Гидроксиапатит кальция является главной неорганической составляющей костей, зубной эмали, дентина. Это природный минерал, отлично усваивающийся нашим организмом. Купить гидроксиапатит кальция в составе препаратов для укрепления костной ткани вы сможете прямо на нашем сайте. Однако давайте сначала выясним преимущественное отличие данного вещества от других кальцийсодержащих солей.

Что представляет собой гидроксиапатит кальция?

В природе гидроксиапатит кальция встречается в горных породах. Молекулярная формула минерала Сa 10 (PO 4) 6 (OH) 2) . Его основные составляющие – кальций и фосфор – два основные микроэлемента, ответственные за минерализацию, целостность, твердость костей. Для медицинских и косметических нужд минерал добывают из морских кораллов или костей крупного рогатого скота.

Где и для чего используют гидроксиапатит кальция?

Широкое применение минерал нашел в косметологии для устранения морщин, безоперационного лифтинга или ринопластики. На основе гидроксиапатита создан широкий ассортимент косметических средств, улучшающих структуру и внешний вид кожи.

В стоматологии его применяют для восстановления эмали , а в челюстно-лицевой хирургии – для изготовления имплантатов. Минерал интактный, не вызывает реакции отторжения, поэтому его использование безопасно.

Много людей принимают препараты, содержащие гидроксиапатит, с целью профилактики дефицита кальция, деструкции костной ткани, для лечения , быстрого восстановления костей после травм, переломов.

В чем преимущественное отличие минерала?

Если сравнить с остальными солями Ca 2+ , гидроксиапатит кальция более щадяще действует на организм. Он легче усваивается , не раздражает желудочно-кишечный тракт, его биодоступность во много раз выше, чем, к примеру, у карбоната кальция.

По структуре минерал идентичен тому, что находится в наших костях, образуя их минеральный матрикс. Соотношение фосфора и кальция составляет 1:2 . Как известно, для укрепления костей нужны оба микроэлементы, поэтому принимать их по отдельности неэффективно.

К сожалению, большинство препаратов на украинском рынке (Кальций D3 Никомед, Кальций-Актив, Натекаль D3 и другие) содержат карбонат кальция, в составе которого совершенно нету фосфора. Это негативно влияет на усвоение Ca 2+ , кальций-фосфорный обмен и на костную систему в целом. К тому же, биодоступность карбоната кальция намного ниже, а усваиваться он может лишь при повышенной или нормальной кислотности.

Гидроксиапатит всасывается кишечником при любой кислотности желудочного сока, а его выведение почками сведено к минимуму . Это дополнительный плюс, поскольку оседание Ca 2+ в почках зачастую вызывает развитие мочекаменной болезни.

Помимо индивидуальной непереносимости, препараты на основе гидроксиапатита не имеют противопоказаний и побочных эффектов.

Где можно купить гидроксиапатит кальция?

Как мы уже сказали, подавляющее большинство кальцийсодержащих препаратов в Украине состоят из карбоната кальция. Однако купить гидроксиапатит кальция все-таки можно.

Помимо гидроксиапатита кальция, содержит массу других, необходимых для усвоения кальция, микроэлементов (магний, цинк, марганец, кремний). В состав препарата также входит витамин D и хондроитинсульфаты.

Является отменным источником гидроксиапатита, обеспечивает крепость костей, служит для профилактики и лечения остеопороза. Препарат стоит принимать для ликвидации дефицита кальция.

Купить гидроксиапатит кальция в составе Кальцимакса Вы можете прямо у нас на сайте!

Филлеры на основе гидроксиапатита кальция относятся к биодеградируемым препаратам, как и филлеры на основе гиалуроновой кислоты . Они точно также применяются для заполнения выраженных морщин и для объемного моделирования лица. В последнее время американские эстетисты применяют это вещество также для омоложения рук.

Гидроксиапатит кальция в косметологии

Гидроксоапатит кальция остается пока самым тяжелым наполнителем, которое используют в составе подкожных филлеров, поскольку он является минеральным веществом. Гидроксиапатит кальция - это основной неорганический компонент костной ткани, который для производства филлеров производится синтетическим путем (это снижает риск аллергических реакций). Риск развития аллергических реакций на введение таких филлеров, естественно, выше у аллергиков. Однако все индивидуально, и пациент может просто не догадываться о чувствительности к определенным веществам.

Гидроксоапатит кальция попадает в кожу в виде микросфер, которые по утверждениям разработчиков, стимулируют синтез коллагена в дерме и спустя некоторое время выводятся из организма в процессе обмена - оставляя «на память» только коллаген. Срок действия филлеров на основе гидроксиапатита кальция составляет 9-12 месяцев (при сопоставимом эффекте гиалуроновых филлеров в 6-12 месяцев). При более глубоком введении их действие продлиться дольше на несколько месяцев, а то и полгода. Впрочем, такие филлеры не имеют биологических преимуществ «гиалуронки» - не увлажняют, не ревитализируют дерму и не могут проводить другие активные вещества вглубь кожи.

Призвание: «носогубные филлеры»

С другой стороны, филлеры на основе гидроксиапатита кальция более предпочтительно применять в области носогубной складки: именно за счет того, что они способны стимулировать выработку собственного коллагена, который крайне необходим в этой области. Считается, что филлеры гидроксиапатита кальция способны справиться с марионеточными морщинам - от умеренных до глубоких. Протокол применения таких филлеров требует активного разминания в области введения: это позволяет минимизировать риск отека и других осложнений.

Что касается объемного моделирования препаратом гидроксиапатита кальция, то в протоколе также настоятельно рекомендуют проводить разминание с усилием. Следует отметить, что препарат гидроскиапатита кальция сам по себе равномерно распределяется в тканях без чрезмерных усилий в силу своих биохимических особенностей. Филлер «разглаживается» в течение ближайших дней после введения и становится незаметным на лице максимум через 4 недели. Поэтому некоторые косметологи считают, что совершенно нецелесообразно провоцировать дополнительное травмирование тканей активным разминанием.

Представители: Radiesse ™ - инъекционный наполнитель, который состоит из микросфер синтетического кальция гидроксилапатита (30%), заключенных в носителе - водном геле (70 процентов). В настоящее время Radiesse разрешен в США для применения у пациентов с ВИЧ - это свидетельствует о высокой степени его инертности.

Осложнения после филлеров с гидроксиапатитом кальция: no pain, no gain

  • Недостаточно глубокое введение препарата гидроксиапатита кальция может проявиться белыми полосками в месте введения — в таком случае остается только выжидать его самостоятельной деградации.
  • Применение в не предназначенных зонах - губы, носослезная борозда - влечет формирование комков и неровностей, развитие асимметрии, гематом, которые могут надолго задержаться на лице.
  • Эффект Тиндаля, придающий лицу мертвенно бледный «колорит», также возможен в случае поверхностного введения (между дермой и эпидермисом).
  • Инфекции и отеки - риск подобных осложнений несут все филлеры.

Точная техника инъекции способна минимизировать риск побочных эффектов, такие как формировании гранулем или «сгустков» геля, избежать гиперкоррекции, инфекционных и других осложнений.

Реабилитация после филлеров

Реабилитационный период мало отличается от других инъекционных методик и заключается в основном в соблюдении правил личном гигиены, в противном случае даже небольшое количество патогенов сможет привести к воспалительным осложнениям.

Чтобы избежать инфекционных осложнений, рекомендуется держать кожу лица свободной от макияжа как минимум месяц после введения наполнителей. Хорошая гигиена - это всегда важно, но после инъекций с наполнителями - особенно. Дело в том, что гель не попадает в дерму абсолютно стерильным, и небрежный уход может стимулировать их к размножению со всеми вытекающими последствиями. Даже когда вы придерживаетесь все норм и правил, этот риск не исключен, поскольку патогены находятся глубоко под поверхностью кожи.

АРТ Клиник

Москва, 1-й Тверской Ямской пер., д. 13/5, Институт нейрохирургии им. Н.Н.Бурденко, 1-й корпус, 3-й этаж

«АРТ-Клиник» - клиника пластической хирургии и косметологии Клиника пластической хирургии и косметологии «АРТ-Клиник» работает на базе Института нейрохирургии имени Н.Н. Бурденко с 2003 года. Ее основатель Александр Иванович Неробеев - выдающийся врач-хирург, профессор, доктор медицинских наук, Заслуженный деятель науки Российской Федерации, лауреат Государственной премии Российской Федерации, специалист экстра-класса, признанный не только в нашей стране, но и за рубежом, по сей день лично проводит наиболее сложные операции. Усилиями и энергией профессора Александра Ивановича Неробеева создана школа уникальных специалистов, способных успешно вести самые серьезные случаи, в том числе и осложнения после пластических операций. Приоритетом «АРТ-Клиник» является колоссальный опыт ее специалистов в области косметологии, пластической и челюстно-лицевой хирургии, а также первоклассная научно-техническая база. За годы успешной работы «АРТ-Клиник» заслужила репутацию компании, соответствующей мировым стандартам качества и профессионализма. Поэтому сегодня именно здесь проводят не только наиболее популярные и востребованные эстетические операции, но и наиболее сложные, редкие и даже уникальные коррекции. Команда «АРТ-Клиник» – это: Многолетний опыт успешной работы Команда высококлассных врачей Современные малоинвазивные методики операций и реконструкций Ответственность, открытость и профессионализм Более 10 000 довольных пациентов Красота спасет мир, а эстетическая медицина поддержит ее в этом

Гидроксиапатит – это препарат, который является регулятором кальциево-фосфатного обмена, неорганическим основным компонентом костной ткани.

Выпускается в виде гранул для приготовления стоматологической пасты, суспензии, порошка для приготовления раствора для местного применения и пасты.

Фармакологическое действие Гидроксиапатита

В состав Гидроксиапатита входят фосфор и кальций.

Данный препарат служит основой для неорганического матрикса твердых тканей человека. Гидроксиапатит кальция содержит необходимые химические элементы в тех же ионных формах, в каких они содержатся в живых организмах. Препарат не вызывает реакции отторжения.

Гидроксиапатит способствует активации остеогенеза, усилению пролиферативной активности остеобластов, а также помогает осуществлению процессов репаративного остеогенеза непосредственно в месте введения.

Гидроксиапатит останавливает воспалительные реакции в костных ранах. После того, как он заполняет собой костные полости, препарат не рассасывается и не затвердевает, а полностью замещается полноценной костной тканью. Гидроксиапатит относится к нетоксичным веществам, не вызывающим побочные эффекты.

Также применяется препарат Гидроксиапатит в косметологии.

Показания к применению

В стоматологии Гидроксиапатит активно используется:

  • как компонент для пломбировочных паст для зубов;
  • при лечении глубокого ;
  • в качестве пасты для заполнения корневых каналов во время лечения и ;
  • при лечении пародонтита;
  • для замещения костных дефектов донорскими костями и после удаления кисты, верхушки корня зуба;
  • для заполнения внутрикостных полостей.

В косметологии Гидроксиапатит используется для разглаживания морщин и внутрикожных инъекций.

Способы применения Гидроксиапатита и дозировки

Порошок Гидроксиапатит необходимо перемешать на стекле с физиологическим раствором, масляным раствором ретинола ацетата или этиленгликолем, чтобы получилось пастообразная консистенция. При этом должны быть соблюдены все правила асептики.

Пасту для заполнения корневых каналов изготавливают на эвгеноле. Если эвгенол несовместим с пломбировочными материалами, то на физиологическом растворе. Для получения лучшей рентгеноконтрастности следует добавить 50% окиси цинка. Для того, чтобы предотвратить осложнения, пасту необходимо вывести за верхушку корня зуба.

Гранулы Гидроксиапатит рекомендованы для заполнения костных карманов при пародонтите, глубина которых не превышает 7 мм. Для этого костный карман, который подготавливается во время лоскутной операции, полностью заполняется гранулами до уровня кости альвеолярного отростка, после чего рана зашивается.

Во время костной пластики в хирургии Гидроксиапатит применяется для усиления остеоинтегративных функций трансплантата, предупреждения его рассасывания, а также уменьшения реакции воспаления. Им заполняются места неполного прилегания между костным ложем и трансплантатом.

Противопоказания к применению

Препарат Гидроксиапатит не рекомендуется применять при наличии индивидуальной непереносимости компонентов препарата, а также при воспалительных процессах, сопровождающихся образованием гноя в тканях, которые окружают поврежденные костные ткани.

Побочные действия

Во время использования препарата Гидроксиапатит побочных эффектов выявлено не было.

Видео: Штифт в гидроксиапатит

Дополнительная информация

Гидроксиапатит отпускается из аптек без рецепта врача.

Хранить препарат необходимо в сухом и защищенном от света месте.

Все интересное

Видео: Зубная паста фтор = яд.Форма выпускаФармакологическое действиеПоказания к применениюПротивопоказанияПобочные действияВидео: Фторид натрия в зубной пасте и водеПередозировкаСпособ применения и дозировкаОсобые указанияЛекарственное…

Фармакологическое действие Показания к применению Дозировка и правила приема Противопоказания к применению Побочные действия ПередозировкаДополнительная информацияГексаметилентетрамин – это обеззараживающее средство, которое активно борется с…

Фармакологическое действиеФорма выпускаПоказания к применениюПротивопоказанияСпособы примененияПобочные действияУсловия храненияЦены в интернет-аптеках:от 17 руб.ПодробнееГлина белая – природный сорбент, применяемый в медицине и…

Видео: Использование губки коллагеновой кровоостанавливающейФармакологическое действие Показания к применению Способы применения Побочные эффектыПротивопоказания к применениюПередозировкаДополнительная информацияЦены в интернет-аптеках:от 69…

Фармакологическое действие Форма выпуска Показания к применению ПротивопоказанияСпособ применения и дозировкаВидео: Иванушка дурачок, сказка мультик Сказка на ночь детям Жил был старик со старухой и было у них триПобочные…

Фармакологическое действие Форма выпуска Показания к применению ПротивопоказанияСпособ применения и дозировкаПобочные действияУсловия и сроки хранения Этоний – антимикробный препарат, который относится к группе антисептических и дезинфекционных…

Фармакологическое действие Показания к применению Способ применения и дозировкиПобочные действия Противопоказания к применению Аналоги Дополнительная информацияЭтакридин – это антисептический препарат, предназначенный для уничтожения вирусных…

Фармакологическое действие Форма выпуска, состав и аналоги Показания к применению ПротивопоказанияСпособ применения Побочные действияЛекарственное взаимодействие Видео: Кальций глюконатУсловия храненияЦены в интернет-аптеках:от 4…

Фармакологическое действие Показания к применению Способы применения и дозировкаПобочные действия Видео: Глицерофосфат кальция или глюконат кальция?Противопоказания к применениюПередозировкаДополнительная информацияКальция глицерофосфат – это…

Форма выпуска и составФармакологическое действиеПоказания к применениюСпособы применения Противопоказания к применениюВидео: Какой Кальций Лучше для Детей,Взрослых,Беременных- Кальций Магний и Витамин Д3-Инструкция,ПрименениеПобочные действияОсобые…

Фармакологическое действие Показания к применению Способ применения и дозировкаПобочные действия Противопоказания к применениюПередозировкаДополнительная информацияКальцитонин – это лекарственный препарат, который применяется для терапии…

Минерализованные ткани, к которым относятся костная ткань, дентин, клеточный и бесклеточный цемент и эмаль зуба, характери- зуются высоким содержанием минерального компонента, главной составной частью которого являются фосфорнокислые соли кальция.

3.1. ХИМИЧЕСКИЙ СОСТАВ МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ

Образование и распад минерального компонента в этих тканях тесно связан с обменом кальция и фосфора в организме. В межклеточном матриксе минерализованных тканей происходит депонирование кальция, который выполняет также структурную функцию. В клетках кальций исполняет роль вторичного посредника в механизмах внутриклеточного переноса сигналов.

Особенностью всех минерализованных тканей, за исключением эмали и бесклеточного цемента, является малое количество клеток с длинными отростками, а большой межклеточный матрикс заполнен минералами. В белках матрикса формируются центры кристаллизации для формирования кристаллов минерального компонента - апатитов. Эмаль и бесклеточный цемент зубов образуются из эктодермы, а остальные минерализованные ткани из стволовых клеток мезодермы. Насыщенность минеральными соединениями зависит от вида твёрдой ткани, топографической локализацией внутри ткани, возраста и экологических условий.

Все минерализованные ткани различаются по содержанию воды, минеральных и органических соединений (табл. 3.1).

В эмали по сравнению с другими твёрдыми тканями определяется наиболее высокая концентрация кальция и фосфатов, и количество этих минералов снижается в направлении от поверхности к эмалеводентинной границе. В дентине, наряду с ионами кальция и фосфатов, определяется достаточно высокая концентрация магния и натрия. Наименьшее количество кальция и фосфатов присутствует в костной ткани и цементе (табл. 3.2).

В состав твёрдых тканей зубов и костей входят соли HPO 4 2- , или PO 4 3- . Ортофосфаты кальция могут быть в форме однозамещен-

Таблица 3.1

Процентное распределение воды, неорганических и органических веществ

в минерализованных тканях

Ткань

Вещества, %

минеральные

органические

вода

Эмаль

Дентин

Цемент

Кость

Таблица 3.2

Химический состав минерализованных тканей

Ткань

Химические элементы, в % от сухой массы

Са 2+

ро 4 3-

Mg 2+

К +

Na +

Cl -

Эмаль

32-39

16-18

0,25-0,56

0,05-0,3

0,25-0,9

0,2-0,3

Дентин

26-28

12-13

0,8-1,0

0,02-0,04

0,6-0,8

0,3-0,5

Цемент

21-24

10-12

0,4-0,7

0,15-0,2

0,6-0,8

0,03-0,08

Кость

22-24

0,01

ных (H 2 PO 4-), двузамещенных (HPO 4 2-) или фосфат ионов (PO 4 3-). Пирофосфаты встречаются только в зубных камнях и костной ткани. В растворах ион пирофосфата оказывает существенный эффект на кристаллизацию некоторых ортофосфатов кальция, что выражается в регуляции величины кристаллов.

Характеристика кристаллов

Большинство фосфорно-кальциевых солей кристаллизуются с образованием кристаллов разной величины и формы в зависимости от входящих элементов (табл. 3.3). Кристаллы присутствуют не только в минерализованных тканях, но и способны образовываться в других тканях в виде патологических образований.

Расположение атомов и молекул в кристалле можно исследовать при помощи рентгеноструктурного анализа кристаллических реше- ток. Как правило, частички располагаются в кристалле симметрично; их называют элементарными ячейками кристалла. Сеточка, образуемая ячейками, называется матрицей кристалла. Имеется 7 разных

Таблица 3.3

Кристаллические образования, присутствующие в различных тканях

В минерализованных тканях животного мира преобладают апатиты. Они имеют общую формулу Ca 10 (PO 4) 6 X 2 , где X представлен анионами фтора или гидроксильной группой (OH -).

Гидроксиапатит (гидроксилапатит) - основной кристалл мине- рализованных тканей; составляет 95-97% в эмали зуба, 70-75% в дентине и 60-70% в костной ткани. Формула гидроксиапатита - Са 10 (PO 4) 6 (ОН) 2 . В этом случае молярное соотношение Са/Р (кальциево-фосфатный коэффициент) равно 1,67. Решётка гидроксиапатита имеет гексагональную структуру (рис. 3.1, А). Гидроксильные группы расположены вдоль гексагональной оси, тогда как фосфатные группы, имеющие наибольшие размеры по сравнению с ионами кальция и гидроксилами, распределяются как равнобедренные треугольники вокруг гексагональной оси. Между кристаллами имеются микропространства, заполненные водой (рис. 3.1, Б). Гидроксиапатиты являются

Рис. 3.1. Гидроксиапатит:

А - гексагональная форма молекулы гидроксиапатита; Б - расположение

кристаллов гидроксиапатита в эмали зуба.

довольно устойчивыми соединениями и имеют очень стабильную ионную решётку, в которой ионы плотно упакованы и удерживаются за счёт электростатических сил. Сила связи прямо пропорциональна величине заряда ионов и обратно пропорциональна квадрату расстояния между ними. Гидроксиапатит электронейтрален. Если в структуре гидроксиапатита содержится 8 ионов кальция, то кристалл приобретает отрицательный заряд. Он может заряжаться и положительно, если количество ионов кальция достигает 12. Такие кристаллы обладают реакционной способностью, возникает поверхностная электро- химическая неуравновешенность и они становятся неустойчивыми.

Гидроксиапатиты легко обмениваются с окружающей средой, в результате чего в их составе могут появляться другие ионы (табл. 3.4). Наиболее часто встречаются следующие варианты обмена ионов: Са 2+ замещается катионами Sr 2+ , Ba 2+ , Mo 2+ , реже Mg 2+ , Pb 2+ .

Катионы Ca 2+ поверхностного слоя кристаллов, могут на короткое

время замещаться катионами К + , Na + .

PO 4 3- обменивается с НРО 4 2- , СО 3 2- .

ОН - замещается анионами галогенов Cl - , F - , I - , Br - .

Элементы кристаллической решётки апатитов могут обмениваться с ионами раствора, окружающего кристалл и изменяться за счёт ионов, находящихся в этом растворе. В живых системах это свойство апатитов делает их высокочувствительными к ионному составу крови и межклеточной жидкости. В свою очередь, ионный состав крови и межклеточной жидкости зависит от характера пищи и потребляемой воды. Сам процесс обмена элементов кристаллической решётки протекает в несколько этапов с разной скоростью.

Обмен ионов в кристаллической решётке гидроксиапатита изменяет его свойства, в том числе прочность, и существенно влияет на размеры кристаллов (рис. 3.2).

Некоторые ионы (К + , Cl -) в течение несколькольких минут путём диффузии из окружающей биологической жидкости заходят в гидрат-

Таблица 3.4

Замещаемые и замещающие ионы и молекулы в составе апатитов

Замещаемые ионы

Замещающие ионы

РО 4 3-

AsO 3 2- , НРО 4 2- , СО 2

Са 2+

Sr 2+ , Ba 2+ , Pb 2+ , Na + , K + , Mg 2+ , H 2 O

ОН -

F - , Cl - , Br - , I - , H 2 O

2ОН

СO 3 2- , O 2 -

Рис. 3.2. Размеры кристаллов различных апатитов .

ный слой гидроксиапатита, а затем также легко его покидают. Другие ионы (Na + , F -) легко проникают в гидратную оболочку и, не задерживаясь, встраиваются в поверхностные слои криста лла. Проникновение ионов Са 2+ , PO 4 3- , СО 3 2- , Sr 2+ , F - в поверхность кристаллов гидроксиапатита из гидратного слоя происходит очень медленно, в течение нескольких часов. Только немногие ионы: Са 2+ , PO 4 3- , СО 3 2- , Sr 2+ , F - встраиваются вглубь ионной решётки. Это может продолжаться от нескольких дней до нескольких месяцев. Преимущественным фак- тором, определяющим возможность замены, является размер атома. Схожесть в зарядах имеет второстепенное значение. Такой принцип замены носит название изоморфного замещения. Тем не менее, в ходе такого замещения поддерживается общее распределение зарядов по

принципу: Сa 10 х(HPO 4)х(PO 4) 6 х(OH) 2 х, где 0<х<1. Потеря Ca 2+ частич- -+ но компенсируется потерей OH и частично H , присоединённых к

фосфату.

В кислой среде ионы кальция способны замещаться протонами по

схеме:

Это замещение несовершенно, поскольку протоны во много раз меньше катиона кальция.

Такое замещение приводит к разрушению кристалла гидроксиапатита в кислой среде.

Фторапатиты Ca 10 (PO 4) 6 F 2 наиболее стабильные из всех апатитов. Они широко распространены в природе и прежде всего как почвенные минералы. Кристаллы фторапатита имеют гексагональную форму. В водной среде реакция взаимодействия фтора с фосфатами кальция зависит от концентрации фтора. Если она сравнительно невысока (до 500 мг/л), то образуются кристаллы фторапатита:

Фтор резко уменьшает растворимость гидроксиапатитов в кислой среде.

При высоких концентрациях фтора (>2 г/л) кристаллы не образуются:

Заболевание, развивающееся при избыточной концентрации фтора в воде и почве, зубах и костях в период формирования костного скелета и зубных зачатков назывется флюорозом.

Карбонатный апатит содержит в своем составе несколько процентов карбоната или гидрокарбоната. Процесс минерализации биологических апатитов в значительной степени определяется присутствием и локализацией карбонатных ионов в кристаллической решётке. Карбонатные радикалы СО 3 2- могут замещать как ОН - (А-узел), так и РО 4 3- (В-узел) в решётке гидроксиапатита. Например, около 4% апатита эмали зуба составляют карбонатные группы, которые замещают как фосфатные, так и гидроксильные ионы в пропорции 9:1 соответственно. Подобная ситуация характерна и для других гидроксиапатитов естественного происхождения. Условно химическая формула карбонированного гидроксиапатита может быть записана в виде Ca 10 [(PO 4) 6 -x(CO 3)x][(OH) 2 -2y(CO 3)y], где х характеризует В-замещение, а у - А-замещение. Для гидроксиапатита эмали зуба x =0,039, y =0,001. Карбонат уменьшает кристалличность апатита и делает его

более аморфным и хрупким. Чаще всего фосфат-анионы апатитов замещаются ионами НСО 3- по схеме:

Интенсивность замены зависит от числа образующихся гидрокарбонатов. В организме постоянно происходят реакции декарбоксилирования, и образующиеся молекулы СО 2 взаимодействуют с молекулами Н 2 O. Анионы НСО 3 - образуются в реакции, катализируемой карбоангидразой, и замещают фосфат-анионы.

Карбонатные апатиты более характерны для костной ткани. В тканях зуба они образуются в непосредственной близости от эма- лево-дентинной границы за счёт продукции анионов НСО 3 - одонтобластами. Возможно образование молекул НСО 3- за счёт активного метаболизма аэробной микрофлоры зубного налёта. Образующееся количество НСО 3- в этих участках может превышать PO 4 3- , что способствует образованию карбонатного апатита в поверхностных слоях эмали. Накопление карбонатапатита свыше 3-4% от общей массы гидроксиапатита повышает кариесвосприимчивость эмали. С возрастом количество карбонатных апатитов увеличивается.

Стронциевый апатит . В кристаллической решётке апатитов Sr 2+ может вытеснять или заменять вакантные места для Ca 2+ .

Это приводит к нарушению структуры кристаллов. В Забайкалье, вдоль берегов небольшой реки Уров, описано заболевание, получившее название «уровская» болезнь. Оно сопровождается поражением костного скелета, уменьшением конечностей у людей и у животных. В местности, загрязненной радионуклидами, неблагоприятное значение стронциевого апатита для организма человека связано с возможностью депонирования радиоактивного стронция.

Магниевый апатит образуется при замещении Ca 2+ на ионы Mg 2+ .

Органические вещества минерализованных тканей в основном представлены белками, а также углеводами и липидами.

3.2. БЕЛКИ МЕЖКЛЕТОЧНОГО МАТРИКСА

МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ МЕЗЕНХИМНОГО

ПРОИСХОЖДЕНИЯ

Белки минерализованных тканей составляют основу для прикрепления минералов и определяют процессы минерализации. Особенностью всех белков минерализованных тканей является наличие остатков фосфосерина, глутамата и аспартата, которые способны связывать Ca 2+ и таким образом участвовать в образовании кристаллов апатита на начальном этапе. Второй особенностью является присутствие углеводов и последовательности аминокислотных остатков арг-гли-асп в первичной структуре белков, что обеспечивает их связывание с клетками или с белками, формирующими межклеточный матрикс.

Часть белков встречается в межклеточном матриксе большинства минерализованных тканей. Это белки адгезии, кальций-связывающие белки, протеолитические ферменты, факторы роста. Другие белки со специальными свойствами присущи только данной ткани и связаны с определёнными процессами, характерными для этого типа ткани.

Остеонектин - гликопротеин, присутствующий в большом количестве в минерализованной ткани. Белок синтезируется остеобластами, фибробластами, одонтобластами и в небольшом количестве хондроцитами и эндотелиальными клетками. В N-концевой области остеонектина располагается большое количество отрицательно заряженных аминокислот. В сформированной α-спирали на N-концевой области имеется до 12 участков связывания Ca 2+ , входящего в состав гидроксиапатита. Через углеводный компонент остеонектин связывается с коллагеном I типа. Таким образом, остеонектин обеспечивает взаимодействие компонентов матрикса. Он также регулирует пролиферацию клеток и принимает участие во многих процессах на этапе развития и созревания минерализованных тканей.

Остеопонтин - белок с мол. массой ~32 000 кДа, содержит несколько повторов, богатых аспарагиновой кислотой, которые придают остеопонтину способность связываться с кристаллами гидроксиапатита.

В средней части молекулы содержится последовательность RGD (аргглу-асп), ответственная за прикрепление клеток. Этот белок играет ключевую роль в построении минерализованного матрикса, взаимодействии клеток и матрикса и транспорте неорганических ионов.

Костный сиалопротеин - специфичный белок минерализованных тканей с мол. массой ~70 кДа, на 50% состоящий из углеводов (из них 12% составляет сиаловая кислота). Большинство углеводов представлены О-связанными олигосахаридами, которые содержатся в N-кон- цевой области белка. Этот белок подвергается в реакциях сульфатирования тирозина различным модификациям. В составе костного сиалопротеина определяется до 30% фосфорилированных остатков серина и повторяющихся последовательностей глутаминовой кислоты, которые участвуют в связывании Ca 2+ . Костный сиалопротеин выявлен в костях, дентине, цементе, гипертрофированных хондроци- тах и остеокластах. Данный белок отвечает за прикрепление клеток и участвует в минерализации матрикса.

Костный кислый гликопротеин-75 - белок с мол. массой 75 кДа, по своему составу на 30% гомологичный остеопонтину. Присутствие большого количества остатков глутаминовой (30%), фосфорной (8%) и сиаловых (7%) кислот обеспечивает его способность связывать Ca 2+ . Белок обнаружен в костной ткани, дентине и хрящевой ростовой пластинке и не определяется в неминерализованных тканях. Костный кислый гликопротеин-75 ингибирует процессы резорбции в минерализованных тканях.

Gla-белки . Отличительной особенностью семейства Gla-белков является присутствие в их первичной структуре остатков 7-кар- боксиглутаминовой кислоты. Они различаются по мол. массе и количеству остатков 7-карбоксиглутаминовой кислоты. Образование 7-карбоксиглутаминовой кислоты происходит в процессе посттрансляционной модификации в витамин К-зависимой реакции карбоксилирования остатков глутаминовой кислоты. Наличие дополнительной карбоксильной группы в 7-карбоксиглутаминовой кислоте обеспечивает лёгкое связывание и отдачу ионов Ca 2+ .

К Gla-белкам относят остеокальцин и матриксный Gla-белок.

Остеокальцин (костный глутаминовый белок) - белок с мол. массой 6 кДа. Состоит из 49 аминокислотных остатков, из которых 3 представлены 7-карбоксиглутаминовой кислотой. Белок присутствует в костной ткани и дентине зуба. Синтезируется в виде предшественника (рис. 3.3).

Рис. 3.3. Образование активной формы остеокальцина.

После отщепления сигнального пептида образуется про-остеокальцин, который далее подвергается посттрансляционной модификации. Вначале остатки глутаминовой кислоты окисляются, а затем происходит присоединение молекул СО 2 при участии витамин К-зависимой глутаматкарбоксилазы (рис. 3.4). Активность этого фермента снижается в присутствии варфарина - антагониста витамина К.

Нативный остеокальцин связывает Ca 2+ , идущие на образование кристаллов гидроксиапатита. В плазме крови содержится как нативный остеокальцин, так и его фрагменты.

Матриксный Gla-белок содержит 5 остатков 7-карбоксиглутами- новой кислоты и способен связываться с гидроксиапатитом. Белок обнаружен в пульпе зуба, легких, сердце, почках, хряще и появляется на ранних стадиях развития костной ткани.

Рис. 3.4. Посттрансляционная модификация остатков глутаминовой кислоты в молекуле про-остеокальцина. А - гидроксилирование глутаминовой кислоты; Б - связывание ионов кальция 7-карбоксиглутаминовой кислотой.

Протеин S содержит остатки 7-карбоксиглутаминовой кислоты и синтезируется главным образом в печени. Определяется в костной ткани, а при его дефиците обнаруживают изменения костного скелета.