Страница 66 из 76

Видео: Определение с реактивного белка в сыворотке крови

Показатели общего белка плазмы крови и его отдельных фракций имеют важное значение в диагностике многих заболеваний.
Определение общего белка сыворотки крови. Может производиться с помощью ряда методов (азотометрические, гравиметрические, нефелометрические, рефрактометрические, спектрофотометрические и др.). Из колориметрических способов биуретовый метод наиболее специфичен, достаточно чувствителен, точен и практически доступен. Этот метод представлен в качестве унифицированного для определения общего белка в сыворотке крови. Основан он на следующем принципе: белки реагируют в щелочной среде с меди сульфатом, образуя соединения, окрашенные в фиолетовый цвет.
Техника определения общего белка такова. К 5 мл рабочего раствора биуретового реактива (4,5 г сегнетовой соли растворяют в 40 мл 0,2 н. NaOH, прибавляют 1,5 г C11SO4 5Н2О и 0,5 г К1 и доливают до 100 мл 0,2 н. NaOH) добавляют 0,1 мл сыворотки крови. Через 30 минут пробу колориметрируют на ФЭКе в 10 мм кювете при зеленом светофильтре против контроля. Для приготовления контроля к 5 мл биуретового реактива добавляют 0,1 мл 0,9 % NaCl. Расчет ведут по калибровочному графику.
Нормальная концентрация общего белка у взрослых колеблется от 62 до 82 г/л. Данные по возрастам у детей представлены в табл. 49.
Таб.г. 49. Содержание белковых фракций в процентах от общего количества белка (средние данные) по возрастам (по Ю. Е. Вельтищеву, 1979)

Наиболее частыми причинами развития гипопротеинемип являются недостаточное поступление белков в организм с пищей (белковое голодание), значительные потери белка и угнетение процессов биосинтеза белков крови.
Недостаточное поступление белков в организм наблюдается при нарушениях деятельности желудочно-кишечного тракта (сужение пищевода, пилороспазм и пилоростеноз, опухоли, воспалительные процессы желудочно-кишечного тракта и др.), малом содержании белка в рационе или несбалансированном аминокислотном составе и др
К потерям белка организмом ведут заболевания почек, протекающие с протеинурией, острые и хронические кровотечения, обширные экссудаты и выпоты в серозные полости, ожоги и др.
Гипопротеинемия, связанная с понижением биосинтеза белка в печени, встречается при хронических гепатитах, интоксикациях, циррозах, длительных нагноительных процессах, злокачественных образованиях и др.
Гиперпротеинемия-явление сравнительно редкое. Наблюдается при эксикозах, несахарном диабете, непроходимости кишечника, генерализованном перитоните, миеломной болезни (стойкая до 120 г/л).
Методы определения белковых фракций в сыворотке крови. Исследование количественных взаимоотношении между отдельными белковыми фракциями имеет важное диагностическое значение, так как позволяет дифференцировать отдельные виды гипо- и гиперпротеинемии, а также ряд заболеваний, не сопровождающихся изменением содержания общего белка.
Для фракционирования белков плазмы используются высаливание нейтральными солями, электрофоретическое фракционирование, иммунологические и седиментационные методы, преципитирование этиловым спиртом при низкой температуре, хроматография, гельфильтрация. Наиболее часто из них применяются электрофоретические методы, основанные на различной скорости передвижения белков в электрическом поле в зависимости от их электрического заряда и других физических и химических свойств.
Широкое распространение получили методы электрофореза на бумаге и гелях - агаровом, крахмальном и других, особенно на полиакриламидном геле, с помощью которого можно получить около 30 фракций белка. Чаще стал применяться электрофорез на пленках ацетата целлюлозы. Однако в клинико-диагностических лабораториях используется преимущественно метод электрофореза на бумаге (В. Г. Колб, В. С. Камышников, 1976). В основе этого метода лежит следующий принцип: под влиянием постоянного электрического поля белки сыворотки, обладающие электрическим зарядом, движутся по смоченной буферным раствором бумаге со скоростью, которая зависит от величины заряда и молекулярной массы. Белки сыворотки крови при этом разделяются на пять фракции: альбумины и глобулины а1, а2, в, у.
Нормальное соотношение альбуминов и глобулинов (альбумин-глобулиновый коэффициент) равно примерно 2:1. Процентное соотношение отдельных фракций белков у взрослых и детей в зависимости от возраста представлено в табл. 49. Общее количество белка и белковых фракций в крови изменяется при различных заболеваниях у детей.
У взрослых и детей старшего возраста выделяют следующие типы электрофореграмм: I) острого воспалительного процесса- 2) подострого хронического воспаления- 3) нефротического симптомокомплекса- 4) злокачественных новообразовании- 5) гепатитов- 6) цирроза печени- 7) механической желтухи- 8) у- и р-глобулиновых плазмацитом.

В первом типе отмечается снижение уровня альбуминов и повышение a1, а2-глобулинов, а в более поздних стадиях и у-глобулинов- во втором - умеренное уменьшение фракций альбуминов и выраженное увеличение а2-, у-глобулиновых фракций- в третьем - значительное уменьшение альбуминов, повышение а-глобулинов при умеренном понижении у-глобулинов- в четвертом - снижение альбуминов и значительное увеличение всех глобулиновых фракций- в пятом - умеренное уменьшение альбуминов и увеличение у- и (3-глобулинов- в шестом - снижение альбуминов при сильном увеличении у-глобулиновой фракции, основание которой расширено- в седьмом - уменьшение альбуминов и умеренное увеличение СС2-, Р- и у-глобулинов- в восьмом - общий белок резко повышен, альбумины и большинство глобулинов снижены, в зависимости от вида больше увеличены у- или в-гло- булины.
У грудных детей наблюдается физиологическая недостаточность биосинтеза у-глобулинов. Поэтому при инфекционных заболеваниях у них в- и а2- глобулины повышаются более значительно, чем у детей старшего возраста и взрослых. Постоянное повышение у-глобулинов у детей раннего возраста может свидетельствовать о септическом состоянии.


Белок – это основное азотсодержащее органическое вещество. Один грамм азота содержится в 6,25 грамм белка (азотистый коэффициент), т. е. белок примерно на 16% состоит из азота. Следовательно, исследовав обмен азота в организме, можно оценить состояние белкового обмена. Об интенсивности синтеза белков можно судить по количеству поступившего в организм азота, распад белков можно оценить по количеству выведенного азота с мочой и потом (количество азота, теряемого с потом, незначительно в обычных условиях, поэтому азот пота принято чаще всего не учитывать). Сопоставить синтез и распад белков можно, определив азотистый баланс.

Азотистый баланс – это соотношение количества поступившего в организм и выведенного из него азота. Выделяют следующие виды азотистого баланса - положительный, отрицательный и азотистое равновесие. Положительный азотистый баланс: поступление азота в организм превышает выведение его из организма (ретенция азота в организме). Это свидетельствует о том, что синтез белка превышает его распад. В норме такой вид азотистого баланса встречается при росте организма, во время беременности, реконвалесценции, прибавлении мышечной массы при занятиях спортом. Отрицательный азотистый баланс – поступление азота меньше его выделения из организма. Это свидетельствует о том, что синтез белка меньше его распада. Такой вид азотистого баланса встречается в следующих ситуациях:

1) белковое голодание (поступает недостаточное количество белков в организм или с пищей поступают неполноценные белки. Неполноценный белок не содержит одну или несколько незаменимых аминокислот);

2) нарушение всасывания аминокислот;

3) старение;

4) болезни или состояния, сопровождающиеся выраженным распадом тканей (опухоли, кахексия);

5) снижение синтеза белка из-за ферментопатии.

Азотистое равновесие – поступление и выведение азота одинаковое. Свидетельствует об одинаковой интенсивности синтеза и распада белка (Рагузин А.В., Сетко Н.П., Ширшов О.В., Фатеева Т.А 2001)

ЗАКЛЮЧЕНИЕ

Белки (протеины) – это сложные высокомолекулярные азотсодержащие соединения, состоящие из аминокислот. Набор и последовательность аминокислот в белке характеризуют как его биохимическую специфичность, так и ценность в питании. Из нескольких десятков известных в настоящее время аминокислот в составе пищевых продуктов содержится 20.

Аминокислоты, из которых состоят белки, делят на заменимые и незаменимые.Незаменимые аминокислоты обязательно должны поступать с пищей в необходимых количествах и в определенных соотношениях. Заменимые аминокислоты могут претерпевать в организме взаимопревращения или образовываться из незаменимых в результате различных биохимических превращений (реакции переаминирования, синтез из небелковых соединений с использованием аммиака в качестве источника азота). К незаменимым аминокислотам относятся аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, триптофан, фенилаланин, треонин (причем аргинин и гистидин считаются незаменимыми для детей в возрасте до 3 лет). Заменимые аминокислоты: аланин, аспарагин, аспарагиновая кислота, глицин, глутаминовая кислота, глутамин, серин, цистин, тирозин, пролин.

Белки организма человека выполняют жизненно важные функции: пластическую, энергетическую, каталитическую, регуляторную, защитную, транспортную, рецепторную.

Согласно физиологическим нормам питания, действующим в нашей стране, общее количество белка в рационах питания детей должно составлять удвоенное количество по сравнению с обеспечивающим азотистый баланс или азотистое равновесие, а для взрослого населения -1,5 количество. Для дошкольников - 53- 69 г, для школьников - 77-98 г, для взрослого населения: у женщин - 58-87 г и у мужчин - 65-117 г (в зависимости от их профессиональной деятельности).

СПИСОК ЛИТЕРАТУРЫ

1. Рагузин А.В., Сетко Н.П., Ширшов О.В., Фатеева Т.А. Физиолого – гигиенические аспекты обмена веществ, обмена энергии и рационального питания: Методическое пособие для самостоятельной работы студентов медико-профилактического факультета – Оренбург: Издательский центр ОГАУ, 2001. - 40 с.

2. Физиология человека/Под редакцией Г.И. Косицкого – М.: «Медицина», 1985. – 560 с.

3. Биохимия: Учеб. для вузов / В.П. Комов, В.П. Шведова. – М.: Дрофа, 2004. – 640 с.

4. Руководство к практическим занятиям по гигиене питания: учеб. пособие для вузов/ Сетко Н.П., Сетко А.Г., Фатеева Т.А., Володина Е.А., Тришина С.П., Чистякова Е.С.; под общ. Ред. Н.П. Сетко. – Оренбург: ОрГМА, 2011. – 652 с.

Для оценки состояния белкового обмена, а также функций отдельных органов проводят определение в сыворотке крови общего белка и его фракций, мочевины, креатинина и других составляющих остаточного азота.
Для определения общего белка сыворотки крови используют методы сжигания (къельдалеметрические), рефрактометрические, спектрофотометрические и др. В лабораториях ветеринарной медицины преимущественно пользуются рефрактометрическим и колориметрическим (биуретовым) методами. При определении белковых фракций сыворотки крови используют электрофоретические (на агаровом геле, в полиакриламидном геле, на бумаге, ацетате целлюлозы), турбидиметрические (высаливание нейтральными солями), седиментационные (разделение белков на фракции ультрацентрифугированием) методы и др.
В клинической практике для разделения белков пользуются чаще электрофоретическими и турбидиметрическими методами. При электрофорезе на бумаге получают 5 основных фракций: альбумины, ар, (Х2, Р- и 7-глобулины. Недостатки этого метода - длительность проведения анализа (результаты исследования можно получить только на 2-3-й день), не совсем четкое разделение фракций белков. Электрофорезом на агаровом геле получают более четкое разделение белковых фракций, чем на бумаге, однако сложность процедуры приготовления геля не позволяет широко внедрять этот метод в лабораторную практику. С помощью электрофореза на полиакриламидном геле можно получать около 30 фракций белка. Недостаток метода - трудность количественной оценки полученных фракций.
Унифицированным признан метод электрофореза на ацетате целлюлозы. При отсутствии в лаборатории аппарата для электрофореза используются методы осаждения белков нейтральными солями с последующим турбидиметрическим измерением степени помутнения среды на ФЭКе. Соотношение альбуминов и глобулинов в сыворотке крови определяют белково-осадочными пробами (сулемовой, с цинк-сульфатом, тимоловой и др.).
Под остаточным азотом понимают количество его, которое остается в крови после осаждения белков. Сюда входит азот мочевины, аминокислот, креатинина, креатина, мочевой кислоты, инди- кана, аммиака, полипептидов, нуклеотидов, биогенных аминов и других продуктов белкового обмена. Основная часть остаточного азота крови - азот мочевины, на долю которого приходится не менее 1/2 всего небелкового азота крови.
Около 1 /4 остаточного азота составляет азот аминокислот, креатина и креатинина. Наибольшее клиническое значение имеет определение отдельных фракций остаточного азота, в частности мочевины, аминного азота, креатина и креатинина, мочевой кислоты, индикана.
Для определения мочевины в крови, моче и других биологических жидкостях применяют диацетилмонооксимные, уреазные, ги- похлоритные, гипобромидные, ксантгидроловые и другие методы. Наиболее распространенным является колориметрический метод, основанный на взаимодействии мочевины с диацетилмоноокси- мом с образованием окрашенных продуктов (реакция Фирона). Однако более точными и специфическими являются методы определения мочевины с использованием фермента уреазы.
Для определения белка, альбумина, мочевины, креатинина, а также других биохимических показателей возможно применение отражательных фотометров и диагностических полосок системы «сухой химии», биохимических автоанализаторов. Пробирки для взятия крови не должны содержать детергенты и другие моющие средства. Хранят их закрытыми.

Еще по теме МЕТОДЫ ОЦЕНКИ СОСТОЯНИЯ БЕЛКОВОГО ОБМЕНА:

  1. МЕТОДЫ ОЦЕНКИ СОСТОЯНИЯ ВОДНО-ЭЛЕКТРОЛИТНОГО И МИНЕРАЛЬНОГО ОБМЕНОВ
  2. БОЛЕЗНИ НАРУШЕНИЙ БЕЛКОВОГО, УГЛЕВОДНОГО И ЖИРОВОГО ОБМЕНА ОЖИРЕНИЕ - ADIPOSITAS
  3. ОЦЕНКА СОСТОЯНИЯ РАСТИТЕЛЬНОГО ПОКРОВА ПОСЛЕСИЛЬНОГО ТОРФЯНОГО ПОЖАРА
  4. Определение белковых фракций в сыворотке крови турбидимет- рическим (нефелометрическим) методом.
  5. ОПЫТ количественной оценки динамических СОСТОЯНИЙ И УСТОЙЧИВОСТИ СОСНОВЫХ НАСАЖДЕНИЙ НАОБЪЕКТАХ ГИДРОМЕЛИОРАЦИИ

Определения общего белка в сыворотке \плазме\ крови и других биологических жидкостях.

Все известные способы определения концентрации общего белка в сыворотке крови подразделяют на следующие основные группы:

1.Азотометрические, основанные на установлении количества белкового азота - метод Кьельдаля и его модификации.

2.Способы, состоящие в определении плотности сыворотки - неточные, т.к. плотность зависит не только от содержания белков.

3.Весовые - белки сыворотки крови осаждают, высушивают до постоянного веса и взвешивают на аналитических весах. Методы трудоемки и требуют большого количества сыворотки.

4.Рефрактометрические - не совершенны, т.к. часть рефракции обуславливается иными компонентами сыворотки.

5.Колориметрические - наиболее распространенным является биуретовый метод, являющийся унифицированным.

6.Другие методы - нефелометрические, поляриметрические, спектрофотометрические не получили широкого распространения.

Отечественной промышленностью налажен выпуск наборов для исследования концентрации общего белка в сыворотке крови по биуретовой реакции. На этом же принципе основано измерение уровня общего белка в биологических жидкостях с помощью реактивов, поставляемых различными фирмами.

Определение общего белка в сыворотке крови по биуретовой реакции.

Реактивы.

1.0,9% раствор хлористого натрия /0,9 г хлористого натрия на 100 мл дистиллированной воды/.

2.0,2Н раствор едкого натрия, свободного от углекислого газа /20 мл 1Н едкого натрия доводят до 100 мл прокипяченной дистиллированной водой/.

3.Биуретовый реактив: 4,5г сегнетовой соли растворяют в 40 мл 0,2Н раствора едкого натрия, затем прибавляют 1,5 г сернокислой меди и 0,5 г едкого натра. Хранят в посуде из темного стекла, раствор стоек.

4.0,5% раствор йодистого калия в 0,2Н растворе едкого натрия.

5.Рабочий раствор биуретового реактива: 20 мл биуретового реактива смешивают с 80 мл раствора йодистого калия. Раствор стоек.

6.Стандартный раствор альбумина из человеческой или бычьей сыворотки: 10% раствор альбумина в 0,9% растворе хлористого натрия /1 мл раствора содержит 0,1 г белка - 100г/л/.

Принцип метода.

Белки реагируют в щелочной среде с сернокислой медью с образованием соединений, окрашенных в фиолетовый цвет \биуретовая реакция/.

Ход определения: к 5 мл рабочего раствора биуретового реактива прибавляют 0,1 мл сыворотки, смешивают, избегая образования пены. Через 30 мин \ и не позднее часа\ измеряют на ФЭКе в кювете с толщиной слоя 1 см при длине волны 540-560 нм \зеленый светофильтр\ против контроля.

Контроль : к 5 мл рабочего раствора биуретового реактива прибавляют 0,1 мл 0,9% раствора хлористого натрия, далее обрабатывают как опыт.

Расчет ведут по калибровочному графику.

Нормальные величины общего белка - 65-85 г\л.

Построение калибровочного графика.

Реактив: стандартный раствор альбумина 10% в 0,9% растворе хлористого натрия, 1 мл которого содержит 0,1 г белка. Для приготовления реактива можно использовать лиофилизированный альбумин из набора «Билирубин-эталон» фирмы Лахема. В инструкции набора указывается содержание альбумина в мг. Исходя из этого, делаем расчет, сколько необходимо к данному альбумину прилить 0,9% хлористого натрия, чтобы получить в 1 мл раствора 0,1 г белка.

Например: в инструкции набора указано, что лиофилизированный альбумин содержит 160 мг альбумина. Расчет: стандартный 10% раствор содержит 10г или 10 000 мг в 100 мл

в эталоне 160 мг в Х

Х = 1,6 мл, т.е. добавляем в бутылочку, где содержится альбумин 1,6 мл 0,9% хлористого натрия и получаем, что 1 мл этого раствора содержит 0,1 г белка.

После приготовления стандартного раствора готовим из него серию рабочих разведений по таблице:

Вычисление концентрации белка в г\л.

1 мл стандартного 10% р-ра содержит 0,1 г белка

0,04 г белка содержится в 1 мл раствора

Х в 1 000 мл

Из каждого рабочего разведения соответствующей концентрации берут по 0.1 мл в 3-4 пробирки, т.е. каждое определение проводят в 3-4 параллелях и в каждую пробирку прибавляют по 5 мл биуретового реактива. Через 30-60 мин колориметрируют на ФЭКе против контроля. Получаем на каждую концентрацию 3-4 показания оптической плотности. Находим из них среднее арифметическое, предварительно отбросив резко отклоняющиеся показания.

Строим калибровочный график: по оси абсцисс откладываем концентрацию белка в г\л, т.е. 40-60-80-100г\л; а по оси ординат показания оптических плотностей, полученных на ФЭКе \среднее арифметическое/.

Калибровочная кривая должна иметь вид примой, проведенной через 3 точки. Данную кривую проверяют на сыворотках доноров \не менее 3-4 определений\. При получении нормальных показаний белка, т.е. в пределах нормы; построенную калибровочную кривую используют в работе.

Примечание.

1.Калибровочную кривую необходимо строить не менее 1 раза в год, а также каждый раз после ремонта и на вновь полученном фотоэлектроколориметре.

2.Линейная зависимость между оптической плотностью и концентрацией сохраняется до Д=0,5. Если в сыворотке содержится большее количество белка, то сыворотку разводят хлористым натрием вдвое.

Определение мочевины в крови и моче.

Мочевина является основным азотсодержащим продуктом катаболизма белков.

При распаде белков накапливается аммиак – токсичное вещество. Основным путем обезвреживания аммиака является синтез мочевины в печени. Концентрация мочевины в крови зависит от скорости ее образования в печени и удаления из организма через почки с мочой.

У большинства пациентов скорость образования мочевины отражает скорость утилизации и распада клеточного белка.

При тяжелой патологии печени способность гепатоцитов синтезировать мочевину нарушается, аммиак накапливается, а содержание мочевины в крови снижается.

Выведение образовавшейся мочевины происходит с мочой и зависит от выделительной функции почек.

Определение мочевины проводится следующими методами:

1. Химический метод по цветной реакции с диацетилмонооксимом.

2. Ферментативный метод (уреазный)

3. Метод «сухой химии».

Определение мочевины по реакции с диацетилмонооксимом.

Реактивы.

1.Диацетилмонооксим и тиосемикарбазид или реагент в таблетках.

2.Эталонный или стандартный раствор, содержащий в 100 мл 100 мг мочевины или в 1 мл - 1 мг.

Приготовление растворов.

Раствор реагента: 1 таблетку растворить при нагревании в мерной колбе на 50 мл в 30 мл дистиллированной воды. После охлаждения довести объем до отметки. Раствор устойчив несколько недель.

Раствор серной кислоты: в мерную колбу на 250 мл вносят 150 мл дистиллированной воды и 25 мл 96% серной кислоты ЧДА. Нагревают после охлаждения доводят объем до метки. Раствор устойчив.

Рабочий раствор реагента и серной кислоты готовится перед реакцией в соотношении 1:1 (см. схему определения).

Принцип метода.

Мочевина образует с диацетилмонооксимом при наличии тиосемикарбазида и солей железа в сильно кислой среде комплекс красного цвета, интенсивность окраски пропорциональна концентрации мочевины.

Ход определения.

Реактивы Опыт Контроль Стандарт

1.сыворотка 0,02 - -

2.рабочий раствор

а\раствор реагента 2,0 2,0 2,0

б\раствор серной

кислоты 2,0 2,0 2,0

3.стандартный р-р

мочевины - - 0,02

Выдержать 10 минут в кипящей водяной бане. Охладить 2-3 минуты в струе холодной воды. Колориметрировать не позднее, чем через 15 минут: светофильтр зеленый \при длине волны 490-540\, кювета на 1 см, против контроля.

Расчет : До

Х= -------- * С ст в ммоль\л, где

До - оптическая плотность опыта;

Дст - оптическая плотность стандартного раствора мочевины или эталона;

С ст - концентрация мочевины в стандартном растворе;

Х - концентрация мочевины в пробе сыворотки.

Для пересчета мг % в ммоль\л используется коэффициент – 0,1665.

Нормальные величины мочевины в сыворотке крови - 2,5 -8,3 ммоль\л.

Примечания.

1. Выше приведенный ход определения можно модифицировать, увеличив объемы всех отмериваемых растворов в 2-3 раза, в зависимости от объема кювет.

3. Перерасчет показателей мочевины в азот мочевины можно сделать умножением на фактор 0,466.

4. Тиосемикарбазид является ядовитым реактивом. При работе с ним необходимо соблюдать правила работы с ядовитыми веществами.

Количественное определение белков сыворотки крови. Изменения белкового состава крови, не являясь полностью специфическим проявлением поражений печени, отражают характер патологического процесса (воспаление, некроз, новообразование и др.), а также нарушение белковообразовательной функции печени и ретикуло-гистиоцитарной системы. Существуют различные физико-химические методы количественного определения белков сыворотки: рефрактометрические способы, колориметрические способы (биуретовые методы), иефелометрические способы и электрофоретическое фракционирование. Нормальные величины для общего белка сыворотки при использовании методов, основанных на высаливании, от 7 до 8 г%, из них 3,5-5,1 г% альбуминов и 2,5-3,5 г% глобулинов. Отношение количества альбуминов к количеству глобулинов (см. Альбумин-глобулиновый коэффициент) равно 1,5-2,3. Электрофоретический анализ (см. Электрофорез) дает в норме следующие соотношения отдельных белковых фракций (в %): альбумины - 55-60; α1-глобулины- 2,1-3,5; α2 -глобулины- 7,2-9,1; β-глобулины- 9,1- 12,7; ү-глобулины- 16-18 общего содержания белка. Гиперпротеинемия наблюдается при хроническом гепатите и постнекротическом циррозе печени. Гипопротеинемия - чаще при портальном циррозе, особенно с асцитом.

Падение количества альбуминов сыворотки вследствие нарушения их синтеза в печени наблюдается при тяжелых формах гепатита, длительной механической желтухе и особенно у больных циррозом печени (в 85% случаев). Почти постоянно отмечается нарастание ү-глобулинов при циррозах печени (чаще при постнекротическом), хроническом гепатите, поражении внепеченочных желчных путей, сопровождающемся инфекцией, и при первичном раке печени. Обычно повышение процентного содержания β-глобулинов сочетается с высоким уровнем липидов сыворотки; увеличение количества α2-глобулинов наблюдается при хроническом гепатите, воспалении желчных путей, длительной механической желтухе. Особенно резкое повышение содержания α2-глобулинов указывает на возможность злокачественного новообразования печени. При тяжелых формах цирроза печени на электрофореграмме наблюдается увеличение и слияние β- и ү-глобулиновых фракций.

Осадочные пробы. По этим пробам можно косвенно судить о состоянии белкового состава крови и в известной мере о функциональном состоянии печени. Результаты осадочных проб зависят не только от соотношения и природы белковых фракций сыворотки крови, но и от присутствия в ней небелковых веществ (липидов, электролитов и др.), связанных с белком.

Сулемовая проба основана на осаждении белков сыворотки крови раствором сулемы. Результаты выражаются в миллилитрах раствора сулемы, добавляемого до получения мути (норма 1,8-2,2 мл). Эта проба чаще положительна при хроническом гепатите, циррозе печени, реже при остром гепатите. Положительная сулемовая проба наблюдается также при других воспалительных заболеваниях (пневмонии, плеврит, острый нефрит и др.).

Проба Вельтмана (см. Вельтмана коагуляционная лента) укорачивается (сдвиг влево) при острых воспалительных процессах и удлиняется (сдвиг вправо) при хронических процессах. Повреждения паренхимы печени ведут обычно к удлинению коагуляционной ленты.

Тимоловая проба основана на электрофотометрическом определении степени мутности сыворотки крови сравнительно со стандартными растворами через 30 мин. после добавления тимолового реактива. Показатели обозначаются в единицах светопоглощения (норма 1,5 ед.). Эта проба отражает больше воспалительную реакцию, чем непосредственные печеночно-клеточные повреждения. Проба положительна при безжелтушных гепатитах, жировой дистрофии печени, при циррозах печени. Повышение тимоловой пробы в конце острого гепатита может указывать на переход его в хроническую форму.

Проба Таката-Ара - образование осадка из сывороточных белков при прибавлении сулемы, соды и фуксина. В нормальных условиях осадок образуется при известных разведениях сыворотки. При заболеваниях печени он образуется при более широких границах разведения сыворотки.

Реакция положительна при выпадении хлопьевидного осадка через 24 часа не менее, чем в трех последовательных пробирках, слабо положительна при выпадении осадка в двух пробирках.

Реакция бывает положительной при хроническом гепатите, переходе его в цирроз, циррозе печени, реже - при остром гепатите. Реакция эта также положительна при других воспалительных заболеваниях (плеврит, пневмония, туберкулез и др.).

Неспецифичность осадочных проб снижает их ценность как функциональных проб печени, однако они отражают динамику развития патологического процесса (остроту, тяжесть, осложнения). Целесообразно применять их в комплексе нескольких проб и электрофоретического исследования белковых фракций.

Аммиак крови. Для определения содержания аммиака в крови чаще всего используют метод изометрической перегонки Конвея. В норме содержание аммиака в венозной крови крайне низко или равно нулю. Уровень аммиака повышается при наличии в портальной системе коллатералей, доставляющих кровь с высоким содержанием аммиака из кишечника прямо в венозную сеть. Значительное повышение аммиака в крови наблюдается при печеночной коме.

Гликопротеиды крови представляют собой высокомолекулярные комплексы, построенные из белка и мукополисахаридов. Гликопротеиды могут определяться при помощи электрофореза на бумаге. В крови гликопротеиды обнаружены во всех фракциях белков. Их среднее содержание в альбуминах составляет 20,8%; в α1-глобулинах-18,6%; в α2-глобулинах-24,8%; в β-глобулинах-22,3%; в ү-глобулинах-13,7%. Кроме того, может быть использована более простая дифениламиновая реакция (к безбелковому фильтрату сыворотки крови прибавляют дифениламиновый реактив).

При болезни Боткина и хронических заболеваниях печени в периоды обострения повышено содержание α-гликопротеидов, ү-гликопротеидов и снижен уровень гликопротеидов во фракции альбуминов; показатель дифениламиновой реакции также у значительной части этих больных повышен. При тяжелых циррозах снижается уровень гликопротеидных фракций альбуминов, а также α1 и α2-гликопротеидов, при повышении количества гликопротеидов показатель дифениламиновой реакции резко снижается. Самые большие повышения содержания α1 и α2-гликопротеидов наблюдаются при раке печени.