Органом человеческого равновесия является вестибулярный аппарат. Наряду с двигательной и зрительной системами аппарат играет главную роль в ориентировании человека в пространстве. В вестибулярные рефлексы вовлечены все ключевые внутренние органы и сердечно-сосудистая система.

Особенности реакций

Вестибулярные рефлексы имеют свои собственные характерные особенности. Специалисты в области медицины отмечают:

  1. Высокую функц-ю чувствительность вестибулярных рефлексов.
  2. Динамичность реакций.

Благодаря этому в случае наличия связи той или иной аномалии с вестибулярным аппаратом, специалист может определить, в какой фазе находится заболевание.

Отмечается исключительная функц-ная чувствительность вестибул-ного анализатора.

На этом фоне в острой, хронической и подострой стадиях болезни возникают совершенно разные реакции.

Яркие симптомы, причиняющие больному сильные мучения, нередко связываются с подострой и острой фазами патологического состояния. В случае медленного прогрессирования аномалии нарушения на вестибулярном фоне субъективно отсутствуют, а объективно проявляются достаточно деликатно. Это обуславливается тем, что компенсация вестибул-х аномалий отличается яркой выраженностью. Также это может быть обусловлено глубоким мышечно-суставным ощущением и зрением.

Не менее важной особенностью вестибулярных рефлексов следует считать их многообразие и многозначность. Степень поражения центральной нервной системы и вестибул-ного аппарата можно определить, исходя из изменений этих реакций.

Важность исследования

Вопрос исследования вестибулярных рефлексов продолжает оставаться актуальным, что обусловлено частой встречаемостью развивающихся на этом фоне аномальных состояний. Так, вестибулярные патологии диагностируются у больных, страдающих нарушениями слуха.

Изучение вестибулярных рефлексов также имеет большую социальную важность, поскольку немало людей страдает головокружениями. На этом фоне снижается их работоспособность, страдают контакты.

Знания об этих нарушениях позволяет специалисту получить информацию относительно:

  • новообразований в ГМ;
  • воспалительных патологий в ГМ;
  • травмирования ГМ;
  • стадии стволовых нарушений.

Объективность

Вестибулярные рефлексы достаточно объективны. Исследование возможно, когда больной бодрствует или находится в бессознательном состоянии. Когда человек находится в коме, у него проявляются характерные реакции на глазн-е мышцы. Чаще всего наблюдается тонич-е «утекание» органов зрения в сторону нистагма (медленная фаза).

Нарушения на вестибулярном фоне наблюдаются при различных аномалиях центральной нервной системы.

Это объясняется разнообразными анатомич-ми связями и высокой функц-ной чувствительностью актуального анализатора.

Качества

Вестибулярные рефлексы имеют следующие качества:

  1. Объективность.
  2. Высокий уровень информативности.
  3. Возможность обследования человека, когда он бодрствует или находится в коматозном состоянии.

Все это позволяет получить объективные сведения, необходимые для корректного установления диагноза. По сравнению с исследованием иных черепных нервов, информативность вестибулярн-го анализатора очень высока.

Нежелательный признак

Аналогично феномену «кукольного глаза», окуловестибулярный рефлекс наблюдается в случае наличия экзоген-х и эндоген-х интоксикаций.

Окуловестибулярный рефлекс является не очень хорошим прогностическим симптомом. В случае наличия токсического или метаболического поражения, окуловестибулярный рефлекс угнетается в несколько меньшей степени, нежели иные функции мозгового ствола.

Если нарушения функционирования мозгового ствола достаточно остры, то ряд актуальных рефлексов стремительно угасает. Также происходит замыкание рефлексов на этом уровне ЦНС.

Изучение этой группы реакций у пациентов, страдающих угнетенным сознанием, позволяет определить стадию деформирования структур ствола, а также местонахождения аномального процесса.

Основные механизмы вестибулоокулярного рефлекса

Говоря об основных механизмах вестибулоокулярного рефлекса, важно принять за основной пример глазной рефлекс с наруж-го полукружн-го канала.

Ток эндолифмы в левую сторону благодаря угловому ускорению в правую сторону. Смещение купулы прав-го горизонтальн-го канала происходит ампулопетально. На этом фоне происходит активизация парв-го ампулярн-го нерва.

Этот сигнал передается правому медиальн-му вестибулярн-му ядру. От вестибулярного правого ядра сигнал отправляется к ядрам глазодвигатн-го нерва на правой и ядру отводящ-го нерва на левой стороне.

Благодаря главному импульсу от прав-го ампулярн-го нерва происходит стимулирование мышцы-агонисты.

Также происходит активное торможение мышц, являющихся антагонистами. На этом фоне происходит сокращение наружн-й прямой (левой) и внутрен-й прямой (правой) глазных мышц. Таким образом глаз отводится влево.

Заключение

Нистагм обладает медленным компонентом, который направляется ротаторно и вверх. Одновременно с этим начинается тормозн-я реакция в левом ампулярн-м нерве. Импульсны поступают потоково. Целью являются ядра глазодвигат-ного и отводящего нервов правой стороны.

Таким образом происходит активирование и сокращение прямой нижней мышцы правого органа зрения и верхн-й косой мышцы правого органа зрения человека. На этом фоне глаза быстро двигаются в совершенно противоположную сторону.

Вестибулярная сенсорная система - группа органов чувств, используемая для анализа положения и движения тела в пространстве. Информация вестибулярной сенсорной системы используется для управления положением головы и туловища. Периферический отдел вестибулярной сенсорной системы - вестибулярный аппарат, находящийся во внутреннем ухе, представлен двумя образованиями: преддверием и полукружными каналами.

Введение. Стр. 3.
Строение вестибулярного аппарата. Стр. 4-5.
Строение проводящих путей и центров вестибулярной системы. Стр. 6.
Функциональное значение проводящих путей. Стр. 7.
Механизмы восприятия вестибулярных раздражителей. Стр. 8-9.
Вестибулярные рефлексы и их роль в пространственной ориентации.
Стр. 10-11.
Список используемой литературы. Стр. 12.

Работа содержит 1 файл

МИНИСТЕРСТВО СПОРТА И ТУРИЗМА РЕСПУБЛИКИ БЕЛАРУСИ

Учреждение образования

«Белорусский Государственный Унивеситет Физической Культуры»

Институт Туризма

Кафедра: туризм и гостеприимство

Контрольная работа по дисциплине

«Физиология человека»

по теме «Вестибулярная сенсорная система»

(вариант №7)

Выполнил: студент 2 курса 425 группы,

з/о, Факультета туризма и гостеприимства

Синкевич Евгений Александрович

Введение. Стр. 3.

Строение вестибулярного аппарата. Стр. 4-5.

Строение проводящих путей и центров вестибулярной системы. Стр. 6.

Функциональное значение проводящих путей. Стр. 7.

Механизмы восприятия вестибулярных раздражителей. Стр. 8-9.

Вестибулярные рефлексы и их роль в пространственной ориентации.

Список используемой литературы. Стр. 12.

Введение.

Вестибулярная сенсорная система - группа органов чувств, используемая для анализа положения и движения тела в пространстве. Информация вестибулярной сенсорной системы используется для управления положением головы и туловища. Периферический отдел вестибулярной сенсорной системы - вестибулярный аппарат, находящийся во внутреннем ухе, представлен двумя образованиями: преддверием и полукружными каналами. Рецепторы вестибулярного аппарата передают возбуждение нервным волокнам биполярных клеток вестибулярного узла, расположенного в височной кости. Другие отростки этих первых нейронов образуют вестибулярный нерв и вместе со слуховым нервом в составе восьмой пары черепных нервов входят в продолговатый мозг. В вестибулярных ядрах продолговатого мозга находятся вторые нейроны. Оттуда импульсы поступают к третьим нейронам в таламусе (промежуточный мозг) и далее в височную область коры больших полушарий.

Строение вестибулярного аппарата.

Периферический отдел (вестибулярный аппарат) находится в костном лабиринте пирамиды височной кости и состоит из трех полукружных каналов и преддверия. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях: верхний – во фронтальной, задний – в сагиттальной и наружный – в горизонтальной. На одном конце каждого канала имеется колбообразное расширение – ампула.

Преддверие состоит из двух отделов: мешочка (саккулус) и маточки (утрикулус). Утрикулус, саккулус и полукружные каналы состоят из тонких перепонок, образующих замкнутые трубки, - это перепончатый лабиринт, внутри которого находится эндолимфа, связанная с эндолимфой улитки. Между перепончатым и костным лабиринтом, в который заключена улитка и вестибулярный аппарат, находится перилимфа.

В каждом мешочке имеются небольшие возвышения – макулы (пятна), в которых находится отолитовый аппарат - скопление рецепторных клеток, которые покрыты желеобразной массой. Благодаря наличию в ней кристаллов кальции она получила название отолитовой мембраны. В полукружных каналах желеобразная масса не содержит отолиты и называется купулой.

Все вестибулорецепторы относятся к вторичночувствующим и делятся на два типа: клетки первого типа имеют колбообразную форму, второго типа – цилиндрическую. На своей свободной поверхности клетки имеют волоски, из них тонкие (60-80 на каждой клетке) называются стереоцилиями, а один толстый и длинный находится на периферии пучка и называется киноцилием. При изменении положения головы и тела в пространстве происходит перемещение желеобразной массы, которая отклоняет реснички, погруженные в нее. Их перемещение служит адекватным стимулом для возбуждения рецепторов. Смещение волосков в сторону киноцилия вызывает возбуждающий эффект, в противоположную сторону – тормозный.

Отолитовый аппарат преддверия воспринимает прямолинейное движение, ускорение или замедление, наклоны головы и тела в сторону, а также тряску или качку.

Раздражителем рецепторного аппарата полукружных каналов являются вращательные движения вокруг своей оси, их угловое ускорение или замедление.

Схема вестибулярного аппарата. 1, 2, 3 - полукружные каналы {вертикальный, фронтальный, горизонтальный}; 4 - отолиты; 5 - вестибулярный нерв; 6 - чувствительные волоски.

Строение проводящих путей и центров вестибулярной системы.

На рецепторных клетках берут начало и заканчиваются афферентные нервные волокна. Первый нейрон проводникового отдела – это биполярные клетки, расположенные в вестибулярном ганглии. Периферические отростки этих клеток контактируют с рецепторными клетками, а центральные в составе вестибулярного нерва (VIII пара черепно-мозговых нервов) направляются в вестибулярные ядра продолговатого мозга (второй нейрон) . Отсюда импульсы поступают к таламическим ядрам (третий нейрон),мозжечку, ядрам глазодвигательных мышц, к вестибулярным ядрам противоположной стороны, к мотонейронам шейного отдела спинного мозга, через вестибулоспинальный тракт – к мотонейронам мышц-разгибателей, к ретикулярной фармации, гипоталамусу. За счет вышеперечисленных связей осуществляется автоматический контроль равновесия тела (без участия сознания). За сознательный анализ положения тела в пространстве отвечают таламокортикальные проекции, которые заканчиваются в задней постцентральной извилине коры больших полушарий центрального отдела вестибулярного анализатора. Через вестибуло-мозжечково- таламический тракт в моторную кору кпереди от центральной извилины поступает информация о поддержании тонических реакций, связанных с оценкой позы тела.

Функциональное значение проводящих путей.

Вестибулоокулярный путь играет важную роль в механизме поддержания стабильности изображения на сетчатке при перемещениях головы и тела; за счет этой связи глаза двигаются в направлении противоположном смещению головы (ветибулоглазодвигательные рефлексы);

Вестибулоспинальная система соединяет нейроны вестибулярных ядер с мотонейронами передних рогов спинного мозга, что важно для осуществления вестибулярных рефлексов;

Вестибуломозжечковая система участвует в тонкой координации произвольной двигательной активности;

Функциональное назначение вестибулогипоталамической системы точно не выяснено, но известно, что эта связь участвует в возникновении кинестозов (укачивания).

Механизмы восприятия вестибулярных раздражителей.

Рецепторы маточки и мешочка служат датчиками гравитации и линейных ускорений. При вертикальном положении головы человека макула маточки расположена в горизонтальной плоскости, при наклоне головы покрывающая макулу отолитовая мембрана смещается, подчиняясь силе тяжести. Смещение отолитовой мембраны сгибает стереоцилий рецепторных клеток, отвечающих на деформацию, образованием рецепторного потенциала.

В зависимости от направления и степени наклона головы сильнее других возбуждается такие рецепторы, функциональная поляризация которых соответствует именно этому направлению, прочие рецепторы возбуждаются слабее или же тормозятся. Изменившееся соотношение возбужденных и заторможенных рецепторных клеток вызывает в зависимых от них нейронах вестибулярного ганглия адекватное изменение фоновой активности. Нейроны вестибулярного ганглия передают полученную информацию от рецепторных клеток в центральную нервную систему. Указанные процессы возникают не только при наклоне головы, но и при любом отклонении положения всего тела от вертикальной оси, например при спортивной или профессиональной деятельности, случайном падении, использовании аттракционов.

Макула мешочка при вертикальном положении тела и головы расположена в вертикальной плоскости, и ее отолитовая мембрана сдвигается при действии линейных ускорений, вызывая раздражение рецепторов. В зависимости от направления, в котором происходит линейное ускорение, возбуждаются наиболее чувствительные именно к нему рецепторы. Наличие нескольких популяций рецепторов, различающихся своей функциональной поляризацией, позволяет им в целом передавать сенсорным нейронам информацию о линейных перемещениях в любом направлении. Чувствительность этих рецепторов позволяет человеку ощутить прямолинейное ускорение и наклон головы. Наряду с этим рецепторный аппарат мешочка высокочувствителен к действию вибрации.

Угловые ускорения возникают при вращении тела вокруг одной из трех пространственных осей, расположенных перпендикулярно друг другу, они возникают также при поворотах головы и ее наклонах. При вращении вокруг вертикальной оси кресла с сидящим человеком у него раздражаются рецепторы горизонтального канала. Раздражение возникает в самом начале вращения, когда инертная эндолимфа остается неподвижной, что создает усилие, смещающее купулу в противоположную вращению сторону уже прекратившегося движения. В результате смещения купулы стереоцилии горизонтального канала сгибаются сначала в одном направлении, что сопровождается деполяризацией волосковых клеток, а затем - в противоположном направлении, что вызывает гиперполяризацию рецепторов. Соответственно этому волосковая клетка увеличивает или уменьшает выделение медиатора, действующего на окончание нейрона вестибулярного ганглия, что повышает или понижает его фоновую активность.

При вращении вокруг осей, перпендикулярных фронтальной или саггитальной плоскостям, аналогичные вышеописанным изменения активности рецепторов происходят в переднем или заднем вертикальных полукружных каналов. Вращение вокруг какой-либо диагональной оси вызывает движение эндолимфы в двух каналах одновременно, соответственно реагируют рецепторы, расположенные в купулах обоих каналов. Наличие трех полукружных каналов обеспечивает человеку восприятие вращения и поворотов головы в любой плоскости трехмерного пространства.

Центральные аксоны первичных сенсорных нейронов вестибулярного ганглия оканчиваются на нейронах вестибулярных ядер: верхнего, нижнего, латерального и медиального, Эти ядра представляют собой единый функциональный комплекс, в котором объединяется афферентная информация от вестибулярных ганглиев и от проприорецепторов, эта афферентация определяет характер активности нейронов вестибулярных ядер.

Осознаваемое восприятие изменений положения головы происходит в результате последовательной переработки информации сначала в вестибулярных ядрах таламуса, образующих проекцию к постцентральным извилинам. Дополнительная информация поступает в проекционную кору непрямым путем: от вестибулярных ядер в мозжечок, а из него к вентролатеральным ядрам таламуса и проекционной коре. Первичная проекционная область вестибулярной чувствительности размещена в задней центральной извилине преимущественно с той стороны тела, на которой расположен вестибулярный аппарат. Еще одна проекция, отличающаяся двусторонним представительством вестибулярной чувствительности, имеется во вторичной моторной коре. Осознание пространственного расположения и схемы тела происходит с участием заднетеменных регионов коры, где осуществляется интеграция вестибулярной, зрительной и соматосенсорной чувствительности человека.

Вестибулярные рефлексы и их роль в пространственной ориентации.

Вестибулярный аппарат – источник сигналов, позволяющих организму ориентироваться при перемещении в пространстве. В регуляции нормального положения головы, туловища и конечностей в пространстве участвуют лабиринтные рефлексы на скелетную мускулатуру. Лабиринтные рефлексы не являются единственным регулятором и осуществляют свою функцию во взаимодействии с другими рефлекторными реакциями, в первую очередь, при участии зрительной системы.

Головной мозг интегрирует информацию, поступающую от зрительных и вестибулярных рецепторов, от рецепторов мышц и суставов. На основе этой интеграции строиться наше представление о положении головы и туловища в пространстве, иначе говоря, возникает чувство равновесия. Управление положением тела в пространстве обеспечивается как врожденным, так и приобретенным условно-рефлекторными механизмами. Роль осознания здесь сведена к минимуму. Рефлексы, вызываемые раздражением вестибулярного аппарата, называются вестибулярными. Они делятся на статические и статокинетические.

Статические рефлексы обеспечивают поддержание позы при стоячем и наклонном положении. Они осуществляются при раздражении отолитового аппарата. Примером такого рефлекса может служить компенсаторное вращение глаз при изменении положения головы. За счет компенсаторного движения изображение на сетчатке остается неподвижным.

Статокинетические рефлексы реализуются во время движения. Они возникают как при раздражении отолитового аппарата, так и при раздражении ампулярных рецепторов. Примером такого рефлекса может быть переспределение тонуса мышц во время падения или резкой остановки транспорта. Среди статокинетических рефлексов важное значение играет вестибулярный нистагм. Он представляет собой серию последовательных движений глаз в сторону, противоположную вращению. Такое компенсаторное движение глаз также направлено на сохранение изображения на сетчатке.

При сильном раздражении вестибулярного аппарата возникает серия вестибуловисцеральных реакций: головокружение, тошнота, рвота, потоотделение и т.д. Это так называемая морская болезнь, или кинетоз. Скорее всего, он обусловлен появлением стимулов, необычных для организма, например расхождением между зрительным и вестибулярным сигналами.

В организации направленного поведения в пространстве существенную роль играют корковые отделы вестибулярной системы (нижняя часть постцентральной извилины, область внутритеменной и сильвиевой борозды).


Анатомия вестибулярного нервного пути чрезвычайно сложна ( рис. 9.1). Афферентные волокна из гребней полукружных каналов и макул саккулюса и утрикулюса направляются в ганглий Скарпы (вестибулярный) вблизи от наружного слухового прохода, где располагаются тела нейронов, а затем, после соединения с кохлеарными волокнами образуют вестибуло-кохлеарный нерв , идущий в ипсилатеральный вестибулярный комплекс , расположенный в вентральной части продолговатого мозга под четвертым мозговым желудочком. Комплекс состоит из четырех важных ядер: латерального (ядра Дейтерса) , медиального ядра , верхнего ядра и нисходящего ядра . Здесь же располагается и множество меньших ядер, объединенных сложной системой афферентов и эфферентов. Рис. 9.1 показывает, что помимо мощных связей с мозжечком и глазодвигательными ядрами , вестибулярный комплекс посылает волокна в кору головного мозга . Полагают, что они оканчиваются в постцентральной извилине вблизи от нижнего конца sulcus intraparietalis. Эпилептическим припадкам , фокус которых располагается в этой области, обычно предшествует аура, характеризующаяся ощущениями головокружения и дезориентации . Вестибулярный аппарат (как мы видели в гл. РАВНОВЕСИЕ И СЛУХ) отслеживает и стационарную ориентацию головы в пространстве ( отолиты) и ускорение ее движения ( гребни полукружных каналов). Все это дополняется многочисленными соместезическими рецепторами по всему организму ( гл. МЕХАНОЧУВСТВИТЕЛЬНОСТЬ). Чтобы устранить поток информации от этих сенсоров, нужно поместить тело в воду или забросить на орбитальную станцию. В этих условиях вся работа падает на глаза и вестибулярный аппарат; если теперь объект еще и ослепить, останется только информация от мембранного преддверия.

Роль информации от полукружных каналов может быть ярко продемонстрирована, если подопытного усадить на быстро вращающийся крутящийся стул. Глаза в этом случае смещаются в сторону, противоположную вращению, в попытке зафиксировать взглядом неподвижный объект и затем (при потере его из поля зрения) - быстро рывком перемещаются в сторону вращения, чтобы найти другую точку фиксации взгляда. Сходным образом, когда вращение внезапно прекращается, глаза продолжают движение в сторону предшествовавшего вращения, а затем отпрыгивают в противоположном направлении. Это внезапное изменение происходит в результате того, что гребни полукружных каналов испытывают воздействие потока эндолимфы, меняющей направление потока на противоположное. Такие характерные движения глаз называются нистагмом . Они обусловлены тремя нейрональными путями от полукружных каналов к вестибулярным ядрам, далее к глазодвигательным ядрам (n.abducens) и, наконец, к наружным мышцам глаз ( рис. 9.2). Значение вестибуло-глазодвигательного рефлекса может быть ярко продемонстрировано, если сравнить зрение вращающейся глазной системы с зрением, когда голова неподвижна, а окружение - вращается. Детали вращающегося окружения очень быстро утрачиваются: при двух оборотах в секунду точка фиксации взгляда превращается в пятно. Напротив, подопытный, сидящий во вращающемся кресле, несколько утрачивает остроту зрения только при скорости вращения около 10 оборотов в секунду.

Наконец, стоит сказать несколько слов о болезни движения . Это неприятное ощущение возникает в основном из-за несовпадения сенсорных вводов. В некоторых случаях это несовпадение возникает в самом вестибулярном аппарате. Если голова теряет нормальную ориентацию и вращается, сигналы от гребней полукружных каналов больше не коррелируют с сигналами от отолитов. Другой источник болезней движения - это несовпадение сигналов от глаз и от вестибулярного аппарата. Если в бурном море в каюте глаза сообщают об отсутствии относительного движения между головой и стенами каюты, тогда как вестибулярный аппарат, напротив, испытывает нагрузку, наблюдаются симптомы "морской болезни". Стоит также упомянуть, что избыточное потребление алкоголя также ведет к опасной потери ориентации . Это происходит вследствие того, что этанол меняет специфическую плотность эндолимфы , так что купула может теперь ощущать силу тяжести и, следовательно, посылать необычные сигналы в центральную вестибулярную систему.

Вестибулярная система анализирует изменения положения тела в пространстве, а также действие на организм ускорений и изменений силы тяжести. Это обусловливает возникновение рефлексов, приводящих к координированным сокращениям скелетной мускулатуры, с помощью которых сохраняется равновесие. Выделяют статические и статокинетические вестибулярные рефлексы. Статические рефлексы обеспечивают адекватное взаиморасположение конечностей и устойчивую ориентацию тела в пространстве, т.е. это позные рефлексы . Примером может служить компенсаторное вращение глазного яблока при повороте головы, благодаря чему зрачки сохраняют положение, близкое к вертикальному. Статокинетические рефлексы возникают в ответ на сами движения. Это, например, движения человека, восстанавливающие равновесие после того, как он споткнулся.

Периферический отдел вестибулярного анализатора (рис. 19) находится во внутреннем ухе (см. раздел 3.1). Вестибулярный аппарат (орган равновесия) это преддверие и полукружные каналы с находящимися в них волосковыми чувствительными клетками, способными воспринимать изменение положения тела в пространстве. Полукружные каналы представляют собой узкие ходы, расположенные в трех взаимно перпендикулярных плоскостях. Один конец каждого канала образует ампулу колбообразное расширение. Перепончатый лабиринт внутри каналов повторяет форму костного. Внутри костного преддверия перепончатый лабиринт образует два мешочка круглый (sacculus ) лежит ближе к улитке и овальный (utriculus ) – ближе к полукружным каналам. Как уже говорилось, перепончатый лабиринт заполнен эндолимфой, а между костным и перепончатым лабиринтами находится перилимфа. Рецепторные клетки находятся в ампулах и мешочках преддверия.

Вестибулярный рецептор очень похож на слуховой. В верхней его части расположена длинная настоящая ресничка (киноцилия) и отходящая от нее «шеренга» убывающих по длине волосков, заполненных цитоплазмой (стереоцилии; их несколько десятков). Так же как и у слуховых рецепторов вершины волосков связаны тончайшими белковыми нитями, соединенными с ионными каналами. Если происходит деформация волосков по направлению от стереоцилий к киноцилии белковые нити натягиваются, открывая ионные каналы. В результате возникает входящий ток катионов, развивается деполяризация и рецепторный потенциал. Волосковые рецепторы вторичночувствующие, и для передачи сигнала в ЦНС они формируют синапс с дендритами биполярных проводящих нейронов вестибулярного ганглия Скарпа (медиатор глутаминовая кислота). Чем больше деформация волосков, тем больше рецепторный потенциал и количество выделяемого медиатора. Таким образом, так же как и слуховые, вестибулярные рецепторы относятся к механорецепторам.

В каждом из мешочков преддверия есть участок, в котором собраны рецепторные волосковые клетки. Он называется макула (пятно). В каждой ампуле рецепторы также сгруппированы и образуют кристу (гребешок). Над рецепторами лежит плавающая в эндолимфе желеобразная масса, в которую погружены кончики волосков рецепторных клеток. В полукружных каналах эту массу называют купулой . В мешочках желеобразная масса содержит кристаллы карбоната кальция (отолиты) и называется отолитовой мембраной .

Адекватным раздражителем для волосковых клеток вестибулярного аппарата является сдвиг желеобразной массы внутри полости, заполненной эндолимфой. Сдвиг этот происходит под действием сил инерции тогда, когда наше тело перемещается с ускорением. Подобным образом сдвигаются пассажиры в автобусе, который тормозит, разгоняется или поворачивает. В результате такого смещения происходит наклон пучка волосков вестибулярных рецепторов, что и приводит к генерации рецепторного потенциала.

В связи с особенностями строения вестибулярного аппарата функции волосковых клеток в ампулах и в мешочках отличаются. Рецепторы в макулах это гравитационные рецепторы, т.е. рецепторы силы тяжести. Они реагируют на различные наклоны головы. Макулы в круглом и овальном мешочках расположены почти перпендикулярно друг другу, поэтому при любой ориентации головы какая-то часть рецепторов возбуждена. Эти же рецепторы реагируют на появление линейного ускорения (т.е. на смещение тела вперед-назад, вверх-вниз и т.п.). Рецепторы в кристах возбуждаются при угловом (вращательном) ускорении, т.е. при поворотах головы. Еще раз подчеркнем, что вестибулярные рецепторы генерируют рецепторный потенциал именно при ускорении, при достижении постоянной скорости смещения головы они «умолкают». Таким образом, для данной системы значение имеет только изменение скорости.

Чувствительность вестибулярной системы очень велика как к линейным ускорениям (абсолютный порог – 2 см/с 2), так и к угловым вращениям (2-3°/с 2). Дифференциальный порог наклона головы вперед-назад составляет около 2°, а влево-вправо – 1°.

Вестибулярный нерв (вестибулярная часть VIII пары черепных нервов) образован аксонами клеток вестибулярного ганглия. Большинство волокон этого нерва оканчиваются на четырех вестибулярных ядрах, расположенных с каждой стороны на границе продолговатого мозга и моста. Это верхнее ядро (Бехтерева), латеральное (Дейтерса), нижнее (Роллера) и медиальное (Швальбе).

Вестибулярные ядра посылают свои волокна к многочисленным структурам ЦНС, тесно связанным с регуляцией движений. Основные из них представлены на схеме (рис. 20).

Во-первых, это спинной мозг, через который осуществляется регуляция работы мышц нашего тела по принципу врожденных рефлекторных реакций (быстрое распрямление конечностей при потере равновесия, установка положения головы и т.п.). Во-вторых, это мозжечок, который осуществляет тонкую координацию и регуляцию движений, используя для этого мышечную и вестибулярную чувствительность. Обработкой вестибулярной информации занимается наиболее древняя часть мозжечка – клочково-узелковая доля; ее повреждения ведут к нарушению чувства равновесия человек не может ходить, а при обширных травмах даже сидеть.

В-третьих, это глазодвигательные ядра (ядра III, IV и VI пар черепных нервов). Связь с ними необходима для коррекции движений глаз при изменении положения головы и тела в пространстве и, таким образом, для удержания изображения на сетчатке. Одним из важнейших статокинетических рефлексов, осуществляемых при помощи этих связей является глазной нистагм – ритмическое движение глаз в сторону, противоположную вращению, которое сменяется скачком глаз обратно. Этот рефлекс является важным показателем состояния вестибулярной системы; его характеристики широко используются в медицинских исследованиях.

Наконец, это связи с вегетативными центрами – парасимпатическими ядрами ствола и гипоталамусом, которые обеспечивают вегетативные компоненты вестибулярных реакций. Сильные раздражения вестибулярных рецепторов могут вызвать неприятные ощущения головокружение, рвоту, тахикардию (учащение ритма сердечных сокращений) и т.п. Такие симптомы называют кинетозом (укачиванием, морской болезнью).

Волокна от вестибулярных ядер идут к коре больших полушарий, как и у остальных сенсорных систем, через таламус (через двигательные проекционные ядра). Благодаря этому осуществляется сознательная ориентировка в пространстве. Вестибулярные зоны в коре находятся в задней части постцентральной извилины и нижней части прецентральной извилины.

Приходящие от вестибулярных рецепторов импульсы не обеспечивают ЦНС полной информацией о положении тела в пространстве, т.к. положение головы далеко не всегда соответствует положению туловища. Поэтому ориентация в пространстве осуществляется при комплексном участии ряда сенсорных систем, в первую очередь мышечно-суставной и зрительной.

Работы с вестибулярной системой очень активизировались после начала полетов в космос, т.к. в невесомости вестибулярный аппарат в значительной мере выключен. Однако, по отчетам космонавтов, привыкание к этому состоянию идет быстро, в течение всего нескольких дней. По-видимому, в данном случае работа вестибулярного анализатора начинает выполняться другими органами чувств, что говорит о пластичности (гибкости) нервной системы.

Вестибулярная система играет наряду со зрительной и соматосенсорной системами ведущую роль в пространственной ориентировке человека. Она получает, передает и анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения, а также при изменении положения головы в пространстве. При равномерном движении или в условиях покоя рецепторы вестибулярной сенсорной системы не возбуждаются. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры, что обеспечивает сохранение равновесия тела. Эти влияния осуществляются рефлекторным путем через ряд отделов ЦНС.Строение и функции рецепторов вестибулярной системы. Периферическим отделом вестибулярной системы является вестибулярный аппарат, расположенный в лабиринте пирамиды височной кости. Он состоит из преддверия и трех полукружных каналов. Кроме вестибулярного аппарата, в лабиринт входит улитка, в которой располагаются слуховые рецепторы. Полукружные каналы располагаются в трех взаимно перпендикулярных плоскостях: верхний - во фронтальной, задний - в сагиттальной, латеральный - в горизонтальной. Один из концов каждого канала расширен (ампула).Вестибулярный аппарат включает в себя также два мешочка: сферический и эллиптический, или маточку. Первый из них лежит ближе к улитке, а второй - к полукружным каналам. В мешочках преддверия находится отолитовый аппарат: скопления рецепторных клеток (вторично-чувствующие механорецепторы) на возвышениях, или. Выступающая в полость мешочка часть рецепторной клетки оканчивается одним более длинным подвижным волоском и 60-80 склеенными неподвижными волосками. Эти волоски пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция - отолиты. Возбуждение волосковых клеток преддверия происходит вследствие скольжения отолитовой мембраны по волоскам, т. е. их сгибания.В перепончатых полукружных каналах, заполненных, как и весь лабиринт, плотной эндолимфой (ее вязкость в 2-3 раза больше, чем у воды), рецепторные волосковые клетки сконцентрированы только в ампулах в виде крист. Они также снабжены волосками. При движении эндолимфы (во время угловых ускорений), когда волоски сгибаются в одну сторону, волосковые клетки возбуждаются, а при противоположно направленном движении - тормозятся. Это связано с тем, что механическое управление ионными каналами мембраны волоска с помощью микрофиламентов, зависит от направления сгиба волоска: отклонение в одну сторону приводит к открыванию каналов и деполяризации волосковой клетки, а отклонение в противоположном направлении вызывает закрытие каналов и гиперполяризацию рецептора. В волосковых клетках преддверия и ампулы при их сгибании генерируется рецепторный потенциал, который усиливает выделение ацетилхолина и через синапсы активирует окончания волокон вестибулярного нерва.Волокна вестибулярного нерва (отростки биполярных нейронов) направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, активируют нейроны бульбарного вестибулярного комплекса, в состав которого входят ядра: преддверное верхнее, или Бехтерева, преддверное латеральное, или Дейтерса, Швальбе и др. Отсюда сигналы направляются во многие отделы ЦНС: спинной мозг, мозжечок, глазодвигательные ядра, кору большого мозга, ретикулярную формацию и ганглии автономной нервной системы.Даже в полном покое в вестибулярном нерве регистрируется спонтанная импульсация. Частота разрядов в нерве повышается при поворотах головы в одну сторону и тормозится при поворотах в другую (детекция направления движения). Комплексные рефлексы, связанные с вестибулярной стимуляцией. Нейроны вестибулярных ядер обеспечивают контроль и управление различными двигательными реакциями. Важнейшими из этих реакций являются следующие: вестибулоспинальные, вестибуловегетативные и вестибулоглазодвигательные. Вестибулоспинальные влияния через вестибуло-, ретикуло- и руброспинальные тракты изменяют импульсацию нейронов сегментарных уровней спинного мозга. Так осуществляется динамическое перераспределение тонуса скелетной мускулатуры и включаются рефлекторные реакции, необходимые для сохранения равновесия. Мозжечок при этом ответствен за фазический характер этих реакций: после его удаления вестибулоспинальные влияния становятся по преимуществу тоническими. Во время произвольных движений вестибулярные влияния на спинной мозг ослабляются.В вестибуловегетативные реакции вовлекаются сердечно-сосудистая система, пищеварительный тракт и другие внутренние органы. При сильных и длительных нагрузках на вестибулярный аппарат возникает патологический симптомокомплекс, названный болезнью движения, например морская болезнь. Она проявляется изменением сердечного ритма (учащение, а затем замедление), сужением, а затем расширением сосудов, усилением сокращений желудка, головокружением, тошнотой и рвотой. Повышенная склонность к болезни движения может быть уменьшена специальной тренировкой (вращение, качели) и применением ряда лекарственных средств.Вестибулоглазодвигательные рефлексы (глазной нистагм) состоят в медленном движении глаз в противоположную вращению сторону, сменяющемся скачком глаз обратно. Само возникновение и характеристика вращательного глазного нистагма - важные показатели состояния вестибулярной системы, они широко используются в морской, авиационной и космической медицине, а также в эксперименте и клинике.Основные афферентные пути и проекции вестибулярных сигналов. Есть два основных пути поступления вестибулярных сигналов в кору большого мозга: прямой - через дорсомедиальную часть вентрального постлатерального ядра и непрямой вестибулоцеребеллоталамический путь через медиальную часть вентролатерального ядра. В коре полушарий большого мозга основные афферентные проекции вестибулярного аппарата локализованы в задней части постцентральной извилины. В моторной зоне коры спереди от нижней части центральной борозды обнаружена вторая вестибулярная зона.Функции вестибулярной системы. Вестибулярная система помогает организму ориентироваться в пространстве при активном и пассивном движении. Статокинетические рефлексы возникают при вращении и при любых перемещениях тела в пространстве независимо от того, активно или пассивно совершаются эти перемещения.Ярким примером подобных рефлексов является лифтный рефлекс: подъем лифта вызывает сгибание ног, остановка - их выпрямление. Морская и воздушная бо-лезни, проявляющиеся в плохом самочувствии, тошноте и т. д., тоже являются статокинетическими рефлексами, но здесь воздействие оказывается главным образом на внутренние органы.После многократных (10-15 раз) вращений на месте в одном направлении тело отклоняется в противоположную сторону, Это происходит из-за рефлекторного напряжения мышц другой стороны тела, препятствующих вращению. Вращение влево вызывает отклонение вправо и наоборот.Роль тонических рефлексов в двигательной деятельности артистов балета. Тонические рефлексы осуществляются автоматически. Человек не задумывается ни о том, куда надо наклонить голову, ни о том, какие мышцы следует напрячь, для того чтобы сохранить равновесие. Но кора полушарий головного мозга контролирует деятельность отделов мозга, в которых замыкаются дуги тонических рефлексов, управляет ими. Например, усилием воли тонические рефлексы можно затормозить: при разучивании новых движений и комбинаций приходится подавлять тонические рефлексы. Защищая организм от травм, они мешают выполнять новые, непривычные, сложные для него движения.

10. Сеченовское торможение, механизм пресинапт и постсинапт торможение.

Сеченовское торможение, название физиологического эксперимента, приведшего к открытию центрального торможения, т. е. тормозных процессов в центральной нервной системе. В опытах на лягушке И. М. Сеченов наблюдал (1862), что рефлекс спинного мозга (сгибание лапки при погружении её в слабый раствор кислоты) угнетается при химическом или электрическом раздражении области зрительных бугров. Этот эксперимент опровергал существовавшие в то время представления, согласно которым регуляторные функции головного и спинного мозга обеспечиваются одними лишь возбудительными процессами; было доказано, что наряду с возбудительными существуют качественно особые тормозные взаимодействия между нервными элементами. С. т., как и другие явления центрального торможения, осуществляется специальными тормозными нейронами и синапсами, которые имеются как в спинном, так и в головном мозге.Явление торможения в нервных центрах было впервые открыто И. М. Сеченовым в 1862 г. Значение этого процесса было рассмотрено им в книге «Рефлексы головного мозга». Опуская лапку лягушки в кислоту и одновременно раздражая некоторые участки головного мозга (например, накладывая кристаллик поваренной соли на область промежуточного мозга), И. М. Сеченов наблюдал резкую задержку и даже полное отсутствие «кислотного» рефлекса спинного мозга (отдергивания лапки).Отсюда он сделал заключение, что одни нервные центры могут существенно изменять рефлекторную деятельность в других центрах, в частности вышележащие нервные центры могут тормозить деятельность нижележащих. Описанный феномен потел в историю физиологии под названием Сеченовское торможение.Тормозные процессы - необходимый компонент в координации нервной деятельности. Во-первых, процесс торможения ограничивает распространение (иррадиацию) возбуждения на соседние нервные центры, чем способствует его концентрации в необходимых участках ц.н.с. Во вторых, возникая в одних нервных центрах параллельно свозбуждением других нервных центров, процесс торможения темсамым выключает деятельность ненужных в данный момент центров и органов. В-третьих, развитие торможения в нервных центрах предохраняет их чрезмерного перенапряжения при работе, т.е. играетохранительную роль.По месту возникновения различают постсинаптическое и пресинаптическое торможение. Постсинаптическое торможение. Эффекты, возникающие при активации синапса, могут быть возбуждающими или тормозящими. Это зависит от качества медиатора и свойств постсинаптической мембраны. Возбуждающие нейроны выделяют возбуждающий медиатор, а тормозные - тормозной. Кроме того, один и тот же медиатор в разных органах может оказывать неодинаковое воздействие (например, ацетилхолин возбуждает келетные мышечные волокна и тормозит сердечные).Чаще всего торможение возникает в постсинаптической мембране нейрона в результате действия тормозного медиатора и связано с наличием в ц.н.с. специальных тормозных нейронов, у которых окончания аксонов выделяют тормозной медиатор. Одним из таких медиаторов является гамма-аминомасляная кислота (ГАМК). В случае постсинаптического торможения в ответ на выделение медиатора проницаемость мембраны увеличивается главным образом для ионов калия и хлора. Поскольку положительно заряженных ионов калия больше внутри клетки, они выходят из нее наружу. Отрицательно заряженных ионов хлора больше снаружи, и они входят внутрь клетки. Это увеличивает поляризацию мембраны, т. е. вызывает ее гиперполяризацию. При этом регистрируется колебание мембранного потенциала в сторону гиперполяризации, т. е. возникает тормозной постсинаптический потенциал (ТПСП). В результате тормозные клетки тормозят те нейроны, на которых оканчиваются их аксоны.К специальным тормозным нейронам относятся клетки Реншоу в спинном мозгу, клетки Пуркинье мозжечка, корзинчатые клетки в промежуточном мозгу и др. Большое значение тормозные клетки имеют при регуляции деятельности мышц-антагонистов. Они обеспечивают развитие торможения в мотонейронах мышц-антагонистов, что облегчает сокращение мышц-агонистов (интернейроны реципрокного торможения).При возбуждении мотонейрона спинного мозга импульсы поступают по его аксону к мышечным волокнам и одновременно по коллатералям аксона - к тормозной клетке Реншоу. Аксоны последней «возвращаются» к этому же мотонейрону, вызывая его торможение. Следовательно, через клетку Реншоу мотонейрон может сам себя затормаживать. Чем больше возбуждающих импульсов посылает мотонейрон на периферию (а значит, и к тормозной клетке), тем сильнее возвратное торможение (разновидность постсинаптического торможения). Такая замкнутая система -действует как механизм саморегуляции нейрона, ограничивая степень его возбуждения и предохраняя от чрезмерной активности;Клетки Пуркинье мозжечка своими тормозящими влияниями на клетки подкорковых ядер и стволовых структур участвуют в регуляции тонуса мышц. Корзинчатые клетки в промежуточном мозге играют важную роль в регуляции деятельности высших отделов мозга - промежуточного мозга и коры больших полушарий. Они являются как бы воротами, которые пропускают или не пропускают импульсы, идущие в кору больших полушарий.Пресинаптическое торможение возникает перед синаптическим контактом - в пресинаптической области. Окончание аксона одной нервной клетки образует синапс на окончании аксона другой нервной клетки и блокирует передачу возбуждения в последней. В области такого пресинаптического контакта развивается чрезмерно сильная деполяризация мембраны аксона, которая приводит к угнетению проходящих здесь потенциалов действия. Этот вид торможения обусловливает ограничение притока афферентных импульсов к нервным центрам.

11. Понятие о синапсах, функциональные свойства

Синапс - представляет собой сложное структурное образование, состоящее из пресинаптической мембраны (чаще всего это концевое разветвление аксона), постсинаптической мембраны (чаще всего это участок мембраны тела или дендрита другого нейрона), а так же синаптической щели.Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциалов
нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга.Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи - это так называемые смешанные синапсы.Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса - моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов.Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.