Планеты движутся вокруг Солнца по вытянутым эллиптическим орбитам, причем Солнце находится в одной из двух фокальных точек эллипса.

Отрезок прямой, соединяющий Солнце и планету, отсекает равные площади за равные промежутки времени.

Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

Иоганн Кеплер обладал чувством прекрасного. Всю свою сознательную жизнь он пытался доказать, что Солнечная система представляет собой некое мистическое произведение искусства. Сначала он пытался связать ее устройство с пятью правильными многогранниками классической древнегреческой геометрии. (Правильный многогранник - объемная фигура, все грани которой представляют собой равные между собой правильные многоугольники.) Во времена Кеплера было известно шесть планет, которые, как полагалось, помещались на вращающихся «хрустальных сферах». Кеплер утверждал, что эти сферы расположены таким образом, что между соседними сферами точно вписываются правильные многогранники. Между двумя внешними сферами - Сатурна и Юпитера - он поместил куб, вписанный во внешнюю сферу, в который, в свою очередь, вписана внутренняя сфера; между сферами Юпитера и Марса - тетраэдр (правильный четырехгранник) и т. д.* Шесть сфер планет, пять вписанных между ними правильных многогранников - казалось бы, само совершенство?

Увы, сравнив свою модель с наблюдаемыми орбитами планет, Кеплер вынужден был признать, что реальное поведение небесных тел не вписывается в очерченные им стройные рамки. По меткому замечанию современного британского биолога Дж. Холдейна (J. B. S. Haldane), «идея Вселенной как геометрически совершенного произведения искусства оказалась еще одной прекрасной гипотезой, разрушенной уродливыми фактами». Единственным пережившим века результатом того юношеского порыва Кеплера стала модель Солнечной системы, собственноручно изготовленная ученым и преподнесенная в дар его патрону герцогу Фредерику фон Вюртембургу. В этом прекрасно исполненном металлическом артефакте все орбитальные сферы планет и вписанные в них правильные многогранники представляют собой не сообщающиеся между собой полые емкости, которые по праздникам предполагалось заполнять различными напитками для угощения гостей герцога.

Лишь переехав в Прагу и став ассистентом знаменитого датского астронома Тихо Браге (Tycho Brahe, 1546–1601), Кеплер натолкнулся на идеи, по-настоящему обессмертившие его имя в анналах науки. Тихо Браге всю жизнь собирал данные астрономических наблюдений и накопил огромные объемы сведений о движении планет. После его смерти они перешли в распоряжение Кеплера. Эти записи, между прочим, имели большую коммерческую ценность по тем временам, поскольку их можно было использовать для составления уточненных астрологических гороскопов (сегодня об этом разделе ранней астрономии ученые предпочитают умалчивать).

Обрабатывая результаты наблюдений Тихо Браге, Кеплер столкнулся с проблемой, которая и при наличии современных компьютеров могла бы показаться кому-то трудноразрешимой, а у Кеплера не было иного выбора, кроме как проводить все расчеты вручную. Конечно же, как и большинство астрономов его времени, Кеплер уже был знаком с гелиоцентрической системой Коперника (см. Принцип Коперника) и знал, что Земля вращается вокруг Солнца, о чем свидетельствует и вышеописанная модель Солнечной системы. Но как именно вращается Земля и другие планеты? Представим проблему следующим образом: вы находитесь на планете, которая, во-первых, вращается вокруг своей оси, а во-вторых, вращается вокруг Солнца по неизвестной вам орбите. Глядя в небо, мы видим другие планеты, которые также движутся по неизвестным нам орбитам. Наша задача - определить по данным наблюдений, сделанных на нашем вращающемся вокруг своей оси вокруг Солнца земном шаре, геометрию орбит и скорости движения других планет. Именно это, в конечном итоге, удалось сделать Кеплеру, после чего, на основе полученных результатов, он и вывел три своих закона!

Первый закон ** описывает геометрию траекторий планетарных орбит. Возможно, вы помните из школьного курса геометрии, что эллипс представляет собой множество точек плоскости, сумма расстояний от которых до двух фиксированных точек - фокусов - равна константе. Если это слишком сложно для вас, имеется другое определение: представьте себе сечение боковой поверхности конуса плоскостью под углом к его основанию, не проходящей через основание, - это тоже эллипс. Первый закон Кеплера как раз и утверждает, что орбиты планет представляют собой эллипсы, в одном из фокусов которых расположено Солнце. Эксцентриситеты (степень вытянутости) орбит и их удаления от Солнца в перигелии (ближайшей к Солнцу точке) и апогелии (самой удаленной точке) у всех планет разные, но все эллиптические орбиты роднит одно - Солнце расположено в одном из двух фокусов эллипса. Проанализировав данные наблюдений Тихо Браге, Кеплер сделал вывод, что планетарные орбиты представляют собой набор вложенных эллипсов. До него это просто не приходило в голову никому из астрономов.

Историческое значение первого закона Кеплера трудно переоценить. До него астрономы считали, что планеты движутся исключительно по круговым орбитам, а если это не укладывалось в рамки наблюдений - главное круговое движение дополнялось малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Это было, я бы сказал, прежде всего философской позицией, своего рода непреложным фактом, не подлежащим сомнению и проверке. Философы утверждали, что небесное устройство, в отличие от земного, совершенно по своей гармонии, а поскольку совершеннейшими из геометрических фигур являются окружность и сфера, значит планеты движутся по окружности (причем это заблуждение мне и сегодня приходится раз за разом развеивать среди своих студентов). Главное, что, получив доступ к обширным данным наблюдений Тихо Браге, Иоганн Кеплер сумел перешагнуть через этот философский предрассудок, увидев, что он не соответствует фактам - подобно тому как Коперник осмелился убрать Землю из центра мироздания, столкнувшись с противоречащими стойким геоцентрическим представлениям аргументами, которые также состояли в «неправильном поведении» планет на орбитах.

Ранняя геометрическая модель Вселенной Кеплера: шесть орбитальных планетных сфер и пять вписанных правильных многогранников между ними

Второй закон описывает изменение скорости движения планет вокруг Солнца. В формальном виде я его формулировку уже приводил, а чтобы лучше понять его физический смысл, вспомните свое детство. Наверное, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты кружатся вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу - тем быстрее движется планета. Теперь представьте пару отрезков, соединяющих два положения планеты на орбите с фокусом эллипса, в котором расположено Солнце. Вместе с сегментом эллипса, лежащим между ними, они образуют сектор, площадь которого как раз и является той самой «площадью, которую отсекает отрезок прямой». Именно о ней говорится во втором законе. Чем ближе планета к Солнцу, тем короче отрезки. Но в этом случае, чтобы за равное время сектор покрыл равную площадь, планета должна пройти большее расстояние по орбите, а значит скорость ее движения возрастает.

В первых двух законах речь идет о специфике орбитальных траекторий отдельно взятой планеты. Третий закон Кеплера позволяет сравнить орбиты планет между собой. В нем говорится, что чем дальше от Солнца находится планета, тем больше времени занимает ее полный оборот при движении по орбите и тем дольше, соответственно, длится «год» на этой планете. Сегодня мы знаем, что это обусловлено двумя факторами. Во-первых, чем дальше планета находится от Солнца, тем длиннее периметр ее орбиты. Во-вторых, с ростом расстояния от Солнца снижается и линейная скорость движения планеты.

В своих законах Кеплер просто констатировал факты, изучив и обобщив результаты наблюдений. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведенного им анализа. Если бы вы спросили его об орбитальном движении планет в других звездных системах, он также не нашел бы, что вам ответить. Ему бы пришлось начинать всё сначала - накапливать данные наблюдений, затем анализировать их и стараться выявить закономерности. То есть у него просто не было бы оснований полагать, что другая планетная система подчиняется тем же законам, что и Солнечная система.

Один из величайших триумфов классической механики Ньютона как раз и заключается в том, что она дает фундаментальное обоснование законам Кеплера и утверждает их универсальность. Оказывается, законы Кеплера можно вывести из законов механики Ньютона , закона всемирного тяготения Ньютона и закона сохранения момента импульса путем строгих математических выкладок. А раз так, мы можем быть уверены, что законы Кеплера в равной мере применимы к любой планетной системе в любой точке Вселенной. Астрономы, ищущие в мировом пространстве новые планетные системы (а открыто их уже довольно много), раз за разом, как само собой разумеющееся, применяют уравнения Кеплера для расчета параметров орбит далеких планет, хотя и не могут наблюдать их непосредственно.

Третий закон Кеплера играл и играет важную роль в современной космологии. Наблюдая за далекими галактиками, астрофизики регистрируют слабые сигналы, испускаемые атомами водорода, обращающимися по очень удаленным от галактического центра орбитам - гораздо дальше, чем обычно находятся звезды. По эффекту Доплера в спектре этого излучения ученые определяют скорости вращения водородной периферии галактического диска, а по ним - и угловые скорости галактик в целом (см. также Темная материя). Меня радует, что труды ученого, твердо поставившего нас на путь правильного понимания устройства нашей Солнечной системы, и сегодня, спустя века после его смерти, играют столь важную роль в изучении строения необъятной Вселенной.

* Между сферами Марса и Земли - додекаэдр (двенадцатигранник); между сферами Земли и Венеры - икосаэдр (двадцатигранник); между сферами Венеры и Меркурия - октаэдр (восьмигранник). Получившаяся конструкция была представлена Кеплером в разрезе на подробном объемном чертеже (см. рисунок) в его первой монографии «Космографическая тайна» (Mysteria Cosmographica, 1596). - Примечание переводчика.

** Исторически сложилось так, что законы Кеплера (подобно началам термодинамики) пронумерованы не по хронологии их открытия, а в порядке их осмысления в научных кругах. Реально же первый закон был открыт в 1605 году (опубликован в 1609 году), второй - в 1602 году (опубликован в 1609 году), третий - в 1618 году (опубликован в 1619 году). - Примечание переводчика.

В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле.

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства.

Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации - открытию закона всемирного тяготения.

С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринята Птолемеем (~ 140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.

Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника. В системе Коперника траектории планет оказались более простыми. Немецкий астроном Иоганн Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы. Кеплер использовал результаты наблюдений за движением планет датского астронома Тихо Браге.

Первый закон Кеплера (1609 г.):

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце .

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием , точка A , наиболее удаленная от Солнца - афелием . Расстояние между афелием и перигелием - большая ось эллипса.

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым.

Второй закон Кеплера (1609 г.):

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рис. 1.24.3 иллюстрирует 2-й закон Кеплера.

Второй закон Кеплера эквивалентен закону сохранения момента импульса. На рис. 1.24.3 изображен вектор импульса тела и его составляющие и Площадь, описываемая радиус-вектором за малое время Δt , приближенно равна площади треугольника с основанием r Δθ и высотой r :

Здесь - угловая скорость.

Момент импульса L по абсолютной величине равен произведению модулей векторов и :

Из этих отношений следует:

Поэтому, если по второму закону Кеплера , то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии и афелии направлены перпендикулярно радиус-векторам и из закона сохранения момента импульса следует:

Третий закон Кеплера (1619 г.):

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит:

Третий закон Кеплера выполняется для всех планет Солнечной системы с точностью выше 1 %.

На рис. 1.24.4 изображены две орбиты, одна из которых - круговая с радиусом R , а другая - эллиптическая с большой полуосью a . Третий закон утверждает, что если R = a , то периоды обращения тел по этим орбитам одинаковы.

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений. Законы Кеплера нуждались в теоретическом обосновании. Решающий шаг в этом направлении был сделан Исааком Ньютоном, открывшим в 1682 году закон всемирного тяготения :

где M и m - массы Солнца и планеты, R - расстояние между ними, G = 6,67·10 -11 Н·м 2 /кг 2 - гравитационная постоянная. Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T 2 ~ R 3 , где Т - период обращения, R - радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

Если T 2 ~ R 3 , то

Свойство консервативности гравитационных сил позволяет ввести понятие потенциальной энергии . Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m , находящегося на расстоянии r от неподвижного тела массы M , равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях (рис. 1.24.5).

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам . Работа гравитационной силы на малом перемещении есть:

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ ΔA i на малых перемещениях:

В пределе при Δr i → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость υ, его полная механическая энергия равна

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6).

При E = E 1 < 0 тело не может удалиться от центра притяжения на расстояние r > r max . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

При E = E 2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории .

При E = E 3 > 0 движение происходит по гиперболической траектории . Тело удаляется на бесконечность, имея запас кинетической энергии.

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

Эту скорость необходимо набрать, чтобы преодолеть притяжение Земли и вывести тело (например, спутник) на орбиту Земли.

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

Рис. 1.24.7 иллюстрирует космические скорости. Если скорость космического корабля равна υ 1 = 7.9·10 3 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих υ 1 , но меньших υ 2 = 11,2·10 3 м/с, орбита корабля будет эллиптической. При начальной скорости υ 2 корабль будет двигаться по параболе, а при еще большей начальной скорости - по гиперболе.

Рисунок 1.24.7.

Космические скорости. Указаны скорости вблизи поверхности Земли. 1: υ = υ 1 - круговая траектория; 2: υ 1 < υ < υ 2 - эллиптическая траектория; 3: υ = 11,1·10 3 м/с - сильно вытянутый эллипс; 4: υ = υ 2 - параболическая траектория; 5: υ > υ 2 - гиперболическая траектория; 6: траектория Луны

Третья космическая скорость равна примерно 16,6·10 3 м/сек (при запуске на высоте 200 км над земной поверхностью) и необходима для преодоления гравитации сначала Земли, а затем и Солнца и выхода за пределы Солнечной системы. Сейчас два искусственных спутника развили такую скорость Пионер-10 и Пионер-11, запущенные 2 марта 1972 и 6 апреля 1973 года соответственно. В данный момент аппараты покинули пределы Солнечной системы.

Законы Кеплера — это три закона движения планет относительно Солнца. Установлены Иоганном Кеплером в начале XVII века как обобщение данных наблюдений Тихо Браге. Причем особенно внимательно Кеплер изучал движение Марса. Рассмотрим законы подробнее.

Первый закон Кеплера:

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Форму эллипса степень его сходства с окружностью будет тогда характеризовать отношение: e=c/a, где с — расстояние от центра эллипса до его фокуса; а — большая полуось. Величина «е» называется эксцентриситетом эллипса. При с=0 и е=0 эллипс превращается в окуржность.

Второй закон Кеплера:

Каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиусом-вектором планеты, изменяется пропорционально времени. Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удаленная точка орбиты. Тогда можно утверждать, что планета движется вокруг Солнца неравномерно: имея линейную скорость в перигелие больше, чем в афелие.

Третий закон Кеплера:

Квадраты времен обращения планеты вокруг Солнца относятся как кубы их средних расстояний от Солнца. Этот закон, равно как и первые два, применим не только к движению планет, но и к движению как их естественных, так и искуственных спутников.

Кеплеровские законы были уточнены и объяснены на основе закона всемирного тяготения Исааком Ньютоном. Закон же всемирного тяготения гласит:
Сила F взаимного притяжения между материальными точками массами m1 и m2, находящиеся на расстоянии r друг от друга, равна: F=Gm1m2/r^2, где G — гравитационная постоянная. Закон открыт Ньютоном также в XVII веке (понятно, что на основе законов Кеплера).

Таким образом в формулировке Ньютона законы Кеплера звучат так:

— первый закон: под дествием силы тяготения одно небесное тело может двигаться по отношению к другому по окружности, эллипсу, параболе и гиперболе. Надо сказать, что он справедлив для всех тел, между которыми действует взаимное притяжение.
— формулирование второго закона Кеплера не дана, так как в этом не было необходимости.
— третий закон Кеплера сформулирован Ньютоном так: квадраты сидерических периодов планет, умноженные на сумму масс Солнца и планеты, относятся как кубы больших полуосей орбит планет.

Таковы три закона Кеплера — три закона движения планет.

omcszuo.narod.ru

Законы движения Кеплера

Иоганн Кеплер и планеты Солнечной системы

Астрономия конца XVI века отмечает столкновение двух моделей нашей Солнечной системы: геоцентрическая система Птолемея – где центром вращения всех объектов является Земля, и гелиоцентрическая система Коперника – где Солнце является центральным телом.

Модель Солнечной системы Клавдия Птолемея

И хотя Коперник был ближе к истинной природе Солнечной системы, его работа имела недостатки. Основным из этих недостатков являлось утверждение, что планеты вращаются вокруг Солнца по круговым орбитам. С учетом этого, модель Коперника практически настолько же не согласовывалась с наблюдениями, как и система Птолемея. Польский астроном стремился исправить данное расхождение при помощи дополнительного движения планеты по кругу, центр которого уже двигался вокруг Солнца - эпицикл. Однако, расхождения в большей своей части не были устранены.

В начале XVII века немецкий астроном Иоганн Кеплер, изучая систему Николая Коперника, а также анализируя результаты астрономических наблюдений датчанина Тихо Браге, вывел основные законы относительно движения планет. Они были названы как Три закона Кеплера.

Первый закон Кеплера

Немецкий астроном пытался различными способами сохранить круговую орбиту движения планет, однако это не позволяло исправить расхождение с результатами наблюдений. Потому Кеплер прибегнул к эллиптическим орбитам. У каждой такой орбиты есть два так называемых фокуса. Фокусы – это две заданные точки, такие, что сумма расстояний от этих двух точек до любой точки эллипса является постоянной.

Иоганн Кеплер отметил, что планета движется по эллиптической орбите вокруг Солнца таким образом, что Солнце располагается в одном из двух фокусов эллипса, что и стало первым законом движения планет.

Первый закон Кеплера

Второй закон Кеплера

Проведем радиус-вектор от Солнца, которое располагается в одном из фокусов эллипсоидной орбиты планеты, к самой планете. Тогда за равные промежутки времени данный радиус-вектор описывает равные площади на плоскости, в которой движется планета вокруг Солнца. Данное утверждение является вторым законом.

Второй закон Кеплера

Третий закон Кеплера

Каждая орбита планеты имеет точку, ближайшую к Солнцу, которое называется перигелием. Точка орбиты, наиболее удаленная от Солнца, называется афелием. Отрезок, соединяющий эти две точки называется большой осью орбиты. Если разделить этот отрезок пополам, то получим большую полуось, которую чаще используют в астрономии.

Основные элементы эллипса

Третий закон движения планет Кеплера звучит следующим образом:

Отношение квадрата периода обращения планеты вокруг Солнца к большой полуоси орбиты этой планеты является постоянным, и также равняется отношению квадрата периода обращения другой планеты вокруг Солнца к большой полуоси этой планеты.

Также иногда записывают другое отношение:

Одна из записей третьего закона

Дальнейшее развитие

И хотя законы Кеплера имели относительно невысокую погрешность (не более 1%), все же они были получены эмпирическим способом. Теоретическое же обоснование отсутствовало. Данная проблема позже была решена Исааком Ньютоном, который в 1682-м году открыл закон всемирного тяготения. Благодаря этому закону удалось описать подобное поведение планет. Законы Кеплера стали важнейшим этапом в понимании и описании движения планет.

Gymnazium8.ru

Знайте ваши права!

Движения планет и законы кеплера

В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами. Очень непросто наблюдать гравитационное взаимодействие и между различными окружающими нас телами, даже если их массы составляют многие тысячи килограмм. Однако именно гравитация определяет поведение «больших» объектов, таких, как планеты, кометы и звезды, именно гравитация удерживает всех нас на Земле. Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства. Закономерности движения планет с давних пор привлекали внимание людей. Изучение движения планет и строения Солнечной системы и привело к созданию теории гравитации – открытию закона всемирного тяготения . С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка создания модели Вселенной была предпринята Птолемеем (

140 г.). В центре мироздания Птолемей поместил Землю, вокруг которой по большим и малым кругам, как в хороводе, двигались планеты и звезды.

Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника. В системе Коперника траектории планет оказались более простыми. Немецкий астроном И. Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы. Кеплер использовал результаты наблюдений за движением планет датского астронома Т. Браге. Первый закон Кеплера (1609 г.): Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце. На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка P траектории называется перигелием , точка A, наиболее удаленная от Солнца, называется афелием или апогелием . Расстояние между афелием и перигелием – большая ось эллипса.

Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Закон открыт Ньютоном также в XVII веке (понятно, что на основе законов Кеплера). Второй закон Кеплера эквивалентен закону сохранения момента импульса. В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам. Немецкий астроном И. Кеплер в начале XVII века на основе системы Коперника сформулировал три эмпирических закона движения планет Солнечной системы.

В рамках классической механики выводятся из решения задачи двух тел предельным переходом → 0, где, - массы планеты и Солнца соответственно. Мы получили уравнение конического сечения с эксцентриситетомe и началом системы координат в одном из фокусов. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Другая формулировка этого закона: секториальная скорость планеты постоянна. Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола.

Несмотря на то, что законы Кеплера явились важнейшим этапом в понимании движения планет, они все же оставались только эмпирическими правилами, полученными из астрономических наблюдений.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T2

R3, где Т – период обращения, R – радиус орбиты. В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной. При E = E1 rmax. В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. Установлены Иоганном Кеплером в начале XVII века как обобщение данных наблюдений Тихо Браге. Причем особенно внимательно Кеплер изучал движение Марса. Рассмотрим законы подробнее.

При с=0 и е=0 эллипс превращается в окуржность. Этот закон, равно как и первые два, применим не только к движению планет, но и к движению как их естественных, так и искуственных спутников. Кеплера не дана, так как в этом не было необходимости. Кеплера сформулирован Ньютоном так: квадраты сидерических периодов планет, умноженные на сумму масс Солнца и планеты, относятся как кубы больших полуосей орбит планет.

17 в. И. Кеплером (1571-1630) на основе многолетних наблюдений Т. Браге (1546-1601). Закон площадей.) 3. Квадраты периодов любых двух планет соотносятся как кубы их средних расстояний от Солнца. Наконец, он предположил, что орбита Марса эллиптическая, и увидел, что эта кривая хорошо описывает наблюдения, если Солнце поместить в один из фокусов эллипса. Затем Кеплер предположил (хотя и не мог точно доказать этого), что все планеты движутся по эллипсам, в фокусе которых находится Солнце.

КЕПЛЕРОВСКИЙ ЗАКОН ПЛОЩАДЕЙ. 1 й закон: каждая планета движется по эллиптич. Когда камень падает на Землю, он подчиняется закону всемирного тяготения. Эта сила прилагается к одному из взаимодействующих тел и направлена в сторону другого. К такому заключению, в частности, пришел И. Ньютон в своем мысленном бросании камней с высокой горы.Итак, Солнце искривляет движение планет, не давая им разлететься во все стороны.

Кеплер на основе результатов кропотливых и многолетних наблюдений Тихо Браге за планетой Марс смог определить форму его орбиты. Действие на Луну Земли и Солнца делают совершенно непригодными для расчетов ее орбиты законы Кеплера.

Форма эллипса и степень его сходства с окружностью характеризуется отношением, где - расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), - большая полуось. Таким образом можно утверждать, что, а следовательно и пропорциональная ей скорость заметания площади - константа. Солнца, а и - длины больших полуосей их орбит. Утверждение справедливо также для спутников.

Вычислим площадь эллипса, по которому движется планета. При этом взаимодействие между телами M1 и M2 не учитывается. Различие будет только в линейных размерах орбит (если тела разной массы). В мире атомов и элементарных частиц гравитационные силы пренебрежимо малы по сравнению с другими видами силового взаимодействия между частицами.

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и потерялись в безбрежных просторах мирового пространства. С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Геоцентрическая система Птолемея продержалась более 14 столетий и только в середине XVI века была заменена гелиоцентрической системой Коперника.

На рис. 1.24.2 показана эллиптическая орбита планеты, масса которой много меньше массы Солнца. Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым. Круговая и эллиптическая орбиты.

Ньютон первый высказал мысль о том, что гравитационные силы определяют не только движение планет Солнечной системы; они действуют между любыми телами Вселенной. В частности, уже говорилось, что сила тяжести, действующая на тела вблизи поверхности Земли, имеет гравитационную природу. Потенциальная энергия тела массы m, находящегося на расстоянии r от неподвижного тела массы M, равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

В пределе при Δri → 0 эта сумма переходит в интеграл. Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1.24.6). Если скорость космического корабля равна υ1 = 7.9·103 м/с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей.

Таким образом, первый закон Кеплера прямо следует из закона всемирного тяготения Ньютона и второго закона Ньютона. 3. Наконец, Кеплер отметился еще и третьим законом планетных движений. Солнца, а и - массы планет. Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий - ближайшая к Солнцу точка орбиты, и афелий - наиболее удаленная точка орбиты.

Видимые петлеобразные движения планет Коперник объяснял сочетанием движения Земли с движением каждой планеты вокруг Солнца. Так как периоды обращения Земли и любой планеты неодинаковы, то бывает, что, например, Земля обгоняет планету, и тогда планета кажется смещающейся относительно звезд к западу. В другое же время движения их складываются так, что планета кажется перемещающейся к востоку.

Это поясняет рисунок 20, где стрелки показывают направление обращения Земли и планеты, которая дальше от Солнца, чем Земля, и движется медленнее. Прямые линии соединяют одновременные положения Земли и планеты и указывают направление, по которому планета видна с Земли при разных ее положениях на орбите. Стрелки у видимого пути планеты показывают, как при этом меняется направление ее видимого движения.

Рисунок 20 - Видимое петлеобразное движение планеты (происходит вследствие сочетания движения планеты и наблюдателя вместе с Землей).

Коперник определил периоды обращения планет и их расстояния от Солнца по сравнению с расстоянием Земли от Солнца.

Взаимное расположение Земли и планет все время меняется. Например, планета, более далекая от Солнца, чем Земля, по отношению к последней может быть за Солнцем (Рисунок 21), а планета, более близкая,- между Землей и Солнцем или тоже за ним. В этих положениях планеты нам не видны, так как скрываются в лучах Солнца. Планету, более далекую от Солнца, чем Земля, лучше всего наблюдать, когда она видна в стороне, противоположной Солнцу. Тогда она ближе к Земле и хорошо видна в телескоп. В эту пору она кульминирует в полночь и долго видна в течение дня. Положение планеты, противоположное Солнцу по отношению к Земле, называется противостоянием.

Рисунок 21 - Противостояния и наибольшие удаления планеты от Солнца.

Для планеты, более близкой к Солнцу, чем Земля, угол между направлениями с Земли на нее и на Солнце меняется, не превосходя 29°для Меркурия и 48° для Венеры. При наибольшем угловом расстоянии между Солнцем и такой планетой ее удобнее всего наблюдать - она позднее заходит вечером после Солнца или раньше восходит утром перед восходом Солнца, смотря по тому, с какой стороны от Солнца мы ее видим. Как показывает рисунок 22, вид Меркурия и Венеры меняется, как у Луны. Это зависит от того, как повернуто к нам освещенное Солнцем полушарие этих планет.

Рисунок 22 - Изменения фазы и видимого диаметра Меркурия и Венеры в зависимости от их положения относительно Земли и Солнца .

Коперник установил, что центром движения Земли и планет является Солнце, но точно установить истинную форму орбит планет он не мог. Как все ученые и философы древности, Коперник считал, что в небесах все движения равномерны и траектории этих движений - окружности. Поэтому подлинные движения планет теория Коперника отражала едва ли точнее, чем теория Птолемея.

Причину этого несоответствия выяснил в начале XVII в. австрийский ученый Иоганн Кеплер (1571 -1630). Кеплер установил три закона планетных движений, которые он вывел из наблюдаемых перемещений планет по небесной сфере.

Первый закон. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Эллипсом называется замкнутая плоская кривая, обладающая тем свойством, что сумма расстояний каждой ее точки от двух точек, называемых фокусами, остается постоянной. На рисунке 23 O - центр эллипса, DA - большая ось, К и S - фокусы эллипса, так что KM+SM=DA равно большой оси эллипса. Чем больше расстояние между фокусами, тем более сжат эллипс при заданной величине его большой оси. Степень вытянутости эллипса характеризуется величиной его эксцентриситета. Эксцентриситетом е называется отношение расстояния OS центра эллипса от одного из фокусов к длине большой полуоси ОА, то есть е = OS: О А.

Эллиптические орбиты планет мало отличаются от окружности, и их эксцентриситеты немногим больше нуля.

Из первого закона Кеплера следует, что расстояние планет от Солнца меняется. Ближайшая точка орбиты называется перигелием, а наиболее далекая - афелием.

Орбита Земли тоже эллиптическая. В перигелии Земля бывает в начале января, в афелии - в начале июля. Хотя, таким образом, зима в северном полушарии Земли бывает в период кратчайшего расстояния ее от Солнца, однако различие в угле падения солнечных лучей на поверхность Земли и различие в продолжительности дня летом и зимой влияют сильнее, чем небольшие изменения в расстоянии Земли от Солнца.

Второй закон (закон площадей). Радиус-вектор планеты в равные времена описывает равные площади.

Радиусом-вектором планеты называется отрезок прямой линии, соединяющей планету с Солнцем. Скорость планеты при ее движении меняется так, что площадь, описанная радиусом-вектором за равные промежутки времени, одна и та же, в какой бы части своей орбиты ни находилась планета. На рисунке 23 площади CSD, ESF и ASH равны, если дуги CD, EF, АН описаны планетой за равные промежутки времени. Таким образом, близ перигелия скорость планеты наибольшая, близ афелия - наименьшая.

Рисунок 23 - Закон площадей (второй закон Кеплера).

Третий закон. Квадраты периодов обращений планет относятся, как кубы больших полуосей их орбит.

Если период обращения и большую полуось орбиты одной планеты обозначить соответственно Т1 и а2, а другой планеты - через Т2 и а2, то третий закон Кеплера выразится формулой:

Зная из наблюдений периоды обращения планет, можно но этой формуле определить большие полуоси орбит планет по отношению

к большой полуоси орбиты Земли, принимая полуось орбиты Земли за единицу. Заметим, что длина большой полуоси орбиты планеты равна среднему расстоянию ее от Солнца, так как полусумма расстояний планеты от Солнца в афелии и перигелии равна большой полуоси орбиты планеты; на рисунке 23 DS+AS/2 = OD, где OD - большая полуось. Так как при помощи третьего закона Кеплера все расстояния планет от Солнца можно определить, зная расстояние Земли от Солнца, то длину большой полуоси земной орбиты считают в астрономии единицей расстояний и называют ее астрономической единицей; она равна 149 500 000 км.

2. Период обращения Плутона 250 лет. Чему равна большая полуось его орбиты?

«Он жил в эпоху, когда ещё не было уверенности в существовании некоторой общей закономерности для всех явлений природы.

Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и не понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения!

Сегодня, когда этот научный акт уже совершился, никто не может оценить полностью, сколько изобретательности, сколько тяжёлого труда и терпения понадобилось, чтобы открыть эти законы и столь точно их выразить» (Альберт Эйнштейн о Кеплере).

Иоганн Кеплер первым открыл закон движения планет Солнечной системы. Но сделал это он на основе анализа астрономических наблюдений Тихо Браге. Поэтому поговорим сначала о нем.

Тихо Браге - датский астроном, астролог и алхимик эпохи Возрождения. Первым в Европе начал проводить систематические и высокоточные астрономические наблюдения, на основании которых Кеплер вывел законы движения планет.

Астрономией увлекся еще в детстве, вел самостоятельные наблюдения, создал некоторые астрономические инструменты. Однажды (11 ноября 1572 года), возвращаясь домой из химической лаборатории, он заметил в созвездии Кассиопеи необычайно яркую звезду, которой раньше не было. Он сразу понял, что это не планета, и бросился измерять её координаты. Звезда сияла на небе ещё 17 месяцев; вначале она была видна даже днём, но постепенно её блеск тускнел. Это была первая за 500 лет вспышка сверхновой в нашей Галактике. Событие это взбудоражило всю Европу, было множество истолкований этого «небесного знамения» - предсказывали катастрофы, войны, эпидемии и даже конец света. Появились и учёные трактаты, содержащие ошибочные утверждения о том, что это комета или атмосферное явление. В 1573 г. вышла первая его книга «О новой звезде». В ней Браге сообщал, что никакого параллакса (изменения видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя) у этого объекта не обнаружено, и это убедительно доказывает, что новое светило - звезда, и находится она не вблизи Земли, а по крайней мере на планетном расстоянии. С появлением этой книги Тихо Браге был признан первым астрономом Дании. В 1576 г. указом датско-норвежского короля Фредерика II Тихо Браге был пожалован в пожизненное пользование остров Вен (Hven ), расположенный в 20 км от Копенгагена, а также выделены значительные суммы на постройку обсерватории и её содержание. Это было первое в Европе здание, специально построенное для астрономических наблюдений. Тихо Браге назвал свою обсерваторию «Ураниборг» в честь музы астрономии Урании (это название иногда переводят как «Небесный замок»). Проект здания составил сам Тихо Браге. В 1584 г. рядом с Ураниборгом был построен ещё один замок-обсерватория: Стьернеборг (в переводе с датского «Звёздный замок»). В скором времени Ураниборг стал лучшим в мире астрономическим центром, сочетавшим наблюдения, обучение студентов и издание научных трудов. Но в дальнейшем, в связи со сменой короля. Тихо Браге лишился финансовой поддержки, а затем последовало запрещение заниматься на острове астрономией и алхимией. Астроном покинул Данию и остановился в Праге.

Вскоре Ураниборг и все связанные с ним постройки были полностью разрушены (в наше время они частично восстановлены).

В это напряжённое время Браге пришёл к выводу, что ему нужен молодой талантливый помощник-математик для обработки накопленных за 20 лет данных. Узнав о гонениях на Иоганна Кеплера, незаурядные математические способности которого он уже успел оценить из их переписки, Тихо пригласил его к себе. Перед учеными стояла задача: вывести из наблюдений новую систему мира, которая должна прийти на смену как птолемеевской, так и коперниковой. Он поручил Кеплеру ключевую планету: Марс, движение которого решительно не укладывалось не только в схему Птолемея, но и в собственные модели Браге (по его расчётам, орбиты Марса и Солнца пересекались).

В 1601 г. Тихо Браге и Кеплер начали работу над новыми, уточнёнными астрономическими таблицами, которые в честь императора получили название «Рудольфовых»; они были закончены в 1627 г. и служили астрономам и морякам вплоть до начала XIX века. Но Тихо Браге успел только дать таблицам название. В октябре он неожиданно заболел и умер от неизвестной болезни.

Тщательно изучив данные Тихо Браге, Кеплер открыл законы движения планет.

Первоначально Кеплер планировал стать протестантским священником, но благодаря незаурядным математическим способностям был приглашён в 1594 г. читать лекции по математике в университете города Граца (сейчас это Австрия). В Граце Кеплер провёл 6 лет. Здесь в 1596 г. вышла в свет его первая книга «Тайна мира». В ней Кеплер попытался найти тайную гармонию Вселенной, для чего сопоставил орбитам пяти известных тогда планет (сферу Земли он выделял особо) различные «платоновы тела» (правильные многогранники). Орбиту Сатурна он представил как круг (ещё не эллипс) на поверхности шара, описанного вокруг куба. В куб в свою очередь был вписан шар, который должен был представлять орбиту Юпитера. В этот шар был вписан тетраэдр, описанный вокруг шара, представлявшего орбиту Марса и т. д. Эта работа после дальнейших открытий Кеплера утратила своё первоначальное значение (хотя бы потому, что орбиты планет оказались не круговыми); тем не менее, в наличие скрытой математической гармонии Вселенной Кеплер верил до конца жизни, и в 1621 г. переиздал «Тайну мира», внеся в нее многочисленные изменения и дополнения.

Будучи великолепным наблюдателем, Тихо Браге за много лет составил объёмный труд по наблюдению планет и сотен звёзд, причём точность его измерений была существенно выше, чем у всех предшественников. Для повышения точности Браге применял как технические усовершенствования, так и специальную методику нейтрализации погрешностей наблюдения. Особо ценной была систематичность измерений.

На протяжении нескольких лет Кеплер внимательно изучает данные Браге и в результате тщательного анализа приходит к выводу, что траектория движения Марса представляет собой не круг, а эллипс, в одном из фокусов которого находится Солнце - положение, известное сегодня как первый закон Кеплера .

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Форма эллипса и степень его сходства с окружностью характеризуется отношением, где - расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), - большая полуось. Величина называется эксцентриситетом эллипса. При, и, следовательно, эллипс превращается в окружность.

Дальнейший анализ приводит ко второму закону. Радиус-вектор, соединяющий планету и Солнце, в равное время описывает равные площади. Это означало, что чем дальше планета от Солнца, тем медленнее она движется.

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

С этим законом связаны два понятия: перигелий - ближайшая к Солнцу точка орбиты, и афелий - наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.

Где и - периоды обращения двух планет вокруг Солнца, а и - длины больших полуосей их орбит.

Ньютон позднее установил, что третий закон Кеплера не совсем точен - в него входит и масса планеты: , где - масса Солнца, а и - массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

Открытые Кеплером три закона движения планет полностью и точно объяснили видимую неравномерность этих движений. Вместо многочисленных надуманных эпициклов модель Кеплера включает только одну кривую - эллипс. Второй закон установил, как меняется скорость планеты при удалении или приближении к Солнцу, а третий позволяет рассчитать эту скорость и период обращения вокруг Солнца.

Хотя исторически кеплеровская система мира основана на модели Коперника, фактически у них очень мало общего (только суточное вращение Земли). Исчезли круговые движения сфер, несущих на себе планеты, появилось понятие планетной орбиты. В системе Коперника Земля всё ещё занимала несколько особое положение, поскольку только у неё не было эпициклов. У Кеплера Земля - рядовая планета, движение которой подчинено общим трём законам. Все орбиты небесных тел - эллипсы, общим фокусом орбит является Солнце.

Кеплер вывел также «уравнение Кеплера», используемое в астрономии для определения положения небесных тел.

Законы, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения.

Но в бесконечность Вселенной Кеплер не верил и в качестве аргумента предложил фотометрический парадокс (это название возникло позже): если число звёзд бесконечно, то в любом направлении взгляд наткнулся бы на звезду, и на небе не существовало бы тёмных участков. Кеплер, как и пифагорейцы, считал мир реализацией некоторой числовой гармонии, одновременно геометрической и музыкальной; раскрытие структуры этой гармонии дало бы ответы на самые глубокие вопросы.

В математике он нашёл способ определения объёмов разнообразных тел вращения, предложил первые элементы интегрального исчисления, подробно проанализировал симметрию снежинок, работы Кеплера в области симметрии нашли позже применение в кристаллографии и теории кодирования. Он составил одну из первых таблиц логарифмов, впервые ввёл важнейшее понятие бесконечно удалённой точки, ввёл понятие фокуса конического сечения и рассмотрел проективные преобразования конических сечений, в том числе меняющие их тип.

В физике ввёл термин инерция как прирождённое свойство тел сопротивляться приложенной внешней силе, вплотную подошёл к открытию закона тяготения, хотя и не пытался выразить его математически, первый, почти на сто лет раньше Ньютона, выдвинул гипотезу о том, что причиной приливов является воздействие Луны на верхние слои океанов.

В оптике : с его трудов начинается оптика как наука. Он описывает преломление света, рефракцию и понятие оптического изображения, общую теорию линз и их систем. Кеплер выяснил роль хрусталика, верно описал причины близорукости и дальнозоркости.

К астрологии у Кеплера было отношение двойственное. Приводят по этому поводу два его высказывания. Первое: «Конечно, эта астрология - глупая дочка, но, Боже мой, куда бы делась её мать, высокомудрая астрономия, если бы у неё не было глупенькой дочки! Свет ведь ещё гораздо глупее и так глуп, что для пользы этой старой разумной матери глупая дочка должна болтать и лгать. И жалованье математиков так ничтожно, что мать, наверное бы, голодала, если бы дочь ничего не зарабатывала ». И второе: «Люди ошибаются, думая, что от небесных светил зависят земные дела ». Но, тем не менее, Кеплер составлял гороскопы для себя и своих близких.

Удивительно много успел сделать в жизни Иоганн Кеплер , хотя по печальному жребию судьбы он с детства страдал различными болезнями и в том числе множественностью зрения, из-за чего во время наблюдений неба в его глазах возникала, например, не одна Луна, а несколько.

Какой силой духа и воли надо обладать, чтобы при этом продолжать напряженно работать. Огромный вклад внес Кеплер не только в астрономию, но и в оптику. Занимался он самыми разными научными проблемами, даже изучал устройство человеческого глаза…

После смерти Кеплера в 1630 году осталось одно изношенное платье, две рубашки, несколько медных монет и… 57 вычислительных таблиц, 27 напечатанных научных трудов, огромное рукописное наследие, собранное позже в 22 книгах, и три закона движения планет. Три замечательных закона, точное соответствие которых небесной механике подтвердили тщательные и многочисленные измерения, выполненные многими последующими поколениями ученых.

Восхищенный сторонник системы Коперника, Кеплер тем не менее усмотрел в ней серьезный недостаток: обращение планет вокруг Солнца Коперник считал состоящим из нескольких движений по кругу. Внимательно анализируя наблюдения Тихо Браге, Кеплер понял, что в действительности орбиты планет представляют собой эллипсы, а не окружности, причем Солнце обязательно находится в одном из фокусов эллипса. Так формулируется первый закон Кеплера . Просто и убедительно!

Великий труженик науки, разносторонний ученый Иоганн Кеплер.

Если Солнце и одну из планет соединить воображаемой прямой-радиусом, то площади эллипса, отчеркиваемые радиусом за одинаковые промежутки времени, будут равны между собой. Это второй закон Кеплера .

Третий закон может быть выражен следующими словами: время обращения каждой планеты вокруг Солнца, возведенное в квадрат, пропорционально размеру большой полуоси ее эллиптической орбиты, взятой в кубе.

Планеты и Солнце оказались связанными неразрывно. Законы Кеплера позволили точнее предсказывать движение небесных светил, но на вопрос, почему это движение происходит именно так, а не иначе, предстояло ответить Исааку Ньютону…

Кеплер, конечно, неустанно размышлял и над природой сил, объединяющих в единую величественную систему огромные массы вещества, заключенные в планетах и Солнце. Он ввел в физику, и в частности в механику, много определений, которыми мы пользуемся до сих пор. Сопротивление движению тел, находящихся в покое, Кеплер обозначил словом «инерция» , а силу притяжения между массивными телами - термином «гравитация» .

«Гравитацию я определяю как силу,- писал Кеплер,- подобную магнетизму - взаимному притяжению. Сила притяжения тем больше, чем тела ближе одно к другому…»

Еще до открытий Ньютона Кеплер объяснил причины океанских приливов и отливов тем, что «тела Солнца и Луны притягивают воды океана с помощью некоторых сил, подобных магнетизму».

Разнообразны были таланты Кеплера. И проявлялись они часто в областях, далеких от физики и астрономии. В течение шести лет, например, ему приходилось быть… адвокатом собственной матери, которую обвиняли в колдовстве.

От времен созерцательной астрономии остались образные названия созвездий, напоминавших наблюдателям различных животных, изображенных на этой старинной карте XVII века из атласа Яна Гевелия.

В средневековой Европе полыхали костры инквизиции. На родине Кеплера, в маленьком немецком городе Вейле, в котором едва насчитывалось в те времена несколько сот жителей, в период с 1615 по 1629 год было сожжено 38 «колдуний»!

А против матери Кеплера было выставлено множество тяжелых, по тогдашним понятиям, обвинений. Одно из самых страшных ее преступлений - слова, сказанные соседке: «Нет ни рая, ни ада. От человека остается то же, что и от животных».

Но недаром судьи записали в одном из протоколов: «Арестованную, к сожалению, защищает ее сын господин Кеплер, математик». Кеплер сумел добиться оправдания своей несправедливо осужденной, измученной матери.

Ему лишь никогда не удавалось одно из дел, на которое уходило много сил - вовремя и полностью получать денежное содержание, положенное придворному астроному и астрологу. После смерти Кеплера его жене и четырем малолетним детям причиталось почти 13 тысяч гульденов так и не выплаченного жалования…

«Он жил в эпоху, когда ещё не было уверенности в существовании некоторой общей закономерности для всех явлений природы...

Какой глубокой была у него вера в такую закономерность, если, работая в одиночестве, никем не поддерживаемый и не понятый, он на протяжении многих десятков лет черпал в ней силы для трудного и кропотливого эмпирического исследования движения планет и математических законов этого движения!

Сегодня, когда этот научный акт уже совершился, никто не может оценить полностью, сколько изобретательности, сколько тяжёлого труда и терпения понадобилось, чтобы открыть эти законы и столь точно их выразить» (Альберт Эйнштейн о Кеплере).

Иоганн Кеплер первым открыл закон движения планет Солнечной системы. Но сделал это он на основе анализа астрономических наблюдений Тихо Браге. Поэтому поговорим сначала о нем.

Тихо Браге (1546-1601)

Тихо Браге - датский астроном, астролог и алхимик эпохи Возрождения. Первым в Европе начал проводить систематические и высокоточные астрономические наблюдения, на основании которых Кеплер вывел законы движения планет.

Астрономией увлекся еще в детстве, вел самостоятельные наблюдения, создал некоторые астрономические инструменты. Однажды (11 ноября 1572 года), возвращаясь домой из химической лаборатории, он заметил в созвездии Кассиопеи необычайно яркую звезду, которой раньше не было. Он сразу понял, что это не планета, и бросился измерять её координаты. Звезда сияла на небе ещё 17 месяцев; вначале она была видна даже днём, но постепенно её блеск тускнел. Это была первая за 500 лет вспышка сверхновой в нашей Галактике. Событие это взбудоражило всю Европу, было множество истолкований этого «небесного знамения» - предсказывали катастрофы, войны, эпидемии и даже конец света. Появились и учёные трактаты, содержащие ошибочные утверждения о том, что это комета или атмосферное явление. В 1573 г. вышла первая его книга «О новой звезде». В ней Браге сообщал, что никакого параллакса (изменения видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя) у этого объекта не обнаружено, и это убедительно доказывает, что новое светило - звезда, и находится она не вблизи Земли, а по крайней мере на планетном расстоянии. С появлением этой книги Тихо Браге был признан первым астрономом Дании. В 1576 г. указом датско-норвежского короля Фредерика II Тихо Браге был пожалован в пожизненное пользование остров Вен (Hven ), расположенный в 20 км от Копенгагена, а также выделены значительные суммы на постройку обсерватории и её содержание. Это было первое в Европе здание, специально построенное для астрономических наблюдений. Тихо Браге назвал свою обсерваторию «Ураниборг» в честь музы астрономии Урании (это название иногда переводят как «Небесный замок»). Проект здания составил сам Тихо Браге. В 1584 г. рядом с Ураниборгом был построен ещё один замок-обсерватория: Стьернеборг (в переводе с датского «Звёздный замок»). В скором времени Ураниборг стал лучшим в мире астрономическим центром, сочетавшим наблюдения, обучение студентов и издание научных трудов. Но в дальнейшем, в связи со сменой короля. Тихо Браге лишился финансовой поддержки, а затем последовало запрещение заниматься на острове астрономией и алхимией. Астроном покинул Данию и остановился в Праге.

Вскоре Ураниборг и все связанные с ним постройки были полностью разрушены (в наше время они частично восстановлены).

В это напряжённое время Браге пришёл к выводу, что ему нужен молодой талантливый помощник-математик для обработки накопленных за 20 лет данных. Узнав о гонениях на Иоганна Кеплера, незаурядные математические способности которого он уже успел оценить из их переписки, Тихо пригласил его к себе. Перед учеными стояла задача: вывести из наблюдений новую систему мира, которая должна прийти на смену как птолемеевской, так и коперниковой. Он поручил Кеплеру ключевую планету: Марс, движение которого решительно не укладывалось не только в схему Птолемея, но и в собственные модели Браге (по его расчётам, орбиты Марса и Солнца пересекались).

В 1601 г. Тихо Браге и Кеплер начали работу над новыми, уточнёнными астрономическими таблицами, которые в честь императора получили название «Рудольфовых»; они были закончены в 1627 г. и служили астрономам и морякам вплоть до начала XIX века. Но Тихо Браге успел только дать таблицам название. В октябре он неожиданно заболел и умер от неизвестной болезни.

Тщательно изучив данные Тихо Браге, Кеплер открыл законы движения планет.

Законы движения планет Кеплера

Первоначально Кеплер планировал стать протестантским священником, но благодаря незаурядным математическим способностям был приглашён в 1594 г. читать лекции по математике в университете города Граца (сейчас это Австрия). В Граце Кеплер провёл 6 лет. Здесь в 1596 г. вышла в свет его первая книга «Тайна мира». В ней Кеплер попытался найти тайную гармонию Вселенной, для чего сопоставил орбитам пяти известных тогда планет (сферу Земли он выделял особо) различные «платоновы тела» (правильные многогранники). Орбиту Сатурна он представил как круг (ещё не эллипс) на поверхности шара, описанного вокруг куба. В куб в свою очередь был вписан шар, который должен был представлять орбиту Юпитера. В этот шар был вписан тетраэдр, описанный вокруг шара, представлявшего орбиту Марса и т. д. Эта работа после дальнейших открытий Кеплера утратила своё первоначальное значение (хотя бы потому, что орбиты планет оказались не круговыми); тем не менее, в наличие скрытой математической гармонии Вселенной Кеплер верил до конца жизни, и в 1621 г. переиздал «Тайну мира», внеся в нее многочисленные изменения и дополнения.

Будучи великолепным наблюдателем, Тихо Браге за много лет составил объёмный труд по наблюдению планет и сотен звёзд, причём точность его измерений была существенно выше, чем у всех предшественников. Для повышения точности Браге применял как технические усовершенствования, так и специальную методику нейтрализации погрешностей наблюдения. Особо ценной была систематичность измерений.

На протяжении нескольких лет Кеплер внимательно изучает данные Браге и в результате тщательного анализа приходит к выводу, что траектория движения Марса представляет собой не круг, а эллипс, в одном из фокусов которого находится Солнце - положение, известное сегодня как первый закон Кеплера .

Первый закон Кеплера (закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Форма эллипса и степень его сходства с окружностью характеризуется отношением , где - расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), - большая полуось. Величина называется эксцентриситетом эллипса. При , и, следовательно , эллипс превращается в окружность.

Дальнейший анализ приводит ко второму закону. Радиус-вектор, соединяющий планету и Солнце, в равное время описывает равные площади. Это означало, что чем дальше планета от Солнца, тем медленнее она движется.

Второй закон Кеплера (закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади.

С этим законом связаны два понятия: перигелий - ближайшая к Солнцу точка орбиты, и афелий - наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.

Где и - периоды обращения двух планет вокруг Солнца, а и - длины больших полуосей их орбит.

Ньютон позднее установил, что третий закон Кеплера не совсем точен - в него входит и масса планеты: , где - масса Солнца, а и - массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

Значение открытий Кеплера в астрономии

Открытые Кеплером три закона движения планет полностью и точно объяснили видимую неравномерность этих движений. Вместо многочисленных надуманных эпициклов модель Кеплера включает только одну кривую - эллипс. Второй закон установил, как меняется скорость планеты при удалении или приближении к Солнцу, а третий позволяет рассчитать эту скорость и период обращения вокруг Солнца.

Хотя исторически кеплеровская система мира основана на модели Коперника, фактически у них очень мало общего (только суточное вращение Земли). Исчезли круговые движения сфер, несущих на себе планеты, появилось понятие планетной орбиты. В системе Коперника Земля всё ещё занимала несколько особое положение, поскольку только у неё не было эпициклов. У Кеплера Земля - рядовая планета, движение которой подчинено общим трём законам. Все орбиты небесных тел - эллипсы, общим фокусом орбит является Солнце.

Кеплер вывел также «уравнение Кеплера», используемое в астрономии для определения положения небесных тел.

Законы, открытые Кеплером, послужили позже Ньютону основой для создания теории тяготения. Ньютон математически доказал, что все законы Кеплера являются следствиями закона тяготения.

Но в бесконечность Вселенной Кеплер не верил и в качестве аргумента предложил фотометрический парадокс (это название возникло позже): если число звёзд бесконечно, то в любом направлении взгляд наткнулся бы на звезду, и на небе не существовало бы тёмных участков. Кеплер, как и пифагорейцы, считал мир реализацией некоторой числовой гармонии, одновременно геометрической и музыкальной; раскрытие структуры этой гармонии дало бы ответы на самые глубокие вопросы.

Другие достижения Кеплера

В математике он нашёл способ определения объёмов разнообразных тел вращения, предложил первые элементы интегрального исчисления, подробно проанализировал симметрию снежинок, работы Кеплера в области симметрии нашли позже применение в кристаллографии и теории кодирования. Он составил одну из первых таблиц логарифмов, впервые ввёл важнейшее понятие бесконечно удалённой точки, ввёл понятие фокуса конического сечения и рассмотрел проективные преобразования конических сечений, в том числе меняющие их тип.

В физике ввёл термин инерция как прирождённое свойство тел сопротивляться приложенной внешней силе, вплотную подошёл к открытию закона тяготения, хотя и не пытался выразить его математически, первый, почти на сто лет раньше Ньютона, выдвинул гипотезу о том, что причиной приливов является воздействие Луны на верхние слои океанов.

В оптике : с его трудов начинается оптика как наука. Он описывает преломление света, рефракцию и понятие оптического изображения, общую теорию линз и их систем. Кеплер выяснил роль хрусталика, верно описал причины близорукости и дальнозоркости.

К астрологии у Кеплера было отношение двойственное. Приводят по этому поводу два его высказывания. Первое: «Конечно, эта астрология - глупая дочка, но, Боже мой, куда бы делась её мать, высокомудрая астрономия, если бы у неё не было глупенькой дочки! Свет ведь ещё гораздо глупее и так глуп, что для пользы этой старой разумной матери глупая дочка должна болтать и лгать. И жалованье математиков так ничтожно, что мать, наверное бы, голодала, если бы дочь ничего не зарабатывала ». И второе: «Люди ошибаются, думая, что от небесных светил зависят земные дела ». Но, тем не менее, Кеплер составлял гороскопы для себя и своих близких.

Формулировка Кеплера:

Планета движется по эллипсу, в одном из фокусов кото-рого находится Солнце .

Ньютон обобща-ет её: во-первых, может рассматриваться система звезда — звезда (двойная звезда), планета — спутник; во-вторых, меньшее тело может двигаться по параболе или гиперболе (рис. 33).

Совре-менная формулировка:

В гравитационно-связанной системе тело B движется по эллипсу, в одном из фокусов которого находится тело A . Экс-центриситет эллипса определяется численным значением полной энергии системы. В гравитационно-несвязанной сис-теме тело B движется по параболе (E = 0) или по гиперболе (E > 0), в фокусах которых находится тело A .

Эллипс

Эллипс (рис. 33) — вытянутая окружность, обладающая тем свойством, что существуют две точки (фокусы эллипса F 1 и F 2 , для которых выполняется условие: сумма расстояний фокусов от любой точки эллипса постоян-на (F 1 C + F 2 C = F 1 E + F 2 E = const), т. е. не зависит от точки, выбранной на эл-липсе).

Отрезок AB называется большой осью, соответственно отрезок AO = OB — большой полуосью (принятое обозначение a ), отрезки CD и OC — малой осью и полуосью b . Размер эллипса определяется большой полуосью, форма — экс-центриситетом e = √(1 — b 2 / a 2). При e = 0 эллипс вырождается в окружность, при e = 1 — в параболу, при е > 1 — в гиперболу, которую лучше представлять в ви-де графика функции y = 1 / x, повёрнутого на 45°. У эллипса большая полуось a > 0, у параболы a = ∞, у гиперболы a < 0, что, конечно, только математиче-ская абстракция.

Радиус-вектор планеты за равные промежутки времени описывает равные площади (рис. 34).

Это утверждение аналогично тому, что скорость движения уменьшается по мере удаления от Солнца, а точнее, это закон сохранения момента импульса.

Если подсчитать число суток от дня весеннего равноденст-вия (21 марта) до дня осеннего (23 сентября) и от 23 сентяб-ря до 21 марта следующего года , то окажется, что первый пе-риод на 7 сут. длиннее второго. Другими словами, Земля зи-мой движется быстрее, чем летом, следовательно, она зимой ближе к Солнцу. Самую близкую к Солнцу точку своей орби-ты — перигелий — Земля проходит 6 января.

Закон сохранения момента импульса

Момент импульса (K = mvr ) — физическая величина, удобная для описа-ния движения точки по окружности или эллипсу, параболе, гиперболе, а так-же для описания вращения твёрдого тела. Закон сохранения момента им-пульса (как и законы сохранения импульса и энергии) — один из трёх ос-новополагающих законов природы. Согласно теореме Нётер этот закон явля-ется следствием изотропности (равноправия всех направлений) Вселенной.

Отношение куба большой полуоси планетной орбиты к ку-бу периода обращения планеты вокруг Солнца равно сумме масс Солнца и планеты (в формулировке Ньютона):

a 3 / T 2 = (G / 4π 2) . (M + m ), Материал с сайта

где M и m — массы тел системы; a и T — большая полуось и период обращения меньшего тела (планеты, спутника); G — гравитационная постоянная.

Необходимо обратить внимание на постоянный множитель в правой ча-сти. В формуле он приводится в единицах СИ, но в астроно-мии используются астрономическая единица длины (вместо метра), год (вместо секунды) и масса Солнца (вместо кило-грамма). Тогда, как легко убедиться, если пренебречь массой планеты по отношению к массе Солнца, постоянный множи-тель в этой формуле равен единице.

Третий закон Кеплера предоставляет единственную возможность непосредственно оп-ределить массу небесного тела (например,