепла. Таким образом, пресмыкающихся и земноводные могут выжить с менее эффективными сердечным строением. Они также способны перекрыть поток в лёгочной артерии, чтобы отвлечь кровь к коже для кожного дыхания во время ныряния. Они также способны на шунтирование кровотока в системе лёгочной артерии во время погружения. Эта анатомическая функция считается наиболее сложной среди сердечного строения у позвоночных.

Все позвоночные животные как рыбы, земноводные, рептилии, птицы, млекопитающие используют кислород из воздуха (или растворенный в воде), чтобы эффективно извлекать энергию из пищи и выделяют углекислый газ, как продукт жизнедеятельности.

Любой организм должен доставить кислород во все органы и собрать углекислый газ. Мы знаем что эту специализированную систему называют кровеносной системой: она состоит из крови, они содержит клетки, которые несут кислород, кровеносные сосуды (трубки, через которые происходит приток крови), и сердце (насос который перекачивает кровь через кровеносные сосуды).

Хотя все думают что рыбы, имеют только жабры, стоит заметить что многие виды также имеют лёгкие. У многих рыб, кровеносная система - это относительно простой цикл. Сердце состоит из двух сократительных камер предсердия и желудочка. В этой системе кровь из тела поступает в сердце и перекачивается через жабры, где она обогащается кислородом.

Чтобы ответить на вопрос, как появился этот феномен, мы должны сначала понять что же стояло за формированием такой сложной формы сердца и кровеносной системы во время эволюции.

Около 60 миллионов лет, с начала Каменноугольного периода, и до конца юрского периода, амфибии были доминирующими наземными животными на Земле. Вскоре из-за примитивного строения они потеряли почётное место. Хотя среди различных семейств рептилий, которые произошли от земноводных изолированных групп, были более стойкие. Например, архозавры (которые в итоге превратились в динозавров) и терапсиды (в итоге эволюционировали в млекопитающих). Классической амфибией был головастый Eryops, имевшей в длину примерно четырнадцать метров от головы до хвоста и весил около двухсот килограмм.

Слово «амфибия» в переводе с греческого означает «оба вида жизни», и это в значительной степени подводит итог того, что делает этих позвоночными уникальными: они откладывают свои яйца в воде, т. к. им требуется постоянный источник влаги. А жить могут на суше.

Большой прогресс в эволюции позвоночных дал многим видам кровеносные и дыхательные системы, отличающиеся большой эффективностью. По этим параметрам земноводные, амфибии рептилии расположены в нижней части кислородно-дыхательной лестницы: их лёгкие имеют относительно малый внутренний объем и не может обработать так много воздуха, как лёгкие млекопитающих. К счастью, земноводные могут дышать через кожу, что в паре с трехкамерным сердцем позволяет им, хоть и с трудом, выполнять свои метаболические потребности.

Четырёхкамерное сердце у кого

Ответы и объяснения

Четырёхкамерное сердце, у птиц и у млекопитающих, в том числе и у человека. Единственное земноводное с 4-х камерным сердцем - крокодил.

  • GMS99
  • середнячок

Четырехкамерное сердце у крокодилов.КРОКОДИЛЫ- единственная репцилия,которая имеет такое сердце У них кстати в перегородке между жулудками есть небольшое отверстие и кровь достаточно часто смешивается.Именно поэтому крокодилы могут долго находится под водой.Еще говорят, что у лягущек четырехкамерное сердце, но вроде это не доказано(точно незнаю))

Сердце человека трехкамерное

Первое описание порока принадлежит Farre (1814). Частота этого порока сердца по клиническим данным составляет 1-3%, по патологоанатомическим данным - около 1,5% от всех ВПС.

При этой аномалии оба предсердия сообщаются через общий клапан или два раздельных предсердно-желудочковых клапана с общим желудочком, от которого отходят аорта и легочная артерия.

Имеется многообразие анатомических вариантов порока. Наиболее распространены 4 варианта трехкамерного сердца:

При I варианте единственный желудочек представлен миокардом левого желудочка;

При II типе порока весь миокард имеет строение правого желудочка;

Третий тип подразумевает строение миокарда как правого, так и левого желудочков, но межжелудочковая перегородка отсутствует или имеется ее рудимент;

Четвертый тип не имеет четкой дифференцировки миокарда.

Особенностью гемодинамики при трехкамерном сердце является смешение потоков артериальной и венозной крови в единственной желудочковой камере. Аорта и легочная артерия, отходящие непосредственно от желудочковой полости, имеют одинаковое системное давление, и с рождения у такого ребенка существует гипертензия малого круга кровообращения. Низкое сопротивление легочных сосудов у новорожденных детей приводит к значительной гиперволемии сосудов легких. В единственном желудочке происходит смешение большего объема оксигенированной крови с меньшим объемом венозной крови. Вначале артериальная гипоксемия у таких детей отсутствует или минимальна.

Клиническая картина вариабельна и зависит от сопутствующих дефектов развития и объема легочного кровотока. Трехкамерное сердце чаще диагностируется вскоре после рождения ребенка. В типичном случае после рождения появляются одышка, застойные хрипы в легких, тахикардия, увеличение печени, повторные пневмонии, задержка в нарастании массы тела. Примерно у 2/3 младенцев сразу после рождения появляется цианоз, который нерезко выражен, имеет голубоватый оттенок, с локализацией на губах, кончиках пальцев, усиливается при крике и физической нагрузке. Систолический шум негромкий или не выслушивается, второй тон сердца усилен и расщеплен.

При сочетании общего желудочка со стенозом легочной артерии цианоз появляется рано. Новорожденный страдает одышкой и быстро утомляется. Кардиомегалия варьирует от незначительной до умеренной. Выслушивается громкий шум систолического изгнания.

Диагностика трехкамерного сердца.

На ЭКГ часто определяются трудно дифференцируемые комплексы, однако среди них можно отметить неизмененные, заостренные или двугорбые зубцы Р. В некоторых случаях отмечаются признаки увеличения правого или обоих желудочков.

Полиморфизм электрокардиографических изменений связан с большим количеством анатомо-гемодинамических особенностей данного порока. Общим для большинства вариантов порока является высокий вольтаж комплексов QRS в стандартных и грудных отведениях, несоответствие между степенью гипертрофии желудочка и отклонением электрической оси сердца. Для I типа порока характерна гипертрофия обоих желудочков. При III типе порока преобладает гипертрофия правого желудочка. Характерны также различного вида нарушения ритма, атриовентрикулярные блокады.

На рентгенограмме определяется кардиомегалия. У всех новорожденных на фоне усиленного легочного кровотока отмечается увеличение тени сердца за счет правого желудочка и предсердия.

Если порок не сопровождается стенозом легочной артерии, то легочный рисунок усилен, главные ветви легочной артерии выбухают.

При стенозе легочной артерии легочный рисунок обеднен, тень сердца небольшая, имеется выбухание восходящей аорты по верхнему левому краю сердечной тени.

Двухмерная эхокардиография в проекции с верхушки дает возможность идентифицировать общую камеру с одним или двумя атриовентрикулярными клапанами, полость выпускника, транспозицию магистральных сосудов. Основным эхокардиографическим признаком порока является отсутствие эхосигнала от межжелудочковой перегородки. При имеющихся обоих предсердно-желудочковых клапанах митральный клапан расположен сзади, а трехстворчатый клапан - правее. Если имеется всего один клапан, то он занимает всю полость единственного желудочка.

Прогноз. Порок быстро заканчивается гибелью ребенка от прогрессирующей сердечной недостаточности, нарушений ритма сердца, вторичных бронхолегочных инфекций и прогрессирующей гипоксемии. Около 75% младенцев с этим пороком погибают на первом году жизни.

Коррекция. Возможна оперативная коррекция порока.

Будем рады вашим вопросам и отзывам:

Материалы для размещения и пожелания просим присылать на адрес

Присылая материал для размещения вы соглашаетесь с тем, что все права на него принадлежат вам

При цитировании любой информации обратная ссылка на MedUniver.com - обязательна

Вся предоставленная информация подлежит обязательной консультации лечащим врачом

Администрация сохраняет за собой право удалять любую предоставленную пользователем информацию

У кого однокамерное,двухкамерное, трехкамерное, четырехкамерное сердце?

  1. У рыб двухкамерное, у пресмыкающихся и земноводных имеется 3 камеры в сердце, четырехкамерное - человек, птицы и млекопитающе.
  • у людей и крокодилов-4камерное
  • двухкамерное -рыбы, трехкамерное-земнноводные, рептилии, четырехкамерное птицы, крокодилы, млекопитающие
  • Сердце у рыб двухкамерное, появляется клапанный аппарат и сердечная сумка.

    Земноводные и рептилии уже имеют два круга кровообращения и сердце у них трхкамерное (появляется межпредсердная перегородка) . Единственная современная рептилия, имеющая хотя и неполноценное (межпредсердиевая перегородка не полностью разделяет предсердия) , но уже четырхкамерное сердце крокодил. Считается, что впервые четырхкамерное сердце появилось у динозавров и примитивных млекопитающих. В дальнейшем такое строение сердца унаследовали прямые потомки динозавров птицы и потомки примитивных млекопитающих современные млекопитающие.

    Сердце всех хордовых обязательно имеет сердечную сумку (перикард) , клапанный аппарат. Сердца моллюсков также могут иметь клапаны, имеют перикард, который у брюхоногих обхватывает заднюю кишку. У насекомых и других членистоногих сердцами могут называть органы кровеносной системы в виде перистальтирующих расширений магистральных сосудов. У хордовых сердце непарный орган. У моллюсков и членистоногих количество может меняться. Понятие сердце не применимо к червям и т. п.

    править Сердце млекопитающих и птиц

    Сердце млекопитающих и птиц четырхкамерное.

    Двухкамерное сердце - причина внезапной смерти

    УДК 340.624.6-07: 616..21-079.6

    Сахалинское областное бюро судебномедицинской экспертизы (нач. А.Г. Денисова)

    Поступила в редакцию 6/VII 1965 г.

    Двухкамерное сердце - причина внезапной смерти / Теплухин М.В. // Судебно-медицинская экспертиза. - 1966. - №1. - С. 46.

    код для вставки на форум:

    Двухкамерное сердце - редкий порок. В доступной литературе мы нашли описание лишь единичных случаев (Я.В. Браул, 1932; Р.И. Кутилова и И.С. Караев, 1953; О.Ф. Салтыкова 1963). В описанных случаях двухкамерное сердце сочеталось с другими дефектами: врожденное отсутствие селезенки, обратное расположение внутренних органов. Редкость подобных наблюдений побудила нас описать случай из практики.

    Девочка в возрасте 7 месяцев умерла после 1 дня стационарного лечения при неясном диагнозе. После рождения первое время она производила впечатление обычного ребенка, однако, несмотря на достаточное грудное вскармливание до 6 месяцев, у нее прогрессивно нарастала гипотрофия. Ежемесячная прибавка веса составляла около 300 г.

    За сутки до смерти ребенок поступил в больницу с диагнозом: мелкоочаговая пневмония, кардио-васкулярный синдром, гипотрофия II степени. Никаких данных о пороке сердца не найдено. Через сутки он неожиданно умер.

    На секции: труп девочки резко пониженного питания. Вес 5800 г. Найдены незначительные явления мелкоочаговой пневмонии. Сердцешаровидное, размером 5×5×3,8 см, весом 115 г. Сосудистые стволы отходили от левого ребра сердца спереди, причем легочная артерия отходила от самого угла, а аорта - непосредственно над ней. Вены большого и малого круга каких-либо особенностей не имели. Предсердия представляли собой единую полость, перегороженную полупрозрачной «ленточкой» размером 2×15 мм, являющейся, очевидно, рудиментом межпредсердной перегородки, начинавшейся от хорошо выраженной заслонки нижней полой вены, сразу над заслонкой венечной пазухи.

    Вместо предсердно-желудочковых клапанов имелось единое кольцо, нечетко разделенное на 4 клапана, 2 из которых располагались над. межжелудочковой перегородкой спереди и сзади. Хордальными нитями они прикреплялись к 4 сосочковым мышцам (2 спереди и 2 слева) и непосредственно к стенкам желудочков. Сосочковые мышцы, за исключением левой передней, развиты слабо. Полости желудочков перегорожены: неполной межжелудочковой перегородкой; между последней и предсердно-желудочковыми клапанами оставался просвет шириной 1,4 см.

    Свободный верхний край межжелудочковой перегородки гладкий, блестящий, белесоватый, закруглен. Артериальный конус левого желудочка начинался в переднем отделе желудочка, а часть его лежала над межжелудочковой перегородкой. Мышечные стенки желудочков развиты одинаково, толщиной 1 см. Диаметр аорты и легочной артерии 1,5 см. Боталлов проток закрыт. Со стороны других внутренних органов отмечено резкое полнокровие.

    Мы полагаем, что имевшееся в нашем случае двухкамерное сердце со смещением аорты вправо явилось основной причиной общего недоразвития и смерти ребенка.

    Авторы

    Последние поступления в библиотеку

    Отравления муравьиной кислотой / Воронкова Л.Г., Царев В.И., Жарков Б.С. // Медицинская экспертиза и право. - 2010. - №2.

    Сообщество русскоговорящих судебно-медицинских экспертов

    Community of Russian-speaking forensic medical experts

    Трехкамерное сердце - клиническая анатомия сердца

    Трехкамерное сердце, cor triloculare, - довольно редкий врожденный порок. Он может наблюдаться в 2 формах: с 1 желудочком и 2 предсердиями, cor triloculare biatriatum, или с 1 предсердием: 2 желудочками, cor triloculare biventriculatum.

    Трехкамерное сердце с 1 общим желудочком встречается нечасто. J. Darsinos и соавт. наблюдали его у 2 извсех рожденных детей и из 369 детей, имевших врожденные пороки сердца (0,55%). Н. Bankl (1980) определил частоту нахождения одного желудочка по материаламвскрытий людей различного&rsquo- возраста (обнаружено 729 пороков сердца) у 15 (2%) среди всех врожденных пороков сердца. По А. П. Колесову, А. Б. Зорину (1983), этот порок встречается в 1% среди всех врожденных пороков сердца. Г. С. Кирьякулов (1969) при анатомическом изучении 75 препаратов сердца с врожденными пороками выявил 10 сердец с трехкамерным сердцем и одним желудочком у детей, умерших в возрасте от 16 дней до 9 лет. На 6 сердцах из 10 наблюдалась полная транспозиция аорты и легочного ствола. Межжелудочковая перегородка отсутствовала. Лишь на задней стенке общего желудочка имелся мышечный гребень, на котором располагались сосочковые мышцы. С общим желудочком обычно связан лишь один из магистральных стволов (чаще аорта) (рис. 112). Второй берет начало от небольшой бухты общего желудочка, которую обозначают [Константинов Б. А., 1965, Кирьякулов Г. С., 1969] как выпускник. Как правило, выходной путь из общего желудочка делится мышечным гребнем на 2 обособленных канала, один из которых ведет в аорту, другой в легочный ствол. При этом возможны различные соотношения между желудочком и артериями. Толщина общего желудочка достигала 21 мм.

    Интересное наблюдение опубликовал А. Ф. Грибовод (1955). Имелось трехкамерное сердце с атрезией двухстворчатого клапана, нарушениями порядка впадения полых и легочных вен и отхождением от общего желудочка одного артериального ствола.

    А. П. Колесов, А. Б. Зорин (1983) в зависимости от анатомических особенностей и характера гемодинамики выделяют 5 форм трехкамерного сердца с единым желудочком: I - из выпускника (бухты общего желудочка) выходит гипоплазированная аорта, резко расширенный легочный ствол из общего желудочка- II - аорта и легочный ствол начинаются от общего желудочка- III - из выпускника выходит гипоплазированный легочный ствол, а из общего желудочка аорта (сердце Холмса)- IV - легочный ствол и аорта берут начало из выпускника- V - сосочковые мышцы трехстворчатого клапана прикреплены к краям отверстия, ведущего в выпускник, от которого начинается гипоплазированный легочный ствол, аорта берет начало от общего желудочка (сердце Ламбера). При I форме, которая обнаруживается чаще всего - в 80% наблюдений, значительная часть крови проходит через малый круг кровообращения. Гиперволемия представляет условия для достаточного насыщения крови кислородом. Отмечается легочная гипертензия. При II-V формах, когда имеется стеноз легочного ствола, появляется гипоксемия большого круга кровообращения.

    Другим вариантом трехкамерного сердца является наличие единого предсердия с двумя желудочками. Оно наблюдается относительно редко. Так, G. С. Rastelli и соавт. (1968) сообщили о 15 больных с общим предсердием. S. Munoz-Armas и соавт. (1968) - о 4 больных, F. Ellis (1959) - о 5.

    Трехкамерное сердце с 1 предсердием сопровождается различными пороками развития и сердца, и сосудов. Множественное сочетание пороков при трехкамерном сердце наблюдалось в Институте хирургии им. А. В. Вишневского и описано Т. М. Дарбиняном и соавт. (1958).

    Рис. 112. Варианты отхождении артериальных стволов сердца (а, б, в) при наличии единственного желудочка и «выпускника» (по Г. С. Кирьякулову, 1969).

    1 - правое и левое предсердия с предсердно-желудочковыми отверстиями- 2 - аорта- 3 - легочный ствол- 4 - «выпускник»- 5 - полость общего желудочка.

    Больной 4 лет со сложным врожденным пороком сердца скончался после корректирующей порок операции. На вскрытии обнаружено сердце в положении мезокардии. Отсутствует межпредсердная перегородка и в общее предсердие впадают правая и левая печеночные вены. В левую половину общего предсердия входит венозный ствол, являющийся сохранившейся левой общей кардинальной веной, образованной левой верхней и левой нижней кардинальными венами. Ниже места впадения почек определяются 2 нижние кардинальные вены, сливающиеся в одну левую нижнюю кардинальную. Левый желудочек гипоплазирован (объем его 5 мл) и сообщается только с общим предсердием. Левое предсердно-желудочковое отверстие диаметром 4 мм имеет 2 створки, спаянные между собой. От правого желудочка отходят аорта и легочный ствол, имеющий подклапанное сужение до 2 мм в диаметре. Печень расположена слева, селезенка справа, кишечник, обычно.

    В наблюдениях, описанных G. С. Rastelli и соавт., диагноз был подтвержден во всех случаях при операциях. У 10 больных межпредсердная перегородка полностью отсутствовала, у 5 - оставалась небольшая полоска ткани в верхней стенке предсердия. У всех больных имелись 2 предсердно-желудочковых отверстия. У 13 человек наблюдалось полное расщепление передней створки левого предсердно-желудочкового клапана и у 2 - частичное. Перегородочная створка правого предсердно-желудочкового клапан» была недостаточной в передней части. У 7 больных имелась левая верхняя полая вена, которая у 4 соединялась с венечным синусом, у 2 впадала в общее предсердие и у 1 в правую верхнюю полую вену. Нижняя полая вена у 2 больных открывалась в непарную вену. Катетеризация у 11 больных выявила наличие праволевого сброса крови с десатурацией системной артериальной крови.

    S. Munoz-Armas и соавт. (1968) наблюдали 4 больных с полным отсутствием межпредсердной перегородки. У всех больных в правой стороне единого предсердия имелись структуры, характерные для правого предсердия, - пограничный гребень, гребенчатые мышцы, в левом - гладкие нетрабекулярные стенки. В 3 из 4 случаев были аномальные венозные связи - сохранившаяся левая верхняя полая вена открывалась в венечный синус, в 1 случае полунепарная вена открывалась в левую верхнюю полую вену. Предсердно-желудочковые отверстия и клапаны были нормальными.

    F. N. Ellis и соавт. (1959) наблюдали у таких больных общее атриовентрикулярное отверстие- Ch. Dubost, Ph. Blondeau (1963) - как общее предсердно-желудочковое отверстие, так и раздельные.

    Сердце человека трехкамерное

    Закладка сердца появляется у зародыша 1,5 мм длиной в конце 2-й недели внутриутробного развития в виде двух эндокардиальных мешков, возникающих из мезенхимы. Из висцеральной мезодермы формируются мио-эпикардиальные пластинки, которые окружают эндокардиальные мешки. Так возникают два зачатка сердца - сердечные пузырьки, лежащие в шейной области над желточным мешком. В дальнейшем оба сердечных пузырька смыкаются, их внутренние стенки исчезают, в результате чего образуется одна сердечная трубка. Из слоев сердечной трубки, образованных мио-эпикардиальной пластинкой, в дальнейшем формируются эпикард и миокард, а из эндокардиального слоя - эндокард. При этом сердечная трубка перемещается каудально и оказывается расположенной вентрально в вентральной брыжейке передней кишки и покрытой серозной оболочкой, образующей вместе с наружной поверхностью сердечной трубки околосердечную полость.

    Сердечная трубка соединяется с развивающимися кровеносными сосудами (см. раздел Кровеносная система, настоящего издания). В ее задний отдел впадают две пупочные вены, несущие кровь из ворсинчатой оболочки, а также две желточные вены, приносящие кровь из желточного пузыря. От переднего отдела сердечной трубки отходят две первичные аорты, которые формируют 6 аортальных дуг (см. раздел Кровеносная система, настоящего издания). Таким образом, кровь идет через трубку одним потоком.

    Развитие сердца проходит четыре основные стадии - от однокамерного до четырехкамерного (рис. 139).

    Рис. 139. Эмбриональное развитие сердца. а - три стадии развития наружной формы сердца; б - три стадии образования перегородок сердца

    Однокамерное сердце. Вследствие неравномерного роста сердечной трубки происходит формирование S-образного изгиба, что сопровождается изменением ее формы и положения. Первоначально нижний конец трубки перемещается кверху и кзади, а верхний конец - вниз и кпереди. У эмбриона 2,15 мм длиной (3-я неделя развития) в S-образном сердце можно различить четыре отдела: 1) венозный синус, в который впадают пупочные и желточные вены; 2) следующий за ним венозный отдел; 3) артериальный отдел, изогнутый в форме колена и располагающийся позади венозного; 4) артериальный ствол.

    Двухкамерное сердце. Венозный и артериальный отделы сильно разрастаются и между ними возникает глубокая перетяжка. Оба отдела соединяются только посредством узкого короткого канала, называемого ушковым и лежащего на месте перетяжки. Одновременно из венозного отдела являющегося общим предсердием, образуются два выроста - будущие сердечные ушки, которые охватывают артериальный ствол. Оба колена артериального отдела сердца срастаются друг с другом, разделявшая их стенка исчезает, в результате чего создается один общий желудочек. В венозный синус, кроме пупочных и желточных вен, впадают две общие вены, образованные слиянием передних и задних кардинальных вен. В двухкамерном сердце у эмбриона длиной 4,3 мм (4-я неделя развития) различав, ют: венозный синус, общее предсердие с двумя ушками, общий желудочек, сообщающийся с предсердием узким ушковым каналом, и артериальный ствол, ограниченный от желудочка небольшим сужением. В этой стадии развития существует лишь один большой круг кровообращения.

    Трехкамерное сердце. На 4-й неделе развития на внутренней поверхности общего предсердия появляется складка, растущая книзу и образующая у эмбриона длиной 7 мм (начало 5-й недели) перегородку, разделяющую общее предсердие на два: правое и левое. Однако в перегородке остается отверстие (овальное окно), через которое кровь из правого предсердия переходит в левое. Ушковый канал разделяется на два предсердно-желудочковых отверстия.

    Четырехкамерное сердце. У эмбриона длиной 8-10 мм (конец 5-й недели) в общем желудочке формируется растущая снизу вверх перегородка, разделяющая общий желудочек на два: правый и левый. Общий артериальный ствол также делится на два отдела: будущую аорту и легочный ствол, которые соединяются соответственно с левым и правым желудочками. Одновременно в артериальном стволе и его двух частях происходит формирование полулунных клапанов. В дальнейшем из правой общей кардинальной вены образуется верхняя полая вена. Левая общая кардинальная вена подвергается обратному развитию и преобразуется в венечный венозный синус сердца (см. раздел Кровеносная система, настоящего издания).

    Анатомическая характеристика сердца

    Сердце, cor, представляет собой полый мышечный орган, имеющий неправильную коническую форму, уплощенную в передне-заднем направлении. В нем различают основание, basis cordis, направленное кверху, кзади и вправо, и верхушку, apex cordis, обращенную кпереди, книзу и влево. Основание сердца представлено предсердиями и началом крупных кровеносных сосудов. Спереди в основании сердца расположены места выхода из него аорты и легочного ствола. В правой части основания находится место входа в сердце верхней полой вены, в задне-нижней- нижней полой вены, в левой части - левых легочных вен, а несколько правее - правых легочных вен. Перечисленные сосуды объединяются понятием сосуды корня сердца.

    Сердце имеет три поверхности: переднюю - грудино-реберную, fades ster nocostalis, нижнюю - диафрагмалъную, fades diaphragmatica, заднюю - медиастиналъную, fades mediastinalis, и два края: левый - закругленный, margo sinister, и правый - более острый, margo dexter.

    Грудино - реберная поверхность образована на большом протяжении правым желудочком и на меньшем - левым желудочком и предсердиями (рис. 140). Границей между желудочками является передняя межжелудочковая борозда, sulcus interventricularis anterior, а между желудочками и предсердиями - венечная борозда, sulcus coronarius. В бороздах располагаются сосудисто-нервные пучки: в передней межжелудочковой - передняя межжелудочковая ветвь а. соrоnаriae sinistrae и большая вена сердца, нервное сплетение и отводящие лимфатические сосуды. В передней части венечной борозды лежат правая венечная артерия, нервное сплетение и лимфатические сосуды.

    Рис. 140. Сердце (вид спереди). 1 - плече-головной ствол; 2 - верхняя полая вена; 8 - восходящая аорта; 4 - правая венечная артерия; 5 - правое ушко; 6 - правое предсердие; 7 - правый желудочек; 8 - верхушка сердца; 9 - передняя межжелудочковая ветвь левой венечной артерии; 10 - передняя межжелудочковая борозда; 11 - левое ушко; 12 - легочные вены; 13 - легочный ствол; 14 -дуга аорты; 15 - левая подключичная артерия; 16 - левая общая сонная артерия

    Диафрагмальная поверхность обращена вниз к диафрагме. Она составлена главным образом левым желудочком, частично правым желудочком и небольшим участком правого предсердия. На диафрагмальной поверхности оба желудочка граничат друг с другом по задней межжелудочковой борозде, sulcus interventricularis posterior, в которой проходят задняя межжелудочковая ветвь a. coronariae dextrae, средняя вена сердца, нервы и лимфатические сосуды. Задняя межжелудочковая борозда вблизи верхушки сердца соединяется с передней межжелудочковой бороздой, образуя на правом крае сердца верхушечную вырезку, incisura apicis cordis. Предсердия от желудочков на диафрагмальной поверхности отделены задней частью венечной борозды, в которой находятся, правая венечная артерия, окружающая ветвь a. coronariae sinistrae, венечная венозная пазуха и малая вена сердца.

    Медиастинальная поверхность является задней, она прилежит к органам средостения и образована обеими предсердиями. Предсердия здесь хорошо отграничены друг от друга межпредсердной бороздой, sulcus interatrialis.

    Размеры сердца индивидуально различны. Длина сердца у взрослого колеблется от 10 до 15 см (чащесм), ширина сердца в его основании 8-11 см (чаще 9-10 см) и передне-задний размер 6-8,5 см (чаще 6,5-7 см). Вес сердца достигаетг, составляя примерно 0,5% от общего веса тела.

    У детей до 1 года длина сердца 3-4,5 см, ширина 3-5 см, передне-задний размер 2-3 см. Сердце имеет шарообразную форму. Его вес увеличивается враз.

    Сердце состоит из 4 камер: 2 предсердий и 2 желудочков. Предсердия принимают кровь, притекающую к сердцу, а желудочки, наоборот, выбрасывают ее в артерии. В правое предсердие кровь поступает из вен большого круга кровообращения и вен сердца. Правый желудочек перегоняет кровь в малый круг кровообращения, находящийся в легких, где она очищается и обогащается кислородом. Из легких кровь оттекает в левое предсердие, далее в левый желудочек, который посылает ее по всему телу в большой круг кровообращения (рис. 141).

    Рис. 141. Полости сердца. 1 - верхняя полая вена; 2 - правый желудочек; 3 - легочный ствол (рассечен и отвернут); 4 - легочные вены; 5 - левый желудочек; 6 - ветви дуги аорты

    Правое предсердие, atrium dexter, имеет кубическую форму. Внизу оно сообщается с правым желудочком посредством правого предсердно-желудочкового отверстия, ostium atrioventricularе dextrum, которое имеет правый или трехстворчатый предсердно-желудочковый клапан, valva atrioventricularis dextra s. valva tricuspidalis, пропускающий кровь из правого предсердия в правый желудочек и препятствующий ее обратному поступлению. Кпереди предсердие образует полый отросток, правое сердечное ушко, auricula dextra. Внутренняя поверхность правого ушка имеет ряд возвышений - мясистых перекладин, образованных пучками гребенчатых мышц. На наружной стенке предсердия гребенчатые мышцы оканчиваются, образуя возвышение - пограничный гребень, crista terminalis, которому на наружной поверхности сердца соответствует пограничная борозда, sulcus terminalis.

    Внутренняя стенка предсердия - межпредсердная перегородка, septum interatriale, гладкая. В центре ее имеется углубление почти круглой формы диаметром до 2,5 см - овальная ямка, fossa ovalis. Край ее, limbus fossae ovalis, утолщен, особенно спереди и сверху. Дно ямки образовано, как правило, двумя листками эндокарда. У эмбриона на месте овальной ямки имеется овальное отверстие, foramen ovale, сообщающее оба предсердия. Нередко овальное отверстие к моменту рождения не зарастает и остается функционирующим, обусловливая смешение артериальной и венозной крови. Такой порок устраняется хирургическим путем.

    Сзади в правое предсердие впадают вверху верхняя полая вена, v. cava superior, и внизу - нижняя полая, v. cava inferior. Устье нижней полой вены ограничено полулунной заслонкой, valvula venae cavae inferiores, представляющей собой складку эндокарда шириной до 1 см. Заслонка нижней полой вены у зародыша направляет струю крови к овальному отверстию. Между устьями полых вен стенка правого предсердия выпячивается и образует синус полых вен, sinus venarum cavarum. На внутренней поверхности предсердия между устьями полых вен имеется возвышение - межвенозный бугорок, tuberculum intervenosum. В задне-нижне-левую часть предсердия впадает венечная венозная пазуха сердца, sinus coronarius, имеющая небольшую заслонку, valvula sinus coronarii. Емкость правого предсердия взрослого колеблется в пределахсм 3 , толщина стенки составляет 2-3 мм.

    Правый желудочек, ventriculus dexter, имеет форму трехгранной пирамиды, обращенной основанием кверху. Соответственно форме он имеет три стенки: переднюю, заднюю и внутреннюю - межжелудочковую перегородку, septum interventricular е. В желудочке выделяют две части: собственно желудочек и правый артериальный конус, conus arteriosus dexter, расположенный в верхней левой части желудочка и продолжающийся в легочный ствол.

    Внутренняя поверхность желудочка неровная вследствие образования идущих в различных направлениях мясистых перекладин, trabeculae соrпеае. Очень слабо выражены перекладины на внутренней стенке - межжелудочковой перегородке.

    Вверху желудочек имеет два отверстия: 1) справа и сзади - правое предсердно-желудочковое, ostium atrioventricularе dextrum; 2) спереди и слева - отверстие легочного ствола, ostium trunci pulmonalis, содержащие клапаны (рис. 142).

    Рис. 142. Фиброзные кольца и клапаны сосудов корня сердца. 1 - передняя полулунная заслонка легочного ствола; 2 - правая полулунная заслонка легочного ствола; 3 - левая полулунная заслонка легочного ствола; 4 - артериальный конус; 5 - правая полулунная заслонка аорты; 6 - левая полулунная заслонка аорты; 7 - задняя полулунная заслонка аорты; 8 - устье правой венечной артерии; 9 - правый желудочек; 10 - левый желудочек; 11 - перегородочная створка правого предсердно-желудочкового клапана; 12 - передняя створка; 13 - задняя створка; 14 - фиброзное кольцо правого предсердно-желудочкового отверстия; 15 - большая вена сердца; 16 - правый фиброзный треугольник; 17 - левый фиброзный треугольник; 18 - левое фиброзное кольцо; 19 - передняя створка левого предсердно-желудочкового клапана; 20 - задняя створка левого предсердно-желудочкового клапана

    Предсердно-желудочковые клапаны состоят из: 1) волокнистых колец; 2) створок, cuspes, прикрепляющихся своим основанием на волокнистых кольцах предсердно-желудочковых отверстий, а свободными краями обращенных в полость желудочка; 3) сухожильных струн, chordae tendineae, идущих от свободных краев створок к стенке желудочка - к сосочковым мышцам или мясистым перекладинам; 4) сосочковых мышц, musculi papillares, образованных внутренним слоем миокарда желудочков (см. рис. 144).

    Створки представляют собой складки эндокарда. В правом предсердно-желудочковом клапане их три. Поэтому данный клапан называется трехстворчатым. Различают створки по месту их прикрепления: переднюю, cuspis anterior, заднюю, cuspis posterior, и перегородочную, cuspis septalis. Возможно и большее количество створок.

    Сухожильные струны - тонкие фиброзные образования, идущие в виде нитей от края створок к верхушкам сосочковых мышц или к мясистым перекладинам. В ходе от сосочковых мышц к створкам каждая струна разделяется на несколько нитей.

    Сосочков ые мышцы различаются по месту расположения. В правом желудочке их обычно бывает три: передняя, musculus papillaris anterior, задняя, musculus papillaris posterior, и перегородочная, musculus papillaris septalis. Количество мышц, как и створок, может быть увеличенным.

    Клапан легочного ствола, valva trunci pulmonalis, препятствует обратному току крови из легочного ствола в желудочек. Он состоит из трех полулунных заслонок, valvulae semilunares: передней, правой и левой. По середине каждой полулунной заслонки имеются утолщения - узелки, поduli valvularium semilunar ium, способствующие более герметичному смыканию створок. Емкость правого желудочка у взрослыхсм 3 , толщина стенки в верхней части 5-8 мм, в нижнеймм.

    Левое предсердие, atrium sinistrum, так же как и правое, кубической формы, образует слева вырост - левое сердечное ушко, auricula sinistra. Внутренняя поверхность стенок предсердия гладкая, за исключением стенок ушка, где имеются валики гребенчатых мышц. На задней стенке расположены устья легочных вен (по две справа и слева), между которыми имеется небольшое углубление - венозная пазуха легочных вен, sinus venarum pulmonalium.

    На межпредсердной перегородке со стороны левого предсердия также заметна овальная ямка, но она выражена здесь менее отчетливо, чем в правом предсердии. Левое ушко более узкое и длинное, чем правое, и отграничено от предсердия хорошо выраженным перехватом.

    Емкость левого предсердиясм 3 , толщина стенки 2-3 мм.

    Левый желудочек, ventriculus sinister, конической формы с основанием, обращенным кверху, имеет три стенки: переднюю, заднюю и внутреннюю - межжелудочковую перегородку. Передняя и задняя стенки из-за закругленности левого края сердца не имеют резкого разграничения. Вверху располагаются два отверстия: 1) слева и спереди - левое предсердно-желудочковое, ostium atrioventricularе sinistrum; 2) справа и сзади - отверстие аорты, ostium aortae, которые, как и в правом желудочке, содержат соответствующий клапанный аппарат: valva atrioventricular sinistra et valva aortae.

    Ближайший к отверстию аорты участок желудочка называется левым артериальным конусом, conus arteriosus sinister. Внутренняя поверхность желудочка, за исключением перегородки, имеет многочисленные мясистые перекладины, более тонкие, чем в правом желудочке.

    Левый предсердно-жёлудочковый клапан содержит обычно две створки и две сосочковые мышцы - переднюю и заднюю. Ввиду этого левый клапан называется двустворчатым, valvula bicuspidalis. Как створки, так и мышцы крупнее, чем в правом желудочке.

    Клапан аорты, valva aortae, образован наподобие клапана легочного ствола тремя полулунными заслонками - задней, правой и левой. Начальная часть аорты в месте расположения клапана слегка расширена и имеет три углубления - аортальные пазухи (синусы), sinus aortae. Емкость левого желудочка определяется от 140 до 220 см 3 , толщина стенки,5 см.

    Топография сердца

    Сердце находится в нижнем отделе переднего средостения в околосердечной сорочке между листками мёдиастинальной плевры. По отношению к средней линии тела сердце располагается несимметрично: около 2/3 сердца - слева от нее, а около 1/3 - справа. Продольная ось сердца (от середины основания к верхушке) идет косо сверху вниз, справа налево и сзади наперед. В полости перикарда сердце как бы подвешено на сосудах его корня. Поэтому основание сердца является наименее подвижной его частью, а верхушка может смещаться.

    Положение сердца бывает различным: поперечное, косое или вертикальное. Вертикальное положение чаще встречается у людей с узкой и длинной грудной клеткой, поперечное - у лиц с широкой и короткой грудной клеткой и высоким стоянием купола диафрагмы.

    У живого человека можно определить границы сердца методом перкуссии, а также путем рентгенографии. При этом на переднюю грудную стенку проецируется фронтальный силуэт сердца, соответствующий его передней поверхности и крупным сосудам. Различают правую, левую и нижнюю границы сердца (рис. 143).

    Рис. 143. Проекция на переднюю поверхность грудной стенки сердца, створчатых и полулунных клапанов. 1 - проекция легочного ствола; 2 - проекция левого предсердно-желудочкового (двустворчатого) клапана; 3 - верхушка сердца; 4 - проекция правого предсердно-желудочкового (трехстворчатого) клапана; 5 - проекция полулунного клапана аорты. Стрелками показаны места выслушивания левого предсердно-желудочкового и аортального клапанов

    Правая граница сердца, в верхней своей части соответствующая правой поверхности верхней полой вены, проходит от верхнего края II ребра у места прикрепления его к грудине до верхнего края III ребра на 1-1,5 см от правого края грудины. Нижняя часть правой границы соответствует краю правого предсердия и проходит от III до V ребра в виде дуги, отстоящей от правого края грудины на 1-2 см. На уровне V ребра правая граница переходит в нижнюю.

    Нижняя граница образована краем правого и частично левого желудочков и идет косо вниз и влево, пересекая грудину над основанием мечевидного отростка, к VI межреберному промежутку слева и далее, пересекая хрящ VI ребра, достигает V межреберного промежутка на 1,5-2 см кнаружи от linea medioclavicularis.

    Левая граница составляется дугой аорты, легочным стволом, левым сердечным ушком и левым желудочком. Она проходит от нижнего края I ребра у места прикрепления его к грудине слева до верхнего края II ребра на 1 см левее от края грудины (соответственно проекции дуги аорты), далее на уровне II межреберного промежутка на 2-2,5 см кнаружи от левого края грудины (соответственно легочному стволу). Продолжение этой же линии на уровне III ребра соответствует левому сердечному ушку, от нижнего края III ребра на 2-2,5 см влево от края грудины левая граница проходит выпуклой кнаружи дугой к V межреберному промежутку на 1,5-2 см кнаружи от linea medioclavicularis, соответствуя краю левого желудочка.

    Устья аорты и легочного ствола и их клапаны проецируются на уровне III межреберного промежутка: аорты - позади левой половины грудины, а легочного ствола у левого ее края. Предсердно-желудочковые отверстия проецируются по линии, проводимой от места прикрепления V правого реберного хряща к грудине к месту прикрепления III левого хряща. Проекция правого предсердно-желудочкового отверстия занимает правую половину этой линии, левого - левую.

    Сердце со всех сторон непосредственно прилежит к околосердечной сорочке и только через нее имеет отношение к окружающим его органам. Грудино-реберная поверхность сердца прилежит частично к грудине и хрящам левых II-V ребер. Передняя поверхность сердца большей частью соприкасается с медиастинальной плеврой и передними реберно-медиастинальными плевральными синусами. Нижняя, диафрагмальная, поверхность сердца прилежит к диафрагме. Задняя, медиастинальная, поверхность соприкасается с главными бронхами, пищеводом, нисходящей аортой и легочными артериями.

    Строение стенки сердца

    Стенка сердца состоит из трех слоев: 1) внутренностной пластинки околосердечной сумки - эпикарда, epicardium; 2) мышечной оболочки - миокарда, myocardium; 3) внутренней оболочки - эндокарда, endocardium.

    Эпикард является серозной оболочкой. Он тонок и состоит из нескольких слоев соединительной ткани, покрытых с поверхности мезотелием. В эпикарде располагаются сосудистые и нервные сети.

    Миокард составляет главную массу стенки сердца, достигая 7/10 всей ее толщины. Он состоит из поперечнополосатых мышечных волокон особого строения. Мускулатура желудочков полностью отделена от мускулатуры предсердий правым и левым волокнистыми кольцами, anuli fibrosi, находящимися между предсердиями и желудочками и ограничивающими предсердно-желудочковые отверстия. Внутренние полуокружности волокнистых колец переходят в волокнистые треугольники, trigona fibrosa.

    От волокнистых колец и треугольников начинаются мышечные слои сердца (рис. 144).

    Рис. 144. Направление мышечных пучков в различных слоях миокарда. Левый желудочек. 1 - поверхностный продольный слой миокарда; 2 - внутренний продольный слой миокарда; 3 - ‘водоворот’ сердца; 4 - створки левого предсердно-желудочкового клапана; 5 - сухожильные хорды; 6 - круговой средний слой миокарда; 7 - сосочковая мышца

    Мышечная оболочка предсердий состоит из поверхностного - поперечного и глубокого - петлеобразного слоя, идущего почти вертикально. Глубокий слой образует кольцевые утолщения в устьях крупных сосудов. Петлеобразные пучки выпячиваются в полость предсердий и ушек и называются гребенчатыми мышцами, mm. ресtinati.

    Мышечная оболочка желудочков слагается из трех слоев: наружного - продольного, среднего - циркулярного и внутреннего - продольного. Наружный и внутренний слои являются общими для обоих желудочков и переходят непосредственно в области верхушки сердца друг в друга. Круговые мышцы формируют как общие, так и изолированные слои отдельно для левого и правого желудочков. Внутренний слой образует мясистые перекладины и сосочковые мышцы. Межжелудочковая перогородка сформирована на большем протяжении мышцами (pars muscularis), а вверху на небольшом участке - соединительнотканной пластинкой, покрытой с двух сторон эндокардом (pars membranacea).

    В миокарде имеется особая система волокон, обладающих способностью проводить импульсы от нервного аппарата ко всем мышечным слоям сердца и координировать последовательность сокращения стенки камер сердца. Эти специализированные мышечные волокна составляют проводящую систему сердца, которая состоит из узлов и пучков (рис. 145).

    Рис. 145. Проводящая система сердца. 1 - синусно-предсердный узел; 2 - предсердно-желудочковый узел; 3 - предсердно-желудочковый пучок; 4 - левая и правая ножки ствола предсердно-желудочкового пучка; 5 - волокна левой и правой ножек предсердно-желудочкового пучка; 6 - верхняя полая вена; 7 - венечный синус сердца; 8 - нижняя полая вена; 9 - межжелудочковая перегородка; 10 - правый желудочек; 11 - левый желудочек; 12 - правое предсердие; 13 - левое предсердие; 14 - предсердно-желудочковые клапаны

    Синусно-предсердный узел, nodus sinuatrialis, залегает в стенке правого предсердия между правым ушком и верхней полой веной. Узел имеет в диаметре 1-2 мм, от него отходят пучки, идущие в миокард предсердий, к устьям полых вен, а также к предсердно-желудочковому узлу.

    Предсердно - желудочковый узел, nodus atrioventricular is, лежащий в заднем отделе межпредсердной перегородки, овальной формы, длиной до 5 мм и шириной до 4 мм. От него отходит в межжелудочковую перегородку предсердно-желудочковый пучок, fasciculus atrioventricularis, имеющий в длину до 8 мм. Предсердно-желудочковый пучок делится в перегородке на правую, crus dextrum, и левую, crus sinistrum, ножки, лежащие под эндокардом или в толще мышечного слоя перегородки вблизи ее поверхностей, обращенных в полости соответствующих желудочков. Левая ножка пучка последовательно делится на ряд ветвей до очень тонких пучков, переходящих в миокард, правая ножка, более тонкая, идет почти до верхушки сердца, где, разделяясь, переводит в миокард. В нормальных условиях автоматический режим сердечных сокращений возникает в синусно-предсердном узле. Импульсы из узла распространяются по его пучкам к мышцам предсердий, до предсердно-желудочкового узла и далее по предсердно-желудочковому пучку, его ножкам и ветвям на мышцы желудочков. Распространение возбуждения происходит сферически с внутренних слоев миокарда на наружные.

    Эндокард выстилает полость сердца, включая сосочковые мышцы, сухожильные струны, трабекулы и клапаны. В желудочках эндокард тоньше, чем в предсердиях. Он состоит, как и эпикард, из нескольких слоев соединительной ткани, покрытых эндотелием. Створки клапанов представляют собой складки эндокарда, в которых находится соединительнотканная прослойка.

    Артерии сердца

    Кровоснабжение сердца осуществляется, как правило, двумя венечными артериями - левой и правой, аа. coronariae sinistra et dextra, берущими начало от восходящей аорты в верхних отделах передних аортальных синусов (рис. 146). Редко бывает большее количество венечных артерий - 3-4.

    Рис. 146. Кровеносные сосуды сердца. а - вид спереди: 1 - верхняя полая вена; 2, 6 - дуга аорты; 3 - плече-головной ствол; 4 - левая общая сонная артерия; 5 - левая подключичная артерия; 7 - левые легочные вены; 8 - левое предсердие; 9 - левая венечная артерия; ю - левое ушко; 11 - большая вена сердца; 12 - левый желудочек; 13 - нисходящая аорта; 14 - нижняя полая вена; 15 - правая и левая печеночные вены; 16 - правый желудочек; 17 - правое предсердие; 18 - правая венечная артерия; 19 - правое ушко; 20 - артериальный конус. б - вид сзади: 1 - левая подключичная артерия; 2 - левая общая сонная артерия; 3 - плече-головной ствол; 4 - непарная вена; 5 - верхняя полая вена; 6 - правая легочная артерия; 7 - правые легочные вены; 8 - правое предсердие; 9 - нижняя полая вена; 10 - малая вена сердца; 11 - правая венечная артерия; 12 - задняя межжелудочковая ветвь правой венечной артерии; 13 - средняя вена сердца; 14 - левый желудочек; 15 - венечный синус сердца; 16 - большая вена сердца; 17 - левые легочные вены; 18 - левая легочная артерия; 19 - артериальная связка; 20 - дуга аорты

    Левая венечная артерия по отхождении от аорты ложится в венечную борозду и между легочным стволом и левым ушком разделяется на две ветви: тонкую - переднюю межжелудочковую, ramus interventricularis anterior, и более крупную - левую окружающую ветвь, ramus circujnflexus sinister. Первая идет вместе с большой веной сердца в одноименной борозде на передней поверхности сердца до верхушки, где соединяется с задней межжелудочковой ветвью правой венечной артерии. Левая окружающая ветвь проходит в венечной борозде, где ее конечная часть анастомозирует с ветвью правой венечной артерии.

    Правая венечная артерия проходит от аорты вправо и назад и отдает заднюю межжелудочковую ветвь, ramus interventricularis posterior.

    Главные ветви обеих венечных артерий отдают вторичные ветви, среди которых выделяют артерии предсердий, аа. atriales, сердечных ушек, аа. auriculares, артерии желудочков, аа. ventriculares, переднюю и заднюю артерии перегородок, аа. septi anterior et posterior, сосочковых мышц, аа. papillares. Указанные ветви венечных артерий разветвляются и образуют за счет множественных анастомозов единое интрамуральное русло с сетями артерий, расположенных во всех слоях стенки сердца (рис. 147).

    Рис. 147. Рентгенограмма артерий сердца (по Р. А. Бардиной)

    Левая венечная артерия снабжает кровью левое предсердие, всю переднюю и большую часть задней стенки левого желудочка, часть передней стенки правого желудочка и передние 2/3 межжелудочковой перегородки. Правая венечная артерия васкуляризирует правое предсердие, часть передней и всю заднюю стенку правого желудочка, небольшой участок задней стенки левого желудочка, межпредсердную и заднюю треть межжелудочковой перегородки.

    Однако подобное распределение ветвей артерий бывает не всегда. Выделяют три типа кровоснабжения сердца: левовенечный - с преобладанием зоны снабжения левой венечной артерией, правовенечный - с преобладанием зоны снабжения правой венечной артерией, и равномерный, при котором зоны ветвления обеих артерий приблизительно одинаковы.

    Кроме венечных артерий, кровоснабжение сердца частично может происходить за счет иногда встречающихся дополнительных артерий, подходящих к сердцу на его медиастинальной поверхности, а также a. thoracica interna по анастомозам между артериями околосердечной сорочки и артериями сердца.

    Вены сердца

    Отток венозной крови из вен стенки сердца происходит в основном в венечную пазуху, sinus coronarius, впадающую непосредственно в правое предсердие. В меньшей степени кровь оттекает непосредственно в правое предсердие через передние вены сердца, vv. cordis anteriores, и через венозные выпускники, называемые наименьшими венами, vv. cordis minimae (см. рис. 146).

    Венечная пазуха формируется из слияния следующих вен: 1) большой вены сердца, v. cordis major, собирающей кровь из передних участков сердца и идущей по передней межжелудочковой борозде вверх и далее поворачивающей влево на заднюю поверхность сердца, где она непосредственно переходит в sinus coronarius; 2) задней вены левого желудочка, v. posterior ventriculi sinistri, собирающей кровь из задней стенки левого желудочка; 3) косой вены левого предсердия, v. obliqua atrii sinistri, идущей из левого предсердия; 4) средней вены сердца, v. cordis media, лежащей в задней межжелудочковой борозде и дренирующей прилежащие отделы желудочков и межжелудочковой перегородки; 5) малой вены сердца, v. cordis parva, проходящей в правой части венечной борозды и впадающей в v. cordis media.

    Система вен венечной пазухи осуществляет отток венозной крови от всех отделов сердца, за исключением передней стенки правого желудочка, откуда кровь отводится по передним венам сердца. Наименьшие вены бывают выражены различно; в основном они впадают в правую половину сердца.

    Лимфатические сосуды сердца расположены во всех его слоях, где они возникают от интрамуральных сетей лимфатических капилляров. Отводящие лимфатические сосуды в основном следуют по ходу ветвей венечных артерий и впадают в передние средостенные и трахео-бронхиальные лимфатические узлы.

    Иннервация сердца

    Осуществляется за счет интрамуральных сердечных сплетений, образованных ветвями шейно-грудного нервного сплетения и скоплениями нервных клеток. Интрамуральные нервные сплетения расположены во всех слоях сердца, но самое мощное сплетение лежит под эпикардом. Шейно-грудное нервное сплетение формируется за счет сердечных нервов от симпатического ствола и сердечных ветвей от блуждающих нервов.

    Рентгеноанатомия сердца

    При рентгенологическом исследовании можно получить различные изображения сердца. При сагиттальном задне-переднем направлении луча можно получить ортодиаграмму сердца с точным проецированием его основных отделов на переднюю грудную стенку.

    При рентгенографии используют четыре проекции: сагиттальную, 1-е косое положение (обследуемого устанавливают правым плечом вперед), 2-е косое положение (обследуемый стоит левым плечом вперед) и фронтальную. При таких проекциях хорошо определяются контуры всех отделов сердца и крупных сосудов корня, положение сердца, его размеры и форма, происходящие смещения, расширения камер. Можно определить величину и характер смещений сердца при его сокращениях, используя метод рентгенокимографии.

    В современных условиях широкие возможности для обследования сердца дает метод ангиокардиографии, при котором в сердце вводят контрастное вещество и путем серии скоростных рентгеновских снимков фиксируют его распространение в камерах сердца. Таким путем определяются патологические сообщения между камерами (незаращение межпредсердной и межжелудочковой перегородок), аномалии развития (трехкамерное сердце и др.).

    Наконец, имеется возможность подвести зонд в устье венечной артерии и получить снимок ее ветвления в стенке сердца, а также определить состояние сосудистого русла (сужения, закрытие просвета склеротическим процессом, тромбозы и т. д.).

    Околосердечная сумка

    Околосердечная сумка, или перикард, pericardium, - замкнутый серозный мешок, в котором помещается сердце. В нем различают два слоя: наружный - волокнистый, pericardium fibrosum, и внутренний - серозный, pericardium serosum.

    Наружный волокнистый слой на крупных сосудах корня сердца переходит в их адвентицию, а спереди прикрепляется к грудине посредством фиброзных тяжей - грудино-перикардиальных связок, ligg. sternopericardiacae.

    Серозная околосердечная сумка имеет два листка или пластинки: пристеночную, lamina parietalis, и внутренностную, висцеральную, lamina visceralis, между которыми имеется полость перикарда, cavum pericardii, где содержится небольшое количество серозной жидкости. Между париетальной и висцеральной пластинками серозной околосердечной сумки образуется ряд пазух - синусов перикарда. Одна из них - передний синус - находится между передней, грудино-реберной, и нижней, диафрагмальной, частями перикарда. Другой - поперечный синус перикарда - лежит позади аорты и легочного ствола, третий - косой синус - на задней поверхности сердца между устьевыми отделами легочных вен.

    Кровоснабжение перикарда осуществляется перикардо-диафрагмальными артериями (ветви аа. thoracicae internae). Между разветвлениями артерий в эпикарде образуются анастом.озы с ветвями венечных артерий. Вены перикарда образуют перикардиальные вены, впадающие в vv. phrenicae superiores et v. azygos.

    Лимфатический отток из внутриорганных сетей происходит по отводящим лимфатическим сосудам, следующим в основном по ходу кровеносных сосудов перикарда в передние средостенные, окологрудинные и трахео-бронхиальные лимфатические узлы.

    Иннервация перикарда осуществляется интрамуральным нервным сплетением, формирующимся за счет ветвей шейно-груднога нервного сплетения.

  • Одни и те же органы у разных видов могут отличаться строением и функциональностью. Наше собственное сердце имеет четыре отдельных камеры, в то время как лягушки, жабы, змеи и ящерицы могут обойтись всего тремя. Узнать о функциональности трехкамерных сердец можно в этой статье.

    Классы позвоночных и камеры сердца

    Позвоночные животные представлены различными классами: рыбы, земноводные, пресмыкающиеся, млекопитающие и птицы. У позвоночных сердце выполняет функцию перекачивания крови по всему телу это называется кровообращение. Хотя кровеносные системы во многом похожи, сердца позвоночных разных классов обладают разным количеством камер. Эти камеры определяют, насколько эффективно сердце разносит поток богатой кислородом крови и несёт назад к сердцу бедную кислородом.

    Позвоночных можно разделить по количеству камер сердца:

    • Две камеры: одно предсердие и один желудочек (рыба)
    • Три камеры: два предсердия и один желудочек (земноводные, амфибии и рептилии)
    • Четыре камеры: двух предсердий и двух желудочков (птиц и млекопитающих)

    Кровообращение

    Самое жизненно важное вещество - кислород, поступает в кровь через жабры или лёгкие. Для достижения более эффективного использования кислорода, многие позвоночные имеют два отдельных этапа кровообращения : лёгочного и системного.

    При камерном лёгочном кровообращении, сердце посылает кровь в лёгкие, чтобы обогатить кислородом. Процесс начинается в желудочке, оттуда, через лёгочные артерии поступает в лёгкие. Кровь возвращается из лёгких через лёгочные вены и впадает в левое предсердие. Оттуда она попадает в желудочек, где начинается большой круг кровообращения.

    Круг кровообращения заключается в распределении богатой кислородом крови по всему телу. Желудочек нагнетает кровь через аорту, массивную артерию, которая ответвляется во всех частях тела. После того как доставляется кислород в органы и конечности, возвращается через вены, которые приводят её к нижней полой вене или верхней полой вене. Затем из этих двух основных вен попадает в правое предсердие. Оказавшись там, кровь, обеднённая кислородом, возвращается в малый круг кровообращения.

    Сердце - это сложный насос и главный орган кровеносной системы, обеспечивающий обогащение организма кислородом.

    Сердце состоит из камер : предсердия и желудочка. По одному с каждой стороны, каждый с различными функциями. Левая сторона обеспечивает системную циркуляцию, в то время как правая сторона сердца отвечает за лёгочное кровообращение, то есть за обогащение кислородом.

    Предсердия

    Предсердия - это камеры, через которые кровь поступает в сердце . Они находятся на передней стороны сердца, по одному предсердию с каждой стороны. В правое предсердие поступает венозная кровь через верхнюю полую вену и низкую полую вену. Левое получает обогащённую кислородом кровь из лёгких через левую и правую лёгочные вены.

    Потоки крови попадают в предсердие, минуя клапаны. Предсердия расслабляются и расширяются, в то время, как они наполняются кровью. Этот процесс называется фибрилляцией диастолы, мы с вами называем это пульсом . Предсердия и желудочки разделены митральным и трехстворчатым клапаном. Предсердия проходят около предсердной систолы, создавая краткие сокращения предсердий. Они, в свою очередь, выталкивает кровь из предсердий через клапаны далее в желудочки. Эластичные сухожилия, которые крепятся к клапану желудочков расслабляются во время систолы, и переходят в диастолу желудочка, но клапан закрывается во время систолы желудочков.

    Одна из определяющих характеристик предсердий заключается в том, что они не препятствуют венозному кровотоку в сердце . Венозная кровь, попадающая в сердце, имеет очень низкое давление по сравнению с артериальной кровью, и клапаны принимают на себя венозное кровяное давление. Предсердная систола является неполной и не блокирует поток венозной крови через предсердия в желудочки. Во время предсердной систолы, венозная кровь продолжает течь непрерывно через предсердия в желудочки.

    Предсердные сокращения обычно незначительны, они лишь предотвращают значительное противодавление, которое препятствует венозной крови. Расслабление предсердий скоординировано с желудочком, чтобы начать расслабляться до начала сокращения желудочков, что помогает предотвратить слишком медленный пульс.

    Желудочки

    Желудочки находятся в задней части сердца. Желудочек получает кровь из правого предсердия и перекачивает её через лёгочную вену в малый круг кровообращения , который поступает в лёгкие для газообмена. Далее получает обогащённую кислородом кровь из левого предсердия и перекачивает её через аорту в большой круг кровообращения для снабжения тканей организма кислородом.

    Стенки желудочков толще и крепче, чем у предсердий. Физиологические нагрузки, которые качают кровь по всему организму из лёгких, гораздо больше, чем давление, создаваемое для заполнения желудочков. Во время желудочковой диастолы, желудочек расслабляется и заполняется кровью. Во время систолы желудочек сокращаться и качает кровь через полулунные клапаны в системный кровоток.

    Люди иногда рождаются с врождёнными аномалиями , в виде единственного желудочка с двумя предсердиями. Рудиментарные части желудочковой перегородки могут присутствовать, но не работают. Заболевание называется порок сердца.

    Единственный вид земноводных, кто имеет 4 камеры сердца - это обычный крокодил. Три камеры, то есть два предсердия и один желудочек есть у ряда животных.

    • земноводные
    • амфибии
    • рептилии.

    В природе у амфибий и большинства рептилий предкамерное сердце и состоит из двух предсердий и одного желудочка. Эти животные также имеют раздельные цепи кровеносных сосудов , где за насыщение кислородом отвечают отдельные камеры, а венозная возвращается и впадает в правое предсердие. Оттуда, кровь проводится к желудочку, а затем перекачивается в лёгкие. После обогащения кислородом и освобождения от углекислого газа, кровь возвращается к сердцу и впадает в левое предсердие. Затем поступает в желудочек во второй раз и далее распределяется по организму.

    Тот факт, что это холоднокровные животные, их организм не расходуют много энергии на производство тепла. Таким образом, пресмыкающихся и земноводные могут выжить с менее эффективными сердечным строением. Они также способны перекрыть поток в лёгочной артерии , чтобы отвлечь кровь к коже для кожного дыхания во время ныряния. Они также способны на шунтирование кровотока в системе лёгочной артерии во время погружения. Эта анатомическая функция считается наиболее сложной среди сердечного строения у позвоночных.

    Все позвоночные животные как рыбы, земноводные, рептилии, птицы, млекопитающие используют кислород из воздуха (или растворенный в воде), чтобы эффективно извлекать энергию из пищи и выделяют углекислый газ, как продукт жизнедеятельности.

    Любой организм должен доставить кислород во все органы и собрать углекислый газ. Мы знаем что эту специализированную систему называют кровеносной системой: она состоит из крови, они содержит клетки, которые несут кислород, кровеносные сосуды (трубки, через которые происходит приток крови), и сердце (насос который перекачивает кровь через кровеносные сосуды).

    Хотя все думают что рыбы, имеют только жабры, стоит заметить что многие виды также имеют лёгкие. У многих рыб, кровеносная система - это относительно простой цикл . Сердце состоит из двух сократительных камер предсердия и желудочка. В этой системе кровь из тела поступает в сердце и перекачивается через жабры, где она обогащается кислородом.

    Чтобы ответить на вопрос, как появился этот феномен, мы должны сначала понять что же стояло за формированием такой сложной формы сердца и кровеносной системы во время эволюции.

    Около 60 миллионов лет, с начала Каменноугольного периода, и до конца юрского периода, амфибии были доминирующими наземными животными на Земле. Вскоре из-за примитивного строения они потеряли почётное место. Хотя среди различных семейств рептилий, которые произошли от земноводных изолированных групп, были более стойкие. Например, архозавры (которые в итоге превратились в динозавров) и терапсиды (в итоге эволюционировали в млекопитающих). Классической амфибией был головастый Eryops, имевшей в длину примерно четырнадцать метров от головы до хвоста и весил около двухсот килограмм.

    Слово «амфибия» в переводе с греческого означает «оба вида жизни» , и это в значительной степени подводит итог того, что делает этих позвоночными уникальными: они откладывают свои яйца в воде, т. к. им требуется постоянный источник влаги. А жить могут на суше.

    Большой прогресс в эволюции позвоночных дал многим видам кровеносные и дыхательные системы, отличающиеся большой эффективностью . По этим параметрам земноводные, амфибии рептилии расположены в нижней части кислородно-дыхательной лестницы: их лёгкие имеют относительно малый внутренний объем и не может обработать так много воздуха, как лёгкие млекопитающих. К счастью, земноводные могут дышать через кожу, что в паре с трехкамерным сердцем позволяет им, хоть и с трудом, выполнять свои метаболические потребности.

    Выход позвоночных на сушу был связан с развитием легочного дыхания, что потребовало радикальной перестройки кровеносной системы. У дышащих жабрами рыб один круг кровообращения, а сердце, соответственно, двухкамерное (состоит из одного предсердия и одного желудочка). У наземных позвоночных - трех- или четырехкамерное сердце и два круга кровообращения. Один из них (малый) прогоняет кровь через легкие, где она насыщается кислородом. Затем кровь возвращается к сердцу и попадает в левое предсердие. Большой круг направляет обогащенную кислородом(артериальную) кровь ко всем прочим органам, где она отдает кислород и по венам возвращается к сердцу, попадая в правое
    предсердие.
    У животных с трехкамерным сердцем кровь из обоих предсердий попадает в единый желудочек, откуда она затем направляется и к легким, и ко всем прочим органам. При этом артериальная кровь смешивается с венозной. У животных с четырехкамерным сердцем в ходе развития изначально единый желудочек подразделяется перегородкой на левую и правую половины. В результате два круга кровообращения оказываются полностью разделены: бедная кислородом кровь попадает из правого предсердия в правый желудочек и идет оттуда к легким, насыщенная кислородом - из левого предсердия только в левый желудочек и идет оттуда ко всем прочим органам.
    Формирование четырехкамерного сердца было необходимой предпосылкой развития теплокровности у млекопитающих и птиц. Ткани теплокровных потребляют очень много кислорода, поэтому им необходима “чистая” артериальная кровь, максимально насыщенная кислородом. А смешанной артериально-венозной кровью
    могут довольствоваться холоднокровные позвоночные с трехкамерным сердцем. Трехкамерное сердце характерно для амфибий и большинства рептилий, хотя у последних намечается частичное разделение желудочка на две части (развивается неполная внутрижелудочковая перегородка). Настоящее четырехкамерное сердце развилось независимо в трех эволюционных линиях: у крокодилов,птиц и млекопитающих. Это яркий пример параллельной эволюции.
    Биологам из США, Канады и Японии удалось частично расшифровать молекулярно-генетические основы этого важнейшего эволюционного события (Koshiba-Takeuchi et al., 2009). Ключевую роль в нем сыграли изменения в работе гена Tbx5. Этот ген, кодирующий регуляторный белок, по-разному экспрессируется в развивающемся сердце у амфибий (шпорцевой лягушки Xenopus) и теплокровных (курицы и мыши). У первых он равномерно экспрессируется по всему будущему желудочку, у вторых его экспрессия максимальна в левой части зачатка (в будущем левом желудочке) и минимальна справа. А как обстоит дело у рептилий? Выяснилось, что у рептилий - ящерицы и черепахи - на ранних эмбриональных стадиях ген Tbx5 экспрессируется так же, как у лягушки, т. е. равномерно по всему будущему желудочку. У ящерицы все так и остается до конца развития. Как и у лягушки, у ящерицы не формируется ничего похожего на перегородку (хотя бы частичную) между желудочками.
    Что касается черепахи, то у нее на поздних стадиях формируется градиент экспрессии - такой же, как у цыпленка, только выражен ный слабее. Иными словами, в правой части желудочка активность гена постепенно снижается, а в левой остается высокой. Таким образом, по характеру экспрессии Tbx5 черепаха занимает промежуточное положение между ящерицей и курицей. То же самое можно сказать и о строении сердца. У черепахи формируется неполная перегородка между желудочками, но на более поздних стадиях, чем у цыпленка. Сердце черепахи занимает промежуточное положение между типичным трехкамерным (как у амфибий и ящериц) и четырехкамерным, как у крокодилов и теплокровных.
    Чтобы подтвердить ведущую роль гена Tbx5 в эволюции сердца,были проведены опыты с модифицированными мышами. У этих мышей можно было по желанию экспериментатора отключать ген Tbx5 в той или иной части сердечного зачатка. Оказалось, что если выключить ген во всем зачатке желудочков, то зачаток даже
    не начинает подразделяться на две половинки: из него развивается единый желудочек без всяких следов перегородки. Получаются мышиные зародыши с трехкамерным сердцем! Такие зародыши погибают на 12-й день эмбрионального развития.
    В другом эксперименте авторам удалось добиться, чтобы ген Tbx5 равномерно экспрессировался во всем зачатке желудочков мышиного эмбриона - так же как у лягушки и ящерицы. Это опять-таки привело к развитию мышиных эмбрионов с трехкамерным сердцем.
    Конечно, было бы еще интереснее сконструировать таких генно-модифицированных ящериц или черепах, у которых Tbx5 экспрессировался бы как у мышей и кур, т. е. в левой части желудочка сильно, а в правой - слабо, и посмотреть, не станет ли у них от этого сердце больше похожим на четырехкамерное. Но это пока неосуществимо: генная инженерия рептилий еще не продвинулась так далеко.
    Ясно, что эволюция для создания теплокровности и всего того, что обеспечивает это преображение (сердце, система кровообращения, покровы, система выделения и т. д.), пользовалась простыми инструментами: чем меньше требуется менять настроек, тем лучше.И если трехкамерное сердце можно превратить в четырехкамерное за один шаг, то нет причин этим не воспользоваться.

    Марков, Наймарк, 2014


    Выход позвоночных на сушу был связан с развитием легочного дыхания, что потребовало радикальной перестройки кровеносной системы. У дышащих жабрами рыб один круг кровообращения, а сердце, соответственно, двухкамерное (состоит из одного предсердия и одного желудочка). У наземных позвоночных - трех- или четырехкамерное сердце и два круга кровообращения. Один из них (малый) прогоняет кровь через легкие, где она насыщается кислородом. Затем кровь возвращается к сердцу и попадает в левое предсердие. Большой круг направляет обогащенную кислородом (артериальную) кровь ко всем прочим органам, где она отдает кислород и по венам возвращается к сердцу, попадая в правое предсердие.

    У животных с трехкамерным сердцем кровь из обоих предсердий попадает в единый желудочек, откуда она затем направляется и к легким, и ко всем прочим органам. При этом артериальная кровь смешивается с венозной. У животных с четырехкамерным сердцем в ходе развития изначально единый желудочек подразделяется перегородкой на левую и правую половины. В результате два круга кровообращения оказываются полностью разделены: бедная кислородом кровь попадает из правого предсердия в правый желудочек и идет оттуда к легким, насыщенная кислородом - из левого предсердия только в левый желудочек и идет оттуда ко всем прочим органам.

    Формирование четырехкамерного сердца было необходимой предпосылкой развития теплокровности у млекопитающих и птиц. Ткани теплокровных потребляют очень много кислорода, поэтому им необходима «чистая» артериальная кровь, максимально насыщенная кислородом. А смешанной артериально-венозной кровью могут довольствоваться холоднокровные позвоночные с трехкамерным сердцем. Трехкамерное сердце характерно для амфибий и большинства рептилий, хотя у последних намечается частичное разделение желудочка на две части (развивается неполная внутри-желудочковая перегородка). Настоящее четырехкамерное сердце развилось независимо в трех эволюционных линиях: у крокодилов, птиц и млекопитающих. Это яркий пример параллельной эволюции.

    Биологам из США, Канады и Японии удалось частично расшифровать молекулярно-генетические основы этого важнейшего эволюционного события (Koshiba-Takeuchi et al., 2009 ). Ключевую роль в нем сыграли изменения в работе гена Tbx5 . Этот ген, кодирующий регуляторный белок, по-разному экспрессируется в развивающемся сердце у амфибий (шпорцевой лягушки Xenopus ) и теплокровных (курицы и мыши). У первых он равномерно экспрессируется по всему будущему желудочку, у вторых его экспрессия максимальна в левой части зачатка (в будущем левом желудочке) и минимальна справа. А как обстоит дело у рептилий?

    Выяснилось, что у рептилий - ящерицы и черепахи - на ранних эмбриональных стадиях ген Tbx5 экспрессируется так же, как у лягушки, т. е. равномерно по всему будущему желудочку. У ящерицы все так и остается до конца развития. Как и у лягушки, у ящерицы не формируется ничего похожего на перегородку (хотя бы частичную) между желудочками.

    Что касается черепахи, то у нее на поздних стадиях формируется градиент экспрессии - такой же, как у цыпленка, только выраженный слабее. Иными словами, в правой части желудочка активность гена постепенно снижается, а в левой остается высокой. Таким образом, по характеру экспрессии Tbx5 черепаха занимает промежуточное положение между ящерицей и курицей. То же самое можно сказать и о строении сердца. У черепахи формируется неполная перегородка между желудочками, но на более поздних стадиях, чем у цыпленка. Сердце черепахи занимает промежуточное положение между типичным трехкамерным (как у амфибий и ящериц) и четырехкамерным, как у крокодилов и теплокровных.

    Чтобы подтвердить ведущую роль гена Tbx5 в эволюции сердца, были проведены опыты с модифицированными мышами. У этих мышей можно было по желанию экспериментатора отключать ген Tbx5 в той или иной части сердечного зачатка. Оказалось, что если выключить ген во всем зачатке желудочков, то зачаток даже не начинает подразделяться на две половинки: из него развивается единый желудочек без всяких следов перегородки. Получаются мышиные зародыши с трехкамерным сердцем! Такие зародыши погибают на 12-й день эмбрионального развития.

    В другом эксперименте авторам удалось добиться, чтобы ген Tbx5 равномерно экспрессировался во всем зачатке желудочков мышиного эмбриона - так же как у лягушки и ящерицы. Это опять-таки привело к развитию мышиных эмбрионов с трехкамерным сердцем.

    Конечно, было бы еще интереснее сконструировать таких генно-модифицированных ящериц или черепах, у которых Tbx5 экспрессировался бы как у мышей и кур, т. е. в левой части желудочка сильно, а в правой - слабо, и посмотреть, не станет ли у них от этого сердце больше похожим на четырехкамерное. Но это пока неосуществимо: генная инженерия рептилий еще не продвинулась так далеко.

    Ясно, что эволюция для создания теплокровности и всего того, что обеспечивает это преображение (сердце, система кровообращения, покровы, система выделения и т. д.), пользовалась простыми инструментами: чем меньше требуется менять настроек, тем лучше. И если трехкамерное сердце можно превратить в четырехкамерное за один шаг, то нет причин этим не воспользоваться.

    Дупликация генов

    МНОГОФУНКЦИОНАЛЬНЫЕ ГЕНЫ - ОСНОВА ЭВОЛЮЦИОННЫХ НОВШЕСТВ.

    Мысль о том, что дупликация генов служит важнейшим источником эволюционных новшеств, была высказана еще в 1930-е годы выдающимся биологом Джоном Холдейном (Haldane, 1933 ). Сегодня в этом нет никаких сомнений. Идея проста. Появление в геноме «лишней» копии гена открывает свободу для эволюционного экспериментирования. Мутации, возникающие в одной из двух копий и ослабляющие исходную функцию гена, не будут отсеиваться отбором, потому что остается вторая копия, сохраняющая прежнюю функциональность. Отбор отсеивает только те мутации, которые снижают приспособленность организма, а для этого нужно, чтобы испортились сразу обе копии гена. Поэтому одна из копий, скорее всего, останется более или менее неизменной, а другая начнет свободно накапливать случайные мутации. С большой вероятностью эта меняющаяся копия будет безнадежно испорчена или вовсе потеряна. Однако есть шанс, что какая-нибудь мутация придаст меняющейся копии новое полезное свойство. Достаточно, чтобы это свойство поначалу было выражено в самой минимальной степени. Отбор «ухватится» за возникшее преимущество и начнет оптимизировать ген для выполнения новой функции.

    Такой способ возникновения эволюционных новшеств называют неофункционализацией . Одна из копий удвоившегося гена остается под действием очищающего отбора, не меняется и сохраняет старую функцию, в то время как другая копия приобретает новую. Разумеется, в большинстве случаев новая функция будет родственна исходной: это будет некая вариация на старую тему (помните, мы говорили в главе 1 о трудности перехода с одной возвышенности ландшафта приспособленности на другую?)

    Часто бывает и так, что белок, оптимизированный отбором для какой-то одной функции, способен с низкой эффективностью выполнять и другие, второстепенные или вовсе ненужные организму функции - просто в качестве побочного эффекта. Например, большинство ферментов, специализированных для работы с каким-то одним субстратом, могут немножко работать и с другими молекулами, похожими на основной субстрат. Про такие ферменты можно сказать, что они преадаптированы к приобретению новой функции. Если условия изменятся таким образом, что эта дополнительная функция окажется полезной, белок может специализироваться на ней - превратить свое хобби в основную работу (Conant, Wolfe, 2008 ). Причем это будет особенно легко сделать, если ген данного белка случайно подвергнется дупликации. Ведь в этом случае одна из копий гена может сохранить старую специализацию, а другая - оптимизироваться для выполнения новой функции. Это называют субфункционализацией , или попросту разделением функций.

    Ну а если основная функция белка по-прежнему полезна, дополнительная функция («хобби») тоже полезна, а разделения функций не происходит, потому что ген не дуплицировался? В этом случае отбор будет оптимизировать белок для выполнения обеих функций одновременно. Это самое обычное дело: многие гены действительно выполняют в организме не одну, а несколько полезных функций (для простоты изложения будем говорить о случае, когда функций две). Такой ген находится в состоянии адаптивного конфликта . Если в нем возникает мутация, улучшающая выполнение одной из функций, она окажется полезной только в том случае, если от этого не слишком пострадает вторая функция. В результате ген балансирует между двумя направлениями оптимизации, и его структура представляет собой компромисс между противоречивыми требованиями отбора. Понятно, что в такой ситуации ни одна из двух функций не может быть доведена до совершенства. Для таких генов дупликация может стать «долгожданным избавлением» от внутреннего конфликта. Если многофункциональный ген наконец дуплицируется, возникшие копии с большой вероятностью поделят между собой функции и быстро оптимизируются в разных направлениях. Такова схема ухода от адаптивного конфликта .

    Классические примеры появления новых генов путем дупликации

    Кристаллины - белки хрусталика глаза. Водорастворимость, прозрачность и устойчивость (долгий «срок хранения») - чуть ли не единственные обязательные требования, предъявляемые отбором к белкам-кристаллинам. Вероятно, именно поэтому разные типы кристаллинов у животных многократно формировались из самого разнообразного «подручного материала». Например, дельта-кристаллины птиц и рептилий произошли путем дупликации и субфункционализации от фермента аргининосукцинат-лиазы, тау-кристаллины - от энолазы, SIII-кристаллины - от глутатион-S-трансферазы, дзета-кристаллины - от хинон-оксидоредкутазы. Некоторые кристаллины даже сохранили свою ферментативную активность: такие белки могут в хрусталике работать кристаллинами, а в других тканях - ферментами или шаперонами . Так, эпсилон-кристаллин у птиц одновременно является ферментом лактат-дегидрогеназой (Wistow, Piatigorsky, 1987 ; True, Carroll, 2002 ). От такого «совместительства» их часто освобождают генные дупликации и субфункционализация. Скажем, у человека кристаллин альфа-B совмещает функции кристаллина и шаперона, а у рыбки данио рерио соответствующий ген дуплицировался, причем одна из копий (альфа-B1) сосредоточилась на оптической функции в хрусталике, а вторая (альфа-В2) - на функции шаперона в других тканях (Smith et al. , 2006).

    Особенно часто кристаллины формируются из ферментов гликолиза - биохимического процесса, в ходе которого клетка запасает энергию, расщепляя глюкозу без использования кислорода. Дело в том, что в эмбриональном развитии хрусталик формируется из клеток, не способных к кислородному дыханию: эти клетки могут добывать энергию только путем гликолиза. Поэтому они прямо-таки набиты гликолитическими ферментами. Ну а естественный отбор - великий оппортунист и приспособленец, он создает адаптации не из того, что лучше, а из того, что первым подвернется.

    В привлечении шаперонов на роль кристаллинов логика примерно такая же - оппортунистическая. Шапероны отвечают за стабильность структуры других белков и сглаживают воздействие стрессовых факторов, будь то мутации или колебания температуры. Хрусталик формируется в некотором смысле в «стрессовых» условиях (без кислородного дыхания), а его содержимое должно быть очень устойчивым к любым стрессам: хрусталик должен сохранить прозрачность и светопреломляющие свойства в течение всей жизни организма, в условиях высокой освещенности, без какой-либо помощи извне, без кровеносных сосудов, без нервов. Поэтому присутствие шаперонов в формирующемся хрусталике - адаптация вполне логичная. Ну а раз они там уже есть, чем не материал для эволюции новых кристаллинов?

    Белки-антифризы антарктических рыб. Нототениевые рыбы - самая разнообразная и массовая группа рыб в холодных антарктических морях. Успех нототениевых связан с наличием в их крови удивительных белков-антифризов. Эти белки присоединяются к зарождающимся кристалликам льда и не дают им расти, что позволяет нототениевым жить при экстремально низких температурах (соленая морская вода замерзает при −1,9 °C, а кровь обычных морских рыб - при −0,7… −0,1 °C). Как ни удивительно, антифризы нототениевых произошли от белка, функция которого не имеет ничего общего с защитой от замерзания. Их предком был трипсин - фермент поджелудочной железы, расщепляющий белки в пищеварительном тракте. Все гены антифризов (их у нототениевых несколько) очень похожи друг на друга и явно произошли путем последовательных дупликаций от одного предкового гена, который в свою очередь сформировался из дубликата гена, кодирующего трипсиноген (белок, из которого затем производится фермент трипсин). Начало и конец у генов антифризов остались такими же, как у трипсинового гена, а в середине разместился многократно повторяющийся (амплифицированный) девятинуклеотидный фрагмент из средней части гена трипсина, кодирующий три аминокислоты: треонин-аланин-аланин. Этот повторяющийся аминокислотный мотив составляет «костяк» молекулы антифриза. Судя по показаниям молекулярных часов, дупликация исходного трипсинового гена и появление первого антифриза произошли 5–14 млн лет назад. Это примерно совпадает со временем резкого похолодания в Антарктике (10–14 млн лет назад), а также с началом быстрой адаптивной радиации нототениевых рыб (Chen et al., 1997 ).

    У одного представителя нототениевых - антарктического клыкача Dissostichus mawsoni - обнаружен белок, промежуточный между трипсиногеном и типичным антифризом: в нем сохранились фрагменты исходного трипсиногена, утраченные остальными антифризами. Этот белок - настоящая молекулярная «переходная форма».

    У некоторых арктических рыб в ходе приспособления к жизни в ледяной воде тоже появились белки-антифризы, но другие. Антифриз трески напоминает по своей структуре антифризы нототениевых, но ничего общего не имеет с трипсиногеном. Происхождение трескового антифриза пока не выяснено, ясно только, что это было независимое приобретение. У других арктических рыб свои уникальные антифризы сформировались из других белков - лектинов и аполипопротеинов (True, Carroll, 2002 ).

    Появление специализированной рибонуклеазы (фермента, расщепляющего РНК) у обезьян, питающихся листьями. У колобин - обезьян Старого Света, питающихся трудноперевариваемой растительной пищей, - развился особый отдел желудка, где симбиотические бактерии переваривают несъедобную для животных целлюлозу . Сама обезьяна питается фактически этими бактериями, а в них, как и в любых быстро растущих бактериальных популяциях, очень много РНК.

    Чтобы переваривать бактериальную РНК, колобинам нужен фермент - РНКаза, способная работать в кислой среде. У предков колобин такого фермента не было. Зато у них, как у всех обезьян, была другая РНКаза (RNase1), работающая в щелочной среде и способная расщеплять двухцепочечную РНК. Это один из механизмов противовирусной защиты, не имеющий отношения к пищеварению.

    У колобин в связи с переходом к питанию симбиотическими бактериями появилась новая РНКаза - RNase1B. Она производится в поджелудочной железе и поступает в тонкий кишечник. В кишечнике у колобин, в отличие от других обезьян, среда кислая, а не щелочная. Новый фермент отлично переваривает бактериальную РНК, но не способен обезвреживать двухцепочечную вирусную РНК.

    Ген Rnase1B возник в результате дупликации исходного гена RNase1 . После дупликации одна из копий сохранила старую функцию, а другая приобрела новую. При этом на первую копию действовал очищающий отбор, а на вторую - положительный, что привело к закреплению девяти значимых замен. Эксперименты показали, что каждая из этих девяти замен снижает эффективность выполнения исходной функции - расщепления двухцепочечной РНК. Следовательно, дупликация была необходима для развития новой функции: не будь у колобин «запасной» копии гена, которая продолжила выполнять старую функцию, отбор вряд ли смог бы закрепить эти девять мутаций (Zhang et al., 2002 ).

    «Молочные» белки таракана Diploptera punctata . Эти живородящие тараканы выкармливают своих детенышей специальными белками, которые произошли путем дупликации и неофункционализации от липокалинов - внеклеточных белков, отвечающих за транспорт небольших гидрофобных молекул (липидов, стероидов, ретиноидов и др.) (Williford et al., 2004 ). По-видимому, от того же предкового липокалина у другого таракана, Leucophaea maderae, произошел белок-афродизиак, при помощи которого самцы привлекают самок (Korchi et al., 1999 ).

    Можно ли на практике отличить неофункционализацию от ухода от адаптивного конфликта? По идее, это должно быть не так уж сложно. В первом случае одна копия гена подвергается очищающему (отрицательному) отбору и продолжает выполнять исходную функцию, а вторая копия подвергается положительному отбору. О том, как определить, какой тип отбора действовал на ген, мы говорили в главе 2. Во втором случае обе копии подвергаются положительному отбору, причем эффективность выполнения обеих функций растет.

    Проверять такие теории на практике биологи научились лишь недавно. Например, в 2008 году генетики из Университета Дюка (США) применили эти критерии к дуплицированному гену фермента у ипомеи - рода растений из семейства вьюнковых (Des Marais, Rausher, 2008 ). Фермент называется дигидрофлавонол-4-редуктаза (DFR). Он восстанавливает различные флавоноиды, превращая их в красные, пурпурные и синие пигменты-антоцианы. Это исходная функция данного фермента, которую он выполняет почти у всех цветковых растений. Кроме того, фермент катализирует некоторые другие химические реакции, причем полный спектр его возможностей на сегодняшний день не установлен.

    У ипомеи и нескольких ее близких родственников ген DFR присутствует в виде трех копий, расположенных вплотную друг к другу (DFR-A , DFR-B , DFR-C ). У других вьюнковых ген имеется только в одном экземпляре. Все вьюнковые с утроенным геном DFR образуют кладу, т. е. группу, происходящую от одного общего предка и включающую всех его потомков. На начальных этапах эволюции этой группы ген подвергся двум последовательным тандемным дупликациям. Сначала возникло две копии, одна из которых стала геном DFR-B , а вторая дуплицировалась еще раз и превратилась в DFR-A и DFR-C .

    По соотношению синонимичных и значимых замен авторы установили, что после первой дупликации тот ген, который впоследствии разделился на DFR-A и DFR-C , находился под действием положительного отбора. В нем быстро фиксировались значимые замены, т. е. шла адаптивная эволюция. Что касается гена DRF-B , то в нем скорость фиксации значимых замен после дупликации вроде бы не выросла. Это, казалось бы, свидетельствует в пользу неофункционализации, т. е. говорит о том, что ген DRF-B сохранил исходную функцию, а DFR-A и DFR-C приобрели новую. Однако выводы на этом этапе делать еще рано, потому что важные адаптивные изменения могут быть обусловлены очень небольшим количеством значимых замен. В принципе даже одна-единственная аминокислотная замена может изменить свойства белка.

    Чтобы точно установить, имела ли место адаптивная эволюция гена DFR-B после дупликации, необходимо было экспериментально исследовать свойства кодируемого им белка. Именно это и проделали авторы. Они изучили каталитическую активность белков DFR-A, DFR-B и DFR-C ипомеи, а также исходный вариант белка DFR других вьюнковых. Все белки проверялись на способность восстанавливать пять разных субстратов (веществ из группы флавоноидов).

    Оказалось, что белок DFR-B ипомеи работает эффективно со всеми пятью субстратами. Исходный белок DFR справляется со всеми ними намного хуже. Наконец, DFR-A и DFR-C вообще не проявляют каталитической активности по отношению к этим пяти субстратам.

    Таким образом, белок DFR-B после дупликации стал лучше справляться со своей основной функцией - восстановлением флавоноидов, - чем до дупликации. И это несмотря на то, что после дупликации в нем зафиксировалось мало значимых замен. Как выяснилось, одна-единственная замена в ключевой позиции резко повысила эффективность фермента. История получилась довольно детективная.

    У большинства цветковых растений в позиции 133 в белке DFR стоит аминокислота аспарагин (Asn133), которая играет важную роль в «схватывании» ферментом своего субстрата. Белки DFR с Asn133 эффективно восстанавливают флавоноиды. Однако у далеких предков вьюнковых (у общего предка пасленоцветных и горечавковых) этот столь важный аспарагин заменился на аспарагиновую кислоту (Asp133). Это привело к ухудшению «флавоноидной» функции фермента. Почему же такая вредная мутация не была отсеяна отбором? Очевидно, к тому времени у белка DFR в этой эволюционной линии (т. е. у предков пасленоцветных и горечавковых) появилась новая дополнительная функция. Отбор начал оптимизировать белок сразу по двум направлениям, и замена аспарагина на аспарагиновую кислоту в 133-й позиции была следствием компромисса - прямым результатом адаптивного конфликта. В чем состоит эта дополнительная функция, к сожалению, выяснить не удалось. Но изменение произошло в том участке белка, который отвечает за связывание субстрата, значит, речь идет о работе с какими-то новыми субстратами.

    С тех пор большинству пасленоцветных и горечавковых пришлось довольствоваться «компромиссным» вариантом белка DFR. Но у предков ипомеи ген DFR удвоился, появилась уникальная возможность уйти от адаптивного конфликта и разделить функции между белками. И предки ипомеи эту возможность не упустили. После дупликации у белка DFR-B восстановился аспарагин в 133-й позиции. Это резко усилило каталитическую активность по отношению к флавоноидам. Эффективность фермента снова стала высокой, как у далеких предков, у которых фермент еще не имел дополнительной функции. И для этого хватило одной-единственной аминокислотной замены (именно поэтому анализ соотношения значимых и синонимичных замен не выявил следов положительного отбора в гене DFR-B ).

    Что же произошло с генами DFR-A и DFR-C ? Очевидно, они вовсе отказались от старой функции (работы с флавоноидами) и посвятили себя выполнению новой. Если замена аспарагина на аспарагиновую кислоту была компромиссным решением, позволявшим кое-как совместить обе функции в одном белке, то можно предположить, что у DFR-A и DFR-C аспарагиновая кислота заменится на что-то еще, но только не на аспарагин. Так и произошло. У разных видов ипомей в белке DFR-A 133-ю позицию занимают разные аминокислоты, а в белке DFR-C здесь всегда стоит изолейцин, что лишает белок способности работать с флавоноидами.

    Хотя в этом исследовании осталась досадная «дырка» - так и не удалось узнать, в чем же состоит новая функция белков DRF, - тем не менее результаты показывают, что имел место именно уход от адаптивного конфликта, а не неофункционализация. Ген DRF стал бифункциональным задолго до дупликации. Дупликация позволила разделить функции между копиями, снять адаптивный конфликт и оптимизировать каждый ген для выполнения какой-то одной функции.

    В конце статьи авторы делают важное замечание. Они указывают, что в случае ухода от адаптивного конфликта по сравнению с неофункционализацией выше вероятность сохранения «лишних» копий гена после дупликации. Ведь если дуплицированный ген выполнял две функции еще до дупликации, то процесс разделения функций может быть инициирован многими разными мутациями в любой из двух копий. Случайные мутации с большей вероятностью могут чуть-чуть усилить одну из существующих функций белка, чем создать совсем новую.

    С этих позиций легче понять результаты других исследований, в том числе данные о двух полногеномных дупликациях, произошедших на заре эволюции позвоночных.


    Сердце (Михайлов С.С.)

    Развитие сердца

    Закладка сердца появляется у зародыша 1,5 мм длиной в конце 2-й недели внутриутробного развития в виде двух эндокардиальных мешков, возникающих из мезенхимы. Из висцеральной мезодермы формируются мио-эпикардиальные пластинки, которые окружают эндокардиальные мешки. Так возникают два зачатка сердца - сердечные пузырьки, лежащие в шейной области над желточным мешком. В дальнейшем оба сердечных пузырька смыкаются, их внутренние стенки исчезают, в результате чего образуется одна сердечная трубка. Из слоев сердечной трубки, образованных мио-эпикардиальной пластинкой, в дальнейшем формируются эпикард и миокард, а из эндокардиального слоя - эндокард. При этом сердечная трубка перемещается каудально и оказывается расположенной вентрально в вентральной брыжейке передней кишки и покрытой серозной оболочкой, образующей вместе с наружной поверхностью сердечной трубки околосердечную полость.

    Сердечная трубка соединяется с развивающимися кровеносными сосудами (см. раздел Кровеносная система, настоящего издания). В ее задний отдел впадают две пупочные вены, несущие кровь из ворсинчатой оболочки, а также две желточные вены, приносящие кровь из желточного пузыря. От переднего отдела сердечной трубки отходят две первичные аорты, которые формируют 6 аортальных дуг (см. раздел Кровеносная система, настоящего издания). Таким образом, кровь идет через трубку одним потоком.

    Развитие сердца проходит четыре основные стадии - от однокамерного до четырехкамерного (рис. 139).

    Однокамерное сердце . Вследствие неравномерного роста сердечной трубки происходит формирование S-образного изгиба, что сопровождается изменением ее формы и положения. Первоначально нижний конец трубки перемещается кверху и кзади, а верхний конец - вниз и кпереди. У эмбриона 2,15 мм длиной (3-я неделя развития) в S-образном сердце можно различить четыре отдела: 1) венозный синус, в который впадают пупочные и желточные вены; 2) следующий за ним венозный отдел; 3) артериальный отдел, изогнутый в форме колена и располагающийся позади венозного; 4) артериальный ствол.

    Двухкамерное сердце . Венозный и артериальный отделы сильно разрастаются и между ними возникает глубокая перетяжка. Оба отдела соединяются только посредством узкого короткого канала, называемого ушковым и лежащего на месте перетяжки. Одновременно из венозного отдела являющегося общим предсердием, образуются два выроста - будущие сердечные ушки, которые охватывают артериальный ствол. Оба колена артериального отдела сердца срастаются друг с другом, разделявшая их стенка исчезает, в результате чего создается один общий желудочек. В венозный синус, кроме пупочных и желточных вен, впадают две общие вены, образованные слиянием передних и задних кардинальных вен. В двухкамерном сердце у эмбриона длиной 4,3 мм (4-я неделя развития) различав, ют: венозный синус, общее предсердие с двумя ушками, общий желудочек, сообщающийся с предсердием узким ушковым каналом, и артериальный ствол, ограниченный от желудочка небольшим сужением. В этой стадии развития существует лишь один большой круг кровообращения.

    Трехкамерное сердце . На 4-й неделе развития на внутренней поверхности общего предсердия появляется складка, растущая книзу и образующая у эмбриона длиной 7 мм (начало 5-й недели) перегородку, разделяющую общее предсердие на два: правое и левое. Однако в перегородке остается отверстие (овальное окно), через которое кровь из правого предсердия переходит в левое. Ушковый канал разделяется на два предсердно-желудочковых отверстия.

    Четырехкамерное сердце . У эмбриона длиной 8-10 мм (конец 5-й недели) в общем желудочке формируется растущая снизу вверх перегородка, разделяющая общий желудочек на два: правый и левый. Общий артериальный ствол также делится на два отдела: будущую аорту и легочный ствол, которые соединяются соответственно с левым и правым желудочками. Одновременно в артериальном стволе и его двух частях происходит формирование полулунных клапанов. В дальнейшем из правой общей кардинальной вены образуется верхняя полая вена. Левая общая кардинальная вена подвергается обратному развитию и преобразуется в венечный венозный синус сердца (см. раздел Кровеносная система, настоящего издания).

    Анатомическая характеристика сердца

    Сердце , cor, представляет собой полый мышечный орган, имеющий неправильную коническую форму, уплощенную в передне-заднем направлении. В нем различают основание, basis cordis, направленное кверху, кзади и вправо, и верхушку, apex cordis, обращенную кпереди, книзу и влево. Основание сердца представлено предсердиями и началом крупных кровеносных сосудов. Спереди в основании сердца расположены места выхода из него аорты и легочного ствола. В правой части основания находится место входа в сердце верхней полой вены, в задне-нижней- нижней полой вены, в левой части - левых легочных вен, а несколько правее - правых легочных вен. Перечисленные сосуды объединяются понятием сосуды корня сердца.

    Сердце имеет три поверхности: переднюю - грудино-реберную, fades ster nocostalis, нижнюю - диафрагмалъную, fades diaphragmatica, заднюю - медиастиналъную, fades mediastinalis, и два края: левый - закругленный, margo sinister, и правый - более острый, margo dexter.

    Грудино - реберная поверхность образована на большом протяжении правым желудочком и на меньшем - левым желудочком и предсердиями (рис. 140). Границей между желудочками является передняя межжелудочковая борозда, sulcus interventricularis anterior, а между желудочками и предсердиями - венечная борозда, sulcus coronarius. В бороздах располагаются сосудисто-нервные пучки: в передней межжелудочковой - передняя межжелудочковая ветвь а. соrоnаriae sinistrae и большая вена сердца, нервное сплетение и отводящие лимфатические сосуды. В передней части венечной борозды лежат правая венечная артерия, нервное сплетение и лимфатические сосуды.

    Диафрагмальная поверхность обращена вниз к диафрагме. Она составлена главным образом левым желудочком, частично правым желудочком и небольшим участком правого предсердия. На диафрагмальной поверхности оба желудочка граничат друг с другом по задней межжелудочковой борозде, sulcus interventricularis posterior, в которой проходят задняя межжелудочковая ветвь a. coronariae dextrae, средняя вена сердца, нервы и лимфатические сосуды. Задняя межжелудочковая борозда вблизи верхушки сердца соединяется с передней межжелудочковой бороздой, образуя на правом крае сердца верхушечную вырезку, incisura apicis cordis. Предсердия от желудочков на диафрагмальной поверхности отделены задней частью венечной борозды, в которой находятся, правая венечная артерия, окружающая ветвь a. coronariae sinistrae, венечная венозная пазуха и малая вена сердца.

    Медиастинальная поверхность является задней, она прилежит к органам средостения и образована обеими предсердиями. Предсердия здесь хорошо отграничены друг от друга межпредсердной бороздой, sulcus interatrialis.

    Размеры сердца индивидуально различны. Длина сердца у взрослого колеблется от 10 до 15 см (чаще 12-13 см), ширина сердца в его основании 8-11 см (чаще 9-10 см) и передне-задний размер 6-8,5 см (чаще 6,5-7 см). Вес сердца достигает 200-400 г, составляя примерно 0,5% от общего веса тела.

    У детей до 1 года длина сердца 3-4,5 см, ширина 3-5 см, передне-задний размер 2-3 см. Сердце имеет шарообразную форму. Его вес увеличивается в 10-12 раз.

    Сердце состоит из 4 камер: 2 предсердий и 2 желудочков. Предсердия принимают кровь, притекающую к сердцу, а желудочки, наоборот, выбрасывают ее в артерии. В правое предсердие кровь поступает из вен большого круга кровообращения и вен сердца. Правый желудочек перегоняет кровь в малый круг кровообращения, находящийся в легких, где она очищается и обогащается кислородом. Из легких кровь оттекает в левое предсердие, далее в левый желудочек, который посылает ее по всему телу в большой круг кровообращения (рис. 141).

    Правое предсердие , atrium dexter, имеет кубическую форму. Внизу оно сообщается с правым желудочком посредством правого предсердно-желудочкового отверстия, ostium atrioventricularе dextrum, которое имеет правый или трехстворчатый предсердно-желудочковый клапан, valva atrioventricularis dextra s. valva tricuspidalis, пропускающий кровь из правого предсердия в правый желудочек и препятствующий ее обратному поступлению. Кпереди предсердие образует полый отросток, правое сердечное ушко, auricula dextra. Внутренняя поверхность правого ушка имеет ряд возвышений - мясистых перекладин, образованных пучками гребенчатых мышц. На наружной стенке предсердия гребенчатые мышцы оканчиваются, образуя возвышение - пограничный гребень, crista terminalis, которому на наружной поверхности сердца соответствует пограничная борозда, sulcus terminalis.

    Внутренняя стенка предсердия - межпредсердная перегородка, septum interatriale, гладкая. В центре ее имеется углубление почти круглой формы диаметром до 2,5 см - овальная ямка, fossa ovalis. Край ее, limbus fossae ovalis, утолщен, особенно спереди и сверху. Дно ямки образовано, как правило, двумя листками эндокарда. У эмбриона на месте овальной ямки имеется овальное отверстие, foramen ovale, сообщающее оба предсердия. Нередко овальное отверстие к моменту рождения не зарастает и остается функционирующим, обусловливая смешение артериальной и венозной крови. Такой порок устраняется хирургическим путем.

    Сзади в правое предсердие впадают вверху верхняя полая вена, v. cava superior, и внизу - нижняя полая, v. cava inferior. Устье нижней полой вены ограничено полулунной заслонкой, valvula venae cavae inferiores, представляющей собой складку эндокарда шириной до 1 см. Заслонка нижней полой вены у зародыша направляет струю крови к овальному отверстию. Между устьями полых вен стенка правого предсердия выпячивается и образует синус полых вен, sinus venarum cavarum. На внутренней поверхности предсердия между устьями полых вен имеется возвышение - межвенозный бугорок, tuberculum intervenosum. В задне-нижне-левую часть предсердия впадает венечная венозная пазуха сердца, sinus coronarius, имеющая небольшую заслонку, valvula sinus coronarii. Емкость правого предсердия взрослого колеблется в пределах 110-185 см 3 , толщина стенки составляет 2-3 мм.

    Правый желудочек , ventriculus dexter, имеет форму трехгранной пирамиды, обращенной основанием кверху. Соответственно форме он имеет три стенки: переднюю, заднюю и внутреннюю - межжелудочковую перегородку, septum interventricular е. В желудочке выделяют две части: собственно желудочек и правый артериальный конус, conus arteriosus dexter, расположенный в верхней левой части желудочка и продолжающийся в легочный ствол.

    Внутренняя поверхность желудочка неровная вследствие образования идущих в различных направлениях мясистых перекладин, trabeculae соrпеае. Очень слабо выражены перекладины на внутренней стенке - межжелудочковой перегородке.

    Вверху желудочек имеет два отверстия: 1) справа и сзади - правое предсердно-желудочковое, ostium atrioventricularе dextrum; 2) спереди и слева - отверстие легочного ствола, ostium trunci pulmonalis, содержащие клапаны (рис. 142).

    Предсердно-желудочковые клапаны состоят из: 1) волокнистых колец; 2) створок, cuspes, прикрепляющихся своим основанием на волокнистых кольцах предсердно-желудочковых отверстий, а свободными краями обращенных в полость желудочка; 3) сухожильных струн, chordae tendineae, идущих от свободных краев створок к стенке желудочка - к сосочковым мышцам или мясистым перекладинам; 4) сосочковых мышц, musculi papillares, образованных внутренним слоем миокарда желудочков (см. рис. 144).

    Створки представляют собой складки эндокарда. В правом предсердно-желудочковом клапане их три. Поэтому данный клапан называется трехстворчатым. Различают створки по месту их прикрепления: переднюю, cuspis anterior, заднюю, cuspis posterior, и перегородочную, cuspis septalis. Возможно и большее количество створок.

    Сухожильные струны - тонкие фиброзные образования, идущие в виде нитей от края створок к верхушкам сосочковых мышц или к мясистым перекладинам. В ходе от сосочковых мышц к створкам каждая струна разделяется на несколько нитей.

    Сосочков ые мышцы различаются по месту расположения. В правом желудочке их обычно бывает три: передняя, musculus papillaris anterior, задняя, musculus papillaris posterior, и перегородочная, musculus papillaris septalis. Количество мышц, как и створок, может быть увеличенным.

    Клапан легочного ствола, valva trunci pulmonalis, препятствует обратному току крови из легочного ствола в желудочек. Он состоит из трех полулунных заслонок, valvulae semilunares: передней, правой и левой. По середине каждой полулунной заслонки имеются утолщения - узелки, поduli valvularium semilunar ium, способствующие более герметичному смыканию створок. Емкость правого желудочка у взрослых 150-240 см 3 , толщина стенки в верхней части 5-8 мм, в нижней - 3-5 мм.

    Левое предсердие , atrium sinistrum, так же как и правое, кубической формы, образует слева вырост - левое сердечное ушко, auricula sinistra. Внутренняя поверхность стенок предсердия гладкая, за исключением стенок ушка, где имеются валики гребенчатых мышц. На задней стенке расположены устья легочных вен (по две справа и слева), между которыми имеется небольшое углубление - венозная пазуха легочных вен, sinus venarum pulmonalium.

    На межпредсердной перегородке со стороны левого предсердия также заметна овальная ямка, но она выражена здесь менее отчетливо, чем в правом предсердии. Левое ушко более узкое и длинное, чем правое, и отграничено от предсердия хорошо выраженным перехватом.

    Емкость левого предсердия 100-130 см 3 , толщина стенки 2-3 мм.

    Левый желудочек , ventriculus sinister, конической формы с основанием, обращенным кверху, имеет три стенки: переднюю, заднюю и внутреннюю - межжелудочковую перегородку. Передняя и задняя стенки из-за закругленности левого края сердца не имеют резкого разграничения. Вверху располагаются два отверстия: 1) слева и спереди - левое предсердно-желудочковое, ostium atrioventricularе sinistrum; 2) справа и сзади - отверстие аорты, ostium aortae, которые, как и в правом желудочке, содержат соответствующий клапанный аппарат: valva atrioventricular sinistra et valva aortae.

    Ближайший к отверстию аорты участок желудочка называется левым артериальным конусом, conus arteriosus sinister. Внутренняя поверхность желудочка, за исключением перегородки, имеет многочисленные мясистые перекладины, более тонкие, чем в правом желудочке.

    Левый предсердно-жёлудочковый клапан содержит обычно две створки и две сосочковые мышцы - переднюю и заднюю. Ввиду этого левый клапан называется двустворчатым, valvula bicuspidalis. Как створки, так и мышцы крупнее, чем в правом желудочке.

    Клапан аорты, valva aortae, образован наподобие клапана легочного ствола тремя полулунными заслонками - задней, правой и левой. Начальная часть аорты в месте расположения клапана слегка расширена и имеет три углубления - аортальные пазухи (синусы), sinus aortae. Емкость левого желудочка определяется от 140 до 220 см 3 , толщина стенки - 1 - 1,5 см.

    Топография сердца

    Сердце находится в нижнем отделе переднего средостения в околосердечной сорочке между листками мёдиастинальной плевры. По отношению к средней линии тела сердце располагается несимметрично: около 2/3 сердца - слева от нее, а около 1/3 - справа. Продольная ось сердца (от середины основания к верхушке) идет косо сверху вниз, справа налево и сзади наперед. В полости перикарда сердце как бы подвешено на сосудах его корня. Поэтому основание сердца является наименее подвижной его частью, а верхушка может смещаться.

    Положение сердца бывает различным: поперечное, косое или вертикальное. Вертикальное положение чаще встречается у людей с узкой и длинной грудной клеткой, поперечное - у лиц с широкой и короткой грудной клеткой и высоким стоянием купола диафрагмы.

    У живого человека можно определить границы сердца методом перкуссии, а также путем рентгенографии. При этом на переднюю грудную стенку проецируется фронтальный силуэт сердца, соответствующий его передней поверхности и крупным сосудам. Различают правую, левую и нижнюю границы сердца (рис. 143).

    Правая граница сердца, в верхней своей части соответствующая правой поверхности верхней полой вены, проходит от верхнего края II ребра у места прикрепления его к грудине до верхнего края III ребра на 1-1,5 см от правого края грудины. Нижняя часть правой границы соответствует краю правого предсердия и проходит от III до V ребра в виде дуги, отстоящей от правого края грудины на 1-2 см. На уровне V ребра правая граница переходит в нижнюю.

    Нижняя граница образована краем правого и частично левого желудочков и идет косо вниз и влево, пересекая грудину над основанием мечевидного отростка, к VI межреберному промежутку слева и далее, пересекая хрящ VI ребра, достигает V межреберного промежутка на 1,5-2 см кнаружи от linea medioclavicularis.

    Левая граница составляется дугой аорты, легочным стволом, левым сердечным ушком и левым желудочком. Она проходит от нижнего края I ребра у места прикрепления его к грудине слева до верхнего края II ребра на 1 см левее от края грудины (соответственно проекции дуги аорты), далее на уровне II межреберного промежутка на 2-2,5 см кнаружи от левого края грудины (соответственно легочному стволу). Продолжение этой же линии на уровне III ребра соответствует левому сердечному ушку, от нижнего края III ребра на 2-2,5 см влево от края грудины левая граница проходит выпуклой кнаружи дугой к V межреберному промежутку на 1,5-2 см кнаружи от linea medioclavicularis, соответствуя краю левого желудочка.

    Устья аорты и легочного ствола и их клапаны проецируются на уровне III межреберного промежутка: аорты - позади левой половины грудины, а легочного ствола у левого ее края. Предсердно-желудочковые отверстия проецируются по линии, проводимой от места прикрепления V правого реберного хряща к грудине к месту прикрепления III левого хряща. Проекция правого предсердно-желудочкового отверстия занимает правую половину этой линии, левого - левую.

    Сердце со всех сторон непосредственно прилежит к околосердечной сорочке и только через нее имеет отношение к окружающим его органам. Грудино-реберная поверхность сердца прилежит частично к грудине и хрящам левых II-V ребер. Передняя поверхность сердца большей частью соприкасается с медиастинальной плеврой и передними реберно-медиастинальными плевральными синусами. Нижняя, диафрагмальная, поверхность сердца прилежит к диафрагме. Задняя, медиастинальная, поверхность соприкасается с главными бронхами, пищеводом, нисходящей аортой и легочными артериями.

    Строение стенки сердца

    Стенка сердца состоит из трех слоев: 1) внутренностной пластинки околосердечной сумки - эпикарда, epicardium; 2) мышечной оболочки - миокарда, myocardium; 3) внутренней оболочки - эндокарда, endocardium.

    Эпикард является серозной оболочкой. Он тонок и состоит из нескольких слоев соединительной ткани, покрытых с поверхности мезотелием. В эпикарде располагаются сосудистые и нервные сети.

    Миокард составляет главную массу стенки сердца, достигая 7/10 всей ее толщины. Он состоит из поперечнополосатых мышечных волокон особого строения. Мускулатура желудочков полностью отделена от мускулатуры предсердий правым и левым волокнистыми кольцами, anuli fibrosi, находящимися между предсердиями и желудочками и ограничивающими предсердно-желудочковые отверстия. Внутренние полуокружности волокнистых колец переходят в волокнистые треугольники, trigona fibrosa.

    От волокнистых колец и треугольников начинаются мышечные слои сердца (рис. 144).


    Рис. 144. Направление мышечных пучков в различных слоях миокарда. Левый желудочек. 1 - поверхностный продольный слой миокарда; 2 - внутренний продольный слой миокарда; 3 - "водоворот" сердца; 4 - створки левого предсердно-желудочкового клапана; 5 - сухожильные хорды; 6 - круговой средний слой миокарда; 7 - сосочковая мышца

    Мышечная оболочка предсердий состоит из поверхностного - поперечного и глубокого - петлеобразного слоя, идущего почти вертикально. Глубокий слой образует кольцевые утолщения в устьях крупных сосудов. Петлеобразные пучки выпячиваются в полость предсердий и ушек и называются гребенчатыми мышцами, mm. ресtinati.

    Мышечная оболочка желудочков слагается из трех слоев: наружного - продольного, среднего - циркулярного и внутреннего - продольного. Наружный и внутренний слои являются общими для обоих желудочков и переходят непосредственно в области верхушки сердца друг в друга. Круговые мышцы формируют как общие, так и изолированные слои отдельно для левого и правого желудочков. Внутренний слой образует мясистые перекладины и сосочковые мышцы. Межжелудочковая перогородка сформирована на большем протяжении мышцами (pars muscularis), а вверху на небольшом участке - соединительнотканной пластинкой, покрытой с двух сторон эндокардом (pars membranacea).

    В миокарде имеется особая система волокон, обладающих способностью проводить импульсы от нервного аппарата ко всем мышечным слоям сердца и координировать последовательность сокращения стенки камер сердца. Эти специализированные мышечные волокна составляют проводящую систему сердца, которая состоит из узлов и пучков (рис. 145).

    Синусно-предсердный узел , nodus sinuatrialis, залегает в стенке правого предсердия между правым ушком и верхней полой веной. Узел имеет в диаметре 1-2 мм, от него отходят пучки, идущие в миокард предсердий, к устьям полых вен, а также к предсердно-желудочковому узлу.

    Предсердно - желудочковый узел , nodus atrioventricular is, лежащий в заднем отделе межпредсердной перегородки, овальной формы, длиной до 5 мм и шириной до 4 мм. От него отходит в межжелудочковую перегородку предсердно-желудочковый пучок, fasciculus atrioventricularis, имеющий в длину до 8 мм. Предсердно-желудочковый пучок делится в перегородке на правую, crus dextrum, и левую, crus sinistrum, ножки, лежащие под эндокардом или в толще мышечного слоя перегородки вблизи ее поверхностей, обращенных в полости соответствующих желудочков. Левая ножка пучка последовательно делится на ряд ветвей до очень тонких пучков, переходящих в миокард, правая ножка, более тонкая, идет почти до верхушки сердца, где, разделяясь, переводит в миокард. В нормальных условиях автоматический режим сердечных сокращений возникает в синусно-предсердном узле. Импульсы из узла распространяются по его пучкам к мышцам предсердий, до предсердно-желудочкового узла и далее по предсердно-желудочковому пучку, его ножкам и ветвям на мышцы желудочков. Распространение возбуждения происходит сферически с внутренних слоев миокарда на наружные.

    Эндокард выстилает полость сердца, включая сосочковые мышцы, сухожильные струны, трабекулы и клапаны. В желудочках эндокард тоньше, чем в предсердиях. Он состоит, как и эпикард, из нескольких слоев соединительной ткани, покрытых эндотелием. Створки клапанов представляют собой складки эндокарда, в которых находится соединительнотканная прослойка.

    Артерии сердца

    Кровоснабжение сердца осуществляется, как правило, двумя венечными артериями - левой и правой, аа. coronariae sinistra et dextra, берущими начало от восходящей аорты в верхних отделах передних аортальных синусов (рис. 146). Редко бывает большее количество венечных артерий - 3-4.

    Левая венечная артерия по отхождении от аорты ложится в венечную борозду и между легочным стволом и левым ушком разделяется на две ветви: тонкую - переднюю межжелудочковую, ramus interventricularis anterior, и более крупную - левую окружающую ветвь, ramus circujnflexus sinister. Первая идет вместе с большой веной сердца в одноименной борозде на передней поверхности сердца до верхушки, где соединяется с задней межжелудочковой ветвью правой венечной артерии. Левая окружающая ветвь проходит в венечной борозде, где ее конечная часть анастомозирует с ветвью правой венечной артерии.

    Правая венечная артерия проходит от аорты вправо и назад и отдает заднюю межжелудочковую ветвь, ramus interventricularis posterior.

    Главные ветви обеих венечных артерий отдают вторичные ветви, среди которых выделяют артерии предсердий, аа. atriales, сердечных ушек, аа. auriculares, артерии желудочков, аа. ventriculares, переднюю и заднюю артерии перегородок, аа. septi anterior et posterior, сосочковых мышц, аа. papillares. Указанные ветви венечных артерий разветвляются и образуют за счет множественных анастомозов единое интрамуральное русло с сетями артерий, расположенных во всех слоях стенки сердца (рис. 147).

    Левая венечная артерия снабжает кровью левое предсердие, всю переднюю и большую часть задней стенки левого желудочка, часть передней стенки правого желудочка и передние 2/3 межжелудочковой перегородки. Правая венечная артерия васкуляризирует правое предсердие, часть передней и всю заднюю стенку правого желудочка, небольшой участок задней стенки левого желудочка, межпредсердную и заднюю треть межжелудочковой перегородки.

    Однако подобное распределение ветвей артерий бывает не всегда. Выделяют три типа кровоснабжения сердца: левовенечный - с преобладанием зоны снабжения левой венечной артерией, правовенечный - с преобладанием зоны снабжения правой венечной артерией, и равномерный, при котором зоны ветвления обеих артерий приблизительно одинаковы.

    Кроме венечных артерий, кровоснабжение сердца частично может происходить за счет иногда встречающихся дополнительных артерий, подходящих к сердцу на его медиастинальной поверхности, а также a. thoracica interna по анастомозам между артериями околосердечной сорочки и артериями сердца.

    Вены сердца

    Отток венозной крови из вен стенки сердца происходит в основном в венечную пазуху, sinus coronarius, впадающую непосредственно в правое предсердие. В меньшей степени кровь оттекает непосредственно в правое предсердие через передние вены сердца, vv. cordis anteriores, и через венозные выпускники, называемые наименьшими венами, vv. cordis minimae (см. рис. 146).

    Венечная пазуха формируется из слияния следующих вен: 1) большой вены сердца, v. cordis major, собирающей кровь из передних участков сердца и идущей по передней межжелудочковой борозде вверх и далее поворачивающей влево на заднюю поверхность сердца, где она непосредственно переходит в sinus coronarius; 2) задней вены левого желудочка, v. posterior ventriculi sinistri, собирающей кровь из задней стенки левого желудочка; 3) косой вены левого предсердия, v. obliqua atrii sinistri, идущей из левого предсердия; 4) средней вены сердца, v. cordis media, лежащей в задней межжелудочковой борозде и дренирующей прилежащие отделы желудочков и межжелудочковой перегородки; 5) малой вены сердца, v. cordis parva, проходящей в правой части венечной борозды и впадающей в v. cordis media.

    Система вен венечной пазухи осуществляет отток венозной крови от всех отделов сердца, за исключением передней стенки правого желудочка, откуда кровь отводится по передним венам сердца. Наименьшие вены бывают выражены различно; в основном они впадают в правую половину сердца.

    Лимфатические сосуды сердца расположены во всех его слоях, где они возникают от интрамуральных сетей лимфатических капилляров. Отводящие лимфатические сосуды в основном следуют по ходу ветвей венечных артерий и впадают в передние средостенные и трахео-бронхиальные лимфатические узлы.

    Иннервация сердца

    Осуществляется за счет интрамуральных сердечных сплетений, образованных ветвями шейно-грудного нервного сплетения и скоплениями нервных клеток. Интрамуральные нервные сплетения расположены во всех слоях сердца, но самое мощное сплетение лежит под эпикардом. Шейно-грудное нервное сплетение формируется за счет сердечных нервов от симпатического ствола и сердечных ветвей от блуждающих нервов.

    Рентгеноанатомия сердца

    При рентгенологическом исследовании можно получить различные изображения сердца. При сагиттальном задне-переднем направлении луча можно получить ортодиаграмму сердца с точным проецированием его основных отделов на переднюю грудную стенку.

    При рентгенографии используют четыре проекции: сагиттальную, 1-е косое положение (обследуемого устанавливают правым плечом вперед), 2-е косое положение (обследуемый стоит левым плечом вперед) и фронтальную. При таких проекциях хорошо определяются контуры всех отделов сердца и крупных сосудов корня, положение сердца, его размеры и форма, происходящие смещения, расширения камер. Можно определить величину и характер смещений сердца при его сокращениях, используя метод рентгенокимографии.

    В современных условиях широкие возможности для обследования сердца дает метод ангиокардиографии, при котором в сердце вводят контрастное вещество и путем серии скоростных рентгеновских снимков фиксируют его распространение в камерах сердца. Таким путем определяются патологические сообщения между камерами (незаращение межпредсердной и межжелудочковой перегородок), аномалии развития (трехкамерное сердце и др.).

    Наконец, имеется возможность подвести зонд в устье венечной артерии и получить снимок ее ветвления в стенке сердца, а также определить состояние сосудистого русла (сужения, закрытие просвета склеротическим процессом, тромбозы и т. д.).

    Околосердечная сумка

    Околосердечная сумка , или перикард, pericardium, - замкнутый серозный мешок, в котором помещается сердце. В нем различают два слоя: наружный - волокнистый, pericardium fibrosum, и внутренний - серозный, pericardium serosum.

    Наружный волокнистый слой на крупных сосудах корня сердца переходит в их адвентицию, а спереди прикрепляется к грудине посредством фиброзных тяжей - грудино-перикардиальных связок, ligg. sternopericardiacae.

    Серозная околосердечная сумка имеет два листка или пластинки: пристеночную, lamina parietalis, и внутренностную, висцеральную, lamina visceralis, между которыми имеется полость перикарда, cavum pericardii, где содержится небольшое количество серозной жидкости. Между париетальной и висцеральной пластинками серозной околосердечной сумки образуется ряд пазух - синусов перикарда. Одна из них - передний синус - находится между передней, грудино-реберной, и нижней, диафрагмальной, частями перикарда. Другой - поперечный синус перикарда - лежит позади аорты и легочного ствола, третий - косой синус - на задней поверхности сердца между устьевыми отделами легочных вен.

    Кровоснабжение перикарда осуществляется перикардо-диафрагмальными артериями (ветви аа. thoracicae internae). Между разветвлениями артерий в эпикарде образуются анастом.озы с ветвями венечных артерий. Вены перикарда образуют перикардиальные вены, впадающие в vv. phrenicae superiores et v. azygos.

    Лимфатический отток из внутриорганных сетей происходит по отводящим лимфатическим сосудам, следующим в основном по ходу кровеносных сосудов перикарда в передние средостенные, окологрудинные и трахео-бронхиальные лимфатические узлы.

    Иннервация перикарда осуществляется интрамуральным нервным сплетением, формирующимся за счет ветвей шейно-груднога нервного сплетения.