И грибов, клетки животных не имеют . Эта особенность была утеряна в далеком прошлом одноклеточными организмами, которые породили . Большинство клеток, как животных, так и растений, имеют размер от 1 до 100 мкм (микрометров) и поэтому видны только с помощью микроскопа.

Самые ранние ископаемые свидетельства животных датируются Вендским периодом (650-454 миллионов лет назад). Первое закончилось этим периодом, но в течение последующего , взрыв новых форм жизни привел к появлению многих основных групп фауны, известных сегодня. Есть свидетельства, что животные появились до раннего (505-438 миллионов лет назад).

Строение животных клеток

Схема строения клетки животных

  • - самовоспроизводящиеся органеллы, состоящие из девяти пучков микротрубочек и встречающиеся только в клетках животных. Они помогают в организации деления клеток, но не являются существенными для этого процесса.
  • - необходимы для передвижения клеток. В многоклеточных организмах реснички функционируют для перемещения жидкости или веществ вокруг неподвижной клетки, а также для или группы клеток.
  • - сеть мешочков, которая производит, обрабатывает и переносит химические соединения внутри и снаружи клетки. Он связан с двуслойной ядерной оболочкой, обеспечивающей трубопровод между ядром и .
  • Эндосомы - мембранно-связанные везикулы, образованные совокупностью сложных процессов, известных как , и обнаружены в цитоплазме практически любой клетки животных. Основным механизмом эндоцитоза является обратное тому, что происходит во время или клеточной секреции.
  • - отдел распределения и доставки химических веществ клетки. Он модифицирует белки и жиры, встроенные в эндоплазматический ретикулум, а также подготавливает их к экспорту за пределы клетки.
  • Промежуточные филаменты - широкий класс волокнистых белков, которые играют важную роль как структурных, так и функциональных элементов

Клетка - это единица живой системы. Ее строение начал изучать Роберт Гук в 1665 году, заметив мелкие ячейки с помощью микроскопа. Чем больше совершенствовался микроскоп, тем больше сведений получали о строении растительных и животных клеток. Но даже при таком большом разнообразии форм все клетки имеют поразительное сходство в строении. Рассмотрим основы, чтобы узнать, как нарисовать клетку. C помощью рисунков, которые вы увидите, перейдя по этой ссылке , вы сможете понять строение клетки.

Растительная клетка

Растительную клетку изобразим в виде прямоугольника со сглаженными краями. Его края - оболочка, плазматическая мембрана. В центре - цитоплазма и клеточный центр, здесь же - ядерный сок и хромосомы. Левее - Аппарат Гольджи. Ниже центра - поры. Слева и справа от них - лизосомы. В верхнем углу прямоугольника над центром - ЭПС. Левее рисуем полукруг (делим его пополам и оставляем полуовал) - это рибосомы и вакуоль с клеточным соком. Нижний правый угол - плазматическая мембрана. Здесь же маленьким кругом изображаем ядро.

Вот как нарисовать клетку, правда, это схематическое изображение растительной клетки. Проще запомнить так: снаружи клетка покрыта клеточной оболочкой, которая заполнена порами, под ней расположена плазматическая мембрана; вся клетка наполнена цитоплазмой; цитоплазма состоит из ядра с ядрышками, вакуолей с клеточным соком и пластидами с пигментами.

Животная клетка

Теперь нарисуем животную клетку. Ее тоже изобразим в виде прямоугольника. Внутри еще один прямоугольник - плазматическая мембрана. Внутри нее (перпендикулярные линии) - митохондрии. В центре прямоугольника рисуем круг, обводим его еще одним - это цитоплазма, ядро и ядрышко. Левее полуовалом изобразим клеточный центр и ЭПС. Прямо под ним в нижнем левом углу рисуем овал - аппарат Гольджи и ядерный сок. В нижнем правом углу находятся рибосомы (овал, закрашенный в черный цвет). Над ним маленькими кружочками изображаем пиноцентозные пузырьки. Внутренняя стенка оболочки - лизосомы. В самом верху по центру (четырехугольник) - хромосомы.

Исторические открытия

1609 - изготовлен первый микроскоп (Г. Галилей)

1665 - обнаружена клеточная структура пробковой ткани (Р. Гук)

1674 - открыты бактерии и простейшие (А. Левенгук)

1676 - описаны пластиды и хроматофоры (А. Левенгук)

1831 - открыто клеточное ядро (Р. Броун)

1839 - сформулирована клеточная теория (Т. Шванн, М. Шлейден)

1858- сформулировано положение "Каждая клетка из клетки" (Р. Вирхов)

1873 - открыты хромосомы (Ф. Шнейдер)

1892 - открыты вирусы (Д. И. Ивановский)

1931 - сконструирован электронный микроскоп (Е. Руске, М.Кноль)

1945 - открыта эндоплазматическая сеть (К. Портер)

1955 - открыты рибосомы (Дж. Палладе)



Раздел:Учение о клетке
Тема: Клеточная теория. Прокариоты и эукариоты

Клетка (лат."цкллюла" и греч. "цитос") - элементарная жи
вая система, основная структурная единица растительных и животных организмов, способная к самовозобнавлению, саморегуляции и самовоспроизведению. Открыта английский ученым Р. Гуком в 1663г., им же предложена этот термин. Клетка эукариотов представлена двумя системами - цитоплазмой и ядром. Цитоплазма состоит из различных органелл, которые можно классифицировать на: двухмембраные - митохондрии и пластиды; и одномембранные - эндоплазматическая сеть (ЭПС), Аппарат Гольджи, плазмалемма, тонопласты, сферосомы, лизосомы; немембранные - рибосомы, центросомы, гиалоплазма. Ядро состоит из ядерной оболочки (двухмембранной) и немембранных структур - хромосом, ядрышка и ядерного сока. Кроме того, в клетках имются различные включения.

КЛЕТОЧНАЯ ТЕОРИЯ: Создатель этой теории - немецкий ученый Т. Шванн, который опираясь на работы М. Шлейдена, Л. Окена, в 1838 -1839 гг. с формулировал следующие положения:

  1. все организмы растений и животных состоят из клеток
  2. каждая клетка функционирует независимо от других, но вместе со всеми
  3. все клетки возникают из безструктурного вещества неживой материи.
Позднее Р. Вирхов (1858) внес существенное уточнение в последнее положение теории:
4. все клетки возникают только из клеток путем их деления.

СОВРЕМЕННАЯ КЛЕТОЧНАЯ ТЕОРИЯ:

  1. клеточная организация возникла на заре жизни и прошла длительный путь эволюции от прокариотов до эукариотов, от предклеточных организмов до одно- и многоклеточных.
  2. новые клетки образуются путем деления от ранее существовавших
  3. клетка является микроскопическо й живой системой, состоящей из цитоплазмы и ядра, окруженных мембраной(за исключением прокариотов)
  4. в клетке осуществляются:
  • метаболизм - обмен веществ;
  • обратимые физиологические процессы - дыхание, поступление и выделение веществ, раздражимость, движение;
  • необратимые процессы - рост и развитие.
5. клетка может быть самостоятельным организмом. Все многоклеточные организм также состоят из клеток и их производных. Рост, развитие и размножение многоклеточного организма - следствие жизнедеятельности одной или нескольких клеток.


Прокариоты (предъядерные, доядерные) составляют надцарство, включающее одно царство - дробянки, объединяющее подцарство архебактерии, бактерии и оксобактерии (отдел цианобактерий и хлороксибактерии)

Эукароты (ядерные) также составляют надцарство. Оно объединяет царства грибы, животные, растения.

Особенности строения прокариотической и эукариотической клетки.

Признак
прокариоты
эукариоты
1 особенности строения
Наличие ядра
обособленного ядра нет
морфологически обособленное ядро, отделенное от цитоплазмы двойной мембраной
Число хромосом и их строение
у бактерий - одна кольцевая хромосома, прикрепленная к мезосоме - двухцепочечная ДНК не связанная с белками- гистонами. У цианобактерий - несколько хромосом в центре цитоплазмы
Определенное для каждого вида. Хромосомы линейные, двухцепочная ДНК связана с белками-гистонами
Плазмиды

Наличие ядрышка

имеются

отсутствуют
имеются у митохондрий и пластид

Имеются

Рибосомы мельче чем у эукариотов. Распределены по цитоплазме. Обычно свободные, но могут быть связаны с мембранными структурами. Составляют до 40% массы клетки
крупные, находятся в цитоплазме в свободном состоянии или связаны с мембранами эндоплазматического ретикулюма. В пластидах и митохондриях тоже содержатся рибосомы.
Одномембранны замкнутые органеллы
отсутствуют. их функции выполняют выросты клеточной мембраны
Многочисленны: эндоплазматический ретикулюм, аппарат Гольджи, вакуоли, лизосомы т.д.
Двухмембранные органеллы
Отсут ств уют
Митохондрии - у всех эукариотов; пластиды - у растений
Клеточный центр
Отсутствует
Имеется в клетках животных, грибов; у растений - в клетках водорослей и мхов
Мезосома Имеется у бактерий. Участвует в деление клетки и метаболизме.
Отсутствует
Клеточная стенка
У бактерий содержит муреин, у цианобактерий - целлюлозу, пектиновые вещества, немного муреина
У растений - целлюлозная, у грибов - хитиновая, у животных клеток клеточной стенки нет
Капсула или слизистый слой
Имеется у некоторых бактерий Отсутствует
Жгутики простого строения, не содержат микротрубочек. Диаметр 20 нм
Сложного строения, содержат микротрубочки (подобные микротрубочкам центриолей) Диаметр 200 нм
Размер клеток
Диаметр 0,5 - 5 мкм Диаметр обычно до 50мкм. Объем может превышать объем прокариотической клетки более чем в тысячу раз.
2. Особенности жизнедеятельности клетки
Движение цитоплазмы
Отсутствует
Наблюдается часто
Аэробное клеточное дыхание
У бактерий - в мезосомах; у цианобактерий - на цитоплазматических мембранах
Происходит в митохондриях
Фотосинтез Хлоропластов нет. Происходит на мембранах, не имеющих специфические формы
В хлоропластах, содержащих специальные мембраны, собранные в граны
Фагоцитоз и пиноцитоз
Отсутствует (невозможен из - за наичия жесткой клеточной стенки)
Свойствен клеткам животных, у растений и грибов отсутствует
Спорообразование Часть представителей способна образовывать споры из клетки. Они предназначены только для перенесения неблагоприятных условий среды, поскольку имеют толстую стенку
Спорообразование свойственно растениям и грибам. Споры предназначены для размножения
Способы деления клетки
Равновеликое бинарное поперечное деление, редко - почкование (почкующиеся бактерии). Митоз и мейоз отсутствуют
Митоз, мейоз, амитоз


Тема: Строение и функции клетки



Растительная клетка: Животная клетка :


Строение клетки. Структурная система цитоплазмы

Органеллы Строение
Функции
Наружная клеточная мембрана
ультромикроскопическая пленка, состоящая из бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами - порами. Кроме того, белки лежат мозаично по обе стороны мембраны, образуя ферментные системы.
изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности.
Эндоплазматичкская сеть ЭПС

Ультрамикроскопическая система мембран, об разующих трубочки, канальцы, цистерны пузырьки . Строение мембран универсальное, вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭПС несет рибосомы, гладкая лишена их.
Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную и четвертичную структуры, синтезируются жиры, транспортируется АТФ
Митохондрии

Микроскопические органеллы, имеющие двухмембраное строение. Внешняя мембрана гладкая, внутренняя - обра зует различной формы выросты - кристы. В матриксе митохондрий (полужидкое вещество) находятся ферменты, рибосомы, ДНК, РНК. Размножаются делением.
Универсальная органелла, являющаяся дыхательным и энергетическим центром. В процессе кислородного этапа диссимиляции в матриксе с помощью ферментов происходит расщеплении органических веществ с освобождением энергии, которая идет на синтез АТФ (на кристах)
Рибосомы

Ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей- субъединиц. Они не имеют мембранного строения и состоят из белка и рРНК. Субъединицы образуются в ядрышке. Объединяются вдоль молекул иРНК в цепочки -полирибосомы - в цитоплазме Универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах ЭПС; кроме того, содержаться в митохондриях и хлоропластах. В рибосомах синтезируются белки по принципу матричного синтеза; образуется полипептидная цепочка - первичная структура молекулы белка.
Лейкопласты

Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2-3 выроста Форма округлая. Бесцветны. Как и все пластиды, способны к делению. Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется и они преобразуют в хлоропласты. Образуются из пропластид.
Аппарат Гольджи (диктиосома)


микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по кроям которых ответвляются трубочки, отделяющие мелкие пузырьки. Имеет два полюса: строительный и секреторный наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а так же вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму. в растительной клетке участвуют в построении клеточной стенки.
Хлоропласты

Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Вн утренняя мембрана образует систему двухслойных пластин - тилакоидов стромы и тилакоидов гран. В мембранах тилакоидов гран между слоями молекул белков и липидов сосредоточены пигменты - хлорофилл и каротиноиды. В белково - липидном матриксе находятся собственные рибосомы, ДНК, РНК. Форма хлоропластов чечевицеобразная. Окраска зеленая.
Характерны для растительных клеток. Органеллы фотосинтеза, способные создавать из неорганических веществ (СО2 и Н2О) при наличии световой энергии и пигмента хлорофилла органические вещества - углеводы и свободный кислород. Синетз собственных белков. Могут образовываться из пропластид или лейкопластов, а осенью преобразоваться в хромопласты (красные и оранжевые плоды, красные и желтые листья). Способны к делению.
Хромопласты


Микр-ие органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют шаровидную форму, а образовавшиеся из хлоропластов принимают форму крис таллов каротиноидов, типичную для данного вида растения. Окраска красная. оранжевая, желтая
Характерны для растительных клеток. Придают лепесткам цветков окраску, привлекательную для насекомых - опылителей. В осенних листьях и зрелых плодах, отделяющихся от растения, содержатся кристаллические каротиноиды - конечные продукты обмена
Лизосомы

Микроскопические одномембраные органеллы округлой формы. их число зависит от жизнедеятельности клетки и ее физиологиче ского состояния. в лизосомах находится лизируещее (растворяющее) ферменты, синтезированные на рибосомах. обособляются от диктисом в виде пузырьков

Переваривание пищи, попавшей в животную клетку при фагоцитозе. защитная функция. в клетках любых организмов осуществляют автолиз(саморастворение органелл), особенно в условиях пищегого или кислородного голодания. у растений органеллы растворяются при образовании пробковой ткани, сосудов, древесины, волокон.

Клеточный центр
(Центросома)


Ультромикроскопическая органелла немембраного с троения. состоит из двух центриолей. каждая имеет цилиндрическую форму, стенки образованы девятью триплетами трубочек, а в середине находится однородное вещество. центриоли расположены перпендикулярно друг другу.
Принимает участие в деление клеток животных и низших растений. в начале деления центриоли расходятся к разным полюсам клетки. от центриолей к центромерам хромосом отходят нити веретена деления. в анафазе эти нити притягиваются хроматидами к полюсам. после окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.
Органоиды движения

реснички - многочисленные цитоплазматические выросты на поверхности мембраны

жгутики - еди

ничные цитоплазматические выросты на поверхности клетки

ложные ножки (псевдоподии)- амебовидные выступы цитоплазмы



миофибриллы - тонкие нити длиной 1 см и более

цитоплазма осуществляющая струйчатое и круговое движение

удаление частичек пыли. передвижение

передвижение

образуются у одноклеточных животных в разных местах цитоплазмы для захвата пищи, для передвижения. Характерны для лейкоцитов крови, а так же клеток энтодермы кишечнополостных.

служат для сокращения мышечных волокон

перемещение органелл клетки по отношению к источнику света, тепла, химического раздражителя.

Ученые позиционируют животную клетку как основную часть организма представителя царства животных — как одноклеточных так и многоклеточных.

Они являются эукариотическими, с наличием истинного ядра и специализированных структур — органелл, выполняющих дифференцированные функции.

Растения, грибы и протисты имеют эукариотические клетки, у бактерий и архей определяются более простые прокариотические клетки.

Строение животной клетки отличается от растительной . Животная клетка не имеет стенок или хлоропластов (органелл, выполняющих ).

Рисунок животной клетки с подписями

Клетка состоит из множества специализированных органелл, выполняющих различные функции.

Чаще всего, в ней содержится большинство, иногда все существующие типы органелл.

Основные органеллы и органоиды животной клетки

Органеллы и органоиды являются «органами», ответственными за функционирование микроорганизма.

Ядро

Ядро является источником дезоксирибонуклеиновой кислоты (ДНК) — генетического материала. ДНК является источником создания белков, контролирующих состояние организма. В ядре, нити ДНК плотно обматываются вокруг узкоспециализированных белков (гистонов), формируя хромосомы.

Ядро выбирает гены, контролируя активность и функционирование единицы ткани. В зависимости от типа клетки, в ней представлен различный набор генов. ДНК находится в нуклеоидной области ядра, где образуются рибосомы . Ядро окружено ядерной мембраной (кариолеммой), двойным липидным бислоем, отгораживающим его от остальных компонентов.

Ядро регулирует рост и деление клетки. При в ядре образуются хромосомы, которые дублируются в процессе размножения, образуя две дочерние единицы. Органеллы, называемые центросомами, помогают организовать ДНК во время деления. Ядро обычно представлено в единственном числе.

Рибосомы

Рибосомы — место синтеза белка. Они обнаружены во всех единицах ткани, у растений и у животных. В ядре, последовательность ДНК, которая кодирует определенный белок, копируется в свободную мессенджерную РНК (мРНК) цепь.

Цепочка мРНК перемещается к рибосоме через передающую РНК (тРНК), и ее последовательность используется для определения системы расположения аминокислот в цепи, составляющей белок. В животной ткани рибосомы расположены свободно в цитоплазме или прикреплены к мембранам эндоплазматического ретикулума.

Эндоплазматический ретикулум

Эндоплазматический ретикулум (ER) представляет собой сеть мембранных мешочков (цистерн), отходящих от внешней ядерной мембраны. Он модифицирует и транспортирует белки, созданные рибосомами.

Существует два вида эндоплазматического ретикулума:

  • гранулярный;
  • агранулярный.

Гранулярный ЭР содержит прикрепленные рибосомы. Агранулярный ЭР свободен от прикрепленных рибосом, участвует в создании липидов и стероидных гормонов, удалении токсичных веществ.

Везикулы

Везикулы представляют собой небольшие сферы липидного бислоя, входящие в состав наружной мембраны. Они используются для транспортировки молекул по клетке от одной органеллы к другой, участвуют в метаболизме.

Специализированные везикулы, называемые лизосомами, содержат ферменты, переваривающие большие молекулы (углеводы, липиды и белки) в более мелкие, для облегчения их использования тканью.

Аппарат Гольджи

Аппарат Гольджи (комплекс Гольджи, тело Гольджи) также состоит из не соединенных между собой цистерн (в отличие от эндоплазматического ретикулума).

Аппарат Гольджи получает белки, сортирует и упаковывает их в везикулы.

Митохондрии

В митохондриях осуществляется процесс клеточного дыхания. Сахара и жиры разрушаются, выделяется энергия в виде аденозинтрифосфата (АТФ). АТФ управляет всеми клеточными процессами, митохондрии продуцируют АТФ клетки. Митохондрии иногда называют «генераторами».

Цитоплазма клетки

Цитоплазма – жидкостная среда клетки. Она может функционировать даже без ядра, однако, короткое время.

Цитозоль

Цитозолью называют клеточную жидкость. Цитозоль и все органеллы внутри нее, за исключением ядра, в совокупности называются цитоплазмой. Цитозоль в основном состоит из воды, а также содержит ионы (калий, белки и малые молекулы).

Цитоскелет

Цитоскелет представляет собой сеть нитей и трубочек, распространенных по всей цитоплазме.

Он выполняет следующие функции:

  • придает форму;
  • обеспечивает прочность;
  • стабилизирует ткани;
  • закрепляет органеллы на определенных местах;
  • играет важную роль в передаче сигналов.

Существует три типа цитоскелетных нитей: микрофиламенты, микротрубочки и промежуточные филаменты. Микрофиламенты являются самыми маленькими элементами цитоскелета, а микротрубочки – самыми большими.

Клеточная мембрана

Клеточная мембрана полностью окружает животную клетку, не имеющую клеточной стенки, в отличие от растений. Клеточная мембрана представляет собой двойной слой, состоящий из фосфолипидов.

Фосфолипиды являются молекулами, содержащими фосфаты, прикрепленные к глицерину и радикалам жирных кислот. Они спонтанно образуют двойные мембраны в воде из-за своих одновременно гидрофильных и гидрофобных свойств.

Клеточная мембрана избирательно проницаема — она способна пропускать определенные молекулы. Кислород и диоксид углерода проходят легко, в то время как большие или заряженные молекулы должны проходить через специальный канал в мембране, что поддерживает гомеостаз.

Лизосомы

Лизосомы представляют собой органеллы, осуществляющие деградацию веществ. В состав лизосомы входит около 40 расщепляющих ферментов. Интересно, что сам клеточный организм защищен от деградации в случае прорыва лизосомных ферментов в цитоплазму, разложению подвергаются закончившие выполнять свои функции митохондрии. После расщепления образуются остаточные тела, первичные лизосомы превращаются во вторичные.

Центриоль

Центриоли являются плотными телами, расположенными около ядра. Количество центриолей меняется, чаще всего их две. Центриоли соединены эндоплазматической перемычкой.

Как выглядит животная клетка под микроскопом

Под стандартным оптическим микроскопом видны основные компоненты. За счет того, что они соединены в непрерывно меняющийся организм, находящийся в движении, определить отдельные органеллы бывает сложно.

Не вызывают сомнений следующие части:

  • ядро;
  • цитоплазма;
  • клеточная мембрана.

Подробнее изучить клетку поможет большая разрешающая способность микроскопа, тщательно подготовленный препарат и наличие некоторой практики.

Функции центриоли

Точные функции центриоли остаются неизвестными. Распространена гипотеза, что центриоли участвуют в процессе деления, образуя веретено деления и определяя его направленность, однако определенность в научном мире отсутствует.

Строение клетки человека - рисунок с подписями

Единица клеточной ткани человека имеет сложное строение. На рисунке отмечены основные структуры.

Каждый компонент имеет свое назначение, лишь в конгломерате они обеспечивают функционирование важной части живого организма.

Признаки живой клетки

Живая клетка по своим признакам схожа с живым существом в целом. Она дышит, питается, развивается, делится, в ее структуре происходят различные процессы. Понятно, что замирание естественных для организма процессов означает гибель.

Отличительные признаки растительной и животной клетки в таблице

Растительная и животная клетки имеют как сходства, так и различия, которые кратко описаны в таблице:

Признак Растительная Животная
Получение питания Автотрофный.

Фотосинтезирует питательные вещества

Гетеротрофный. Не производит органику.
Хранение питания В вакуоли В цитоплазме
Запасной углевод крахмал гликоген
Репродуктивная система Образование перегородки в материнской единице Образование перетяжки в материнской единице
Клеточный центр и центриоли У низших растений У всех типов
Клеточная стенка Плотная, сохраняет форму Гибкая, позволяет изменяться

Основные компоненты являются сходными как для частиц растительного, так и животного мира.

Заключение

Животная клетка является сложным действующим организмом, обладающим отличительными признаками, функциями, целью существования. Все органеллы и органоиды вносят свою лепту в процесс жизнедеятельности этого микроорганизма.

Некоторые компоненты изучены учеными, функции же и особенности других еще только предстоит открыть.

Клетка элементарная единица живой системы. Различные структуры живой клетки, которые отвечают за выполнение той или иной функции, получили название органоидов, подобно органам целого организма. Специфические функции в клетке распределены между органоидами, внутриклеточными структурами, имеющими определенную форму, такими, как клеточное ядро, митохондрии и др.

Клеточные структуры:

Цитоплазма . Обязательная часть клетки, заключенная между плазматической мембраной и ядром. Цитозоль – это вязкий водный раствор различных солей и органических веществ, пронизанный системой белковых нитей – цитоскелетам. Большинство химических и физиологических процессов клетки проходят в цитоплазме. Строение: Цитозоль, цитоскелет. Функции: включает различные органоиды, внутренняя среда клетки
Плазматическая мембрана . Каждая клетка животных, растений, ограничена от окружающей среды или других клеток плазматической мембраной. Толщина этой мембраны так мала (около 10 нм.), что ее можно увидеть только в электронный микроскоп.

Липиды в мембране образуют двойной слой, а белки пронизывают всю ее толщину, погружены на разную глубину в липидный слой или располагаются на внешней и внутренней поверхности мембраны. Строение мембран всех других органоидов сходно с плазматической мембраной. Строение: двойной слой липидов, белки, углеводы. Функции: ограничение , сохранение формы клетки, защита от повреждений, регулятор поступления и удаления веществ.

Лизосомы . Лизосомы – это мембранные органоиды. Имеют овальную форму и диаметр 0,5 мкм. В них находится набор ферментов, которые разрушают органические вещества. Мембрана лизосом очень прочная и препятствует проникновению собственных ферментов в цитоплазму клетки, но если лизосома повреждается от каких-либо внешних воздействий, то разрушается вся клетка или часть ее.
Лизосомы встречаются во всех клетках растений, животных и грибов.

Осуществляя переваривание различных органических частиц, лизосомы обеспечивают дополнительным «сырьем» химические и энергетические процессы в клетке. При голодании клетки лизосомы переваривают некоторые органоиды, не убивая клетку. Такое частичное переваривание обеспечивает клетке на какое-то время необходимый минимум питательных веществ. Иногда лизосомы переваривают целые клетки и группы клеток, что играет существенную роль в процессах развития у животных. Примером может служить утрата хвоста при превращении головастика в лягушку. Строение: пузырьки овальной формы, снаружи мембрана, внутри ферменты. Функции: расщепление органических веществ, разрушение отмерших органоидов, уничтожение отработавших клеток.

Комплекс Гольджи . Поступающие в просветы полостей и канальцев эндоплазматической сети продукты биосинтеза концентрируются и транспортируются в аппарате Гольджи. Этот органоид имеет размеры 5–10 мкм.

Строение : окруженные мембранами полости (пузырьки). Функции: накопление, упаковка, выведение органических веществ, образование лизосом

Эндоплазматическая сеть
. Эндоплазматическая сеть является системой синтеза и транспорта органических веществ в цитоплазме клетки, представляющая собой ажурную конструкцию из соединенных полостей.
К мембранам эндоплазматической сети прикреплено большое число рибосом – мельчайших органоидов клетки, имеющих вид сферы с диаметром 20 нм. и состоящих из РНК и белка. На рибосомах и происходит синтез белка. Затем вновь синтезированные белки поступают в систему полостей и канальцев, по которым перемещаются внутри клетки. Полости, канальцы, трубочки из мембран, на поверхности мембран рибосомы. Функции: синтез органических веществ с помощью рибосом, транспорт веществ.

Рибосомы
. Рибосомы прикреплены к мембранам эндоплазматической сети или свободно находятся в цитоплазме, они располагаются группами, на них синтезируются белки. Состав белка, рибосомальная РНК Функции: обеспечивает биосинтез белка (сборку белковой молекулы из ).
Митохондрии . Митохондрии – это энергетические органоиды. Форма митохондрий различна, они могут быть остальными, палочковидными, нитевидными со средним диаметром 1 мкм. и длиной 7 мкм. Число митохондрий зависит от функциональной активности клетки и может достигать десятки тысяч в летательных мышцах насекомых. Митохондрии снаружи ограничены внешней мембраной, под ней – внутренняя мембрана, образующая многочисленные выросты – кристы.

Внутри митохондрий находятся РНК, ДНК и рибосомы. В ее мембраны встроены специфические ферменты, с помощью которых в митохондрии происходит преобразование энергии пищевых веществ в энергию АТФ, необходимую для жизнедеятельности клетки и организма в целом.

Мембрана, матрикс, выросты – кристы. Функции: синтез молекулы АТФ, синтез собственных белков, нуклеиновых кислот, углеводов, липидов, образование собственных рибосом.

Пластиды
. Только в растительной клетке: лекопласты, хлоропласты, хромопласты. Функции: накопление запасных органических веществ, привлечение насекомых-опылителей, синтез АТФ и углеводов. Хлоропласты по форме напоминают диск или шар диаметром 4–6 мкм. С двойной мембраной – наружней и внутренней. Внутри хлоропласта имеются ДНК рибосомы и особые мембранные структуры – граны, связанные между собой и с внутренней мембраной хлоропласта. В каждом хлоропласте около 50 гран, расположенных в шахматном порядке для лучшего улавливания света. В мембранах гран находится хлорофилл, благодаря ему происходит превращение энергии солнечного света в химическую энергию АТФ. Энергия АТФ используется в хлоропластах для синтеза органических соединений, в первую очередь углеводов.
Хромопласты . Пигменты красного и желтого цвета, находящиеся в хромопластах, придают различным частям растения красную и желтую окраску. моркови, плоды томатов.

Лейкопласты являются местом накопления запасного питательного вещества – крахмала. Особенно много лейкопластов в клетках клубней картофеля. На свету лейкопласты могут превращаться в хлоропласты (в результате чего клетки картофеля зеленеют). Осенью хлоропласты превращаются в хромопласты и зеленые листья и плоды желтеют и краснеют.

Клеточный центр . Состоит из двух цилиндров, центриолей, расположенных перпендикулярно друг другу. Функции: опора для нитей веретена деления

Клеточные включения то появляются в цитоплазме, то исчезают в процессе жизнедеятельности клетки.

Плотные, в виде гранул включения содержат запасные питательные вещества (крахмал, белки, сахара, жиры) или продукты жизнедеятельности клетки, которые пока не могут быть удалены. Способностью синтезировать и накапливать запасные питательные вещества обладают все пластиды растительных клеток. В растительных клетках накопление запасных питательных веществ происходит в вакуолях.

Зерна, гранулы, капли
Функции: непостоянные образования, запасающие органические вещества и энергию

Ядро
. Ядерная оболочка из двух мембран, ядерный сок, ядрышко. Функции: хранение наследственной информации в клетке и ее воспроизводство, синтез РНК – информационной, транспортной, рибосомальной. В ядерной мембране находятся споры, через них осуществляется активный обмен веществами между ядром и цитоплазмой. В ядре хранится наследственная информация не только о всех признаках и свойствах данной клетки, о процессах, которые должны протекать к ней (например, синтез белка), но и о признаках организма в целом. Информация записана в молекулах ДНК, которые являются основной частью хромосом. В ядре присутствует ядрышко. Ядро, благодаря наличию в нем хромосом, содержащих наследственную информацию, выполняет функции центра, управляющего всей жизнедеятельностью и развитием клетки.