Нельзя понять, как устроен и «работает» организм человека, не разобравшись в том, как протекает обмен веществ в клетке. Каждая живая клетка должна постоянно добывать энергию. Энергия нужна ей, чтобы вырабатывать тепло и синтезировать (создавать) некоторые жизненно необходимые ей химические вещества, например белки или наследственное вещество. Энергия нужна клетке, и чтобы двигаться. Клетки тела , способные совершать движения, называются мышечными. Они могут сокращаться. Это и приводит в движение наши руки, ноги, сердце, кишечник. Наконец, энергия нужна, чтобы вырабатывать электрический ток: благодаря ему одни части тела «общаются» с другими. А обеспечивают связь между ними в первую очередь нервные клетки.

Откуда же клетки черпают энергию? Ответ таков: их выручает АТФ . Поясним. Клетки сжигают питательные вещества, и при этом выделяется какое-то количество энергии. Они используют ее, чтобы синтезировать особое химическое вещество, которое накапливает столь нужную им энергию. Это вещество называется аденозинтрифосфатом (сокращенно — АТФ). При расщеплении молекулы АТФ, содержащейся в клетке, выделяется накопленная в ней энергия. Благодаря этой энергии клетка может вырабатывать тепло, электрический ток, синтезировать химические вещества или совершать движения. Короче говоря, АТФ приводит в действие весь «механизм» клетки.

Так выглядит под микроскопом тонкий подкрашенный кружок ткани, взятой из гипофиза — мозгового придатка величиной с горошину. Красные, желтые, голубые, фиолетовые пятна, а также пятна телесного цвета — это клетки с ядрами . Каждый тип клеток гипофиза выделяет один или несколько жизненно важных гормонов.

А теперь подробнее поговорим о том, как клетки получают АТФ. Ответ мы уже знаем. Клетки сжигают питательные вещества. Делать это они могут двумя способами. Во-первых, сжигать углеводы, главным образом глюкозу, в отсутствие кислорода. При этом образуется вещество, которое химики называют пировиног-адной кислотой, а сам процесс расщепления углеводов — гликолизом. В результате гликолиза получается слишком мало АТФ: распад одной молекулы глюкозы сопровождается образованием лишь двух молекул АТФ. Гликолиз неэффективен — это древнейшая форма извлечения энергии. Вспомните, что жизнь зародилась в воде, то есть в среде, где кислорода было очень мало.

Во-вторых, клетки организма сжигают пировиноградную кислоту, жиры и белки в присутствии кислорода. Все перечисленные вещества содержат углерод и водород. В этом случае сжигание происходит в два этапа. Сначала клетка извлекает водород, затем сразу же начинает разлагать оставшийся углеродный каркас и избавляется от углекислого газа — через клеточную мембрану выводит его наружу. На втором этапе сжигается (окисляется) водород, извлеченный из питательных веществ. Образуется вода, и выделяется большое количество энергии. Клеткам хватает ее, чтобы синтезировать множество молекул АТФ (при окислении, например, двух молекул молочной кислоты, продукта восстановления пировиноградной кислоты, образуется 36 молекул АТФ).

Описание это кажется сухим и отвлеченным. На самом деле каждому из нас доводилось видеть, как происходит процесс выработки энергии. Помните телевизионные репортажи с космодромов о запуске ракет? Они взмывают ввысь за счет невероятного количества энергии, выделяемой при... окислении водорода, то есть при сжигании его в кислороде.

Космические ракеты высотой с башню устремляются в небо за счет громадной энергии, что выделяется при сжигании водорода в чистом кислороде. Эта же энергия поддерживает жизнь и в клетках нашего тела. Только в них реакция окисления протекает поэтапно. Кроме того, сначала вместо тепловой и кинетической энергии наши клетки создают клеточное топливо» — АТФ .

Их топливные баки заполнены жидкими водородом и кислородом. При запуске двигателей водород начинает окисляться и огромная ракета стремительно уносится в небо. Может быть, это кажется невероятным, и все-таки: та же энергия, что уносит ввысь космическую ракету, поддерживает и жизнь в клетках нашего тела.

Разве что в клетках не происходит никакого взрыва и из них не вырывается сноп пламени. Окисление совершается поэтапно, и потому вместо тепловой и кинетической энергии образуются молекулы АТФ.

АТФ – главный переносчик энергии в клетке. Для осуществления любых проявлений жизнедеятельности клеток необходима энергия. Автотрофные организмы получают исходную энергию от солнца в ходе реакций фотосинтеза, гетеротрофные же в качестве источника энергии используют органические соединения, поступающие с пищей. Энергия запасается клетками в химических связях молекул АТФ (аденозинтрифосфат ), которые представляют собой нуклеотид, состоящий из трех фосфатных групп, остатка сахара (рибозы) и остатка азотистого основания (аденина).

Связь между фосфатными остатками получила название макроэргической, поскольку при ее разрыве выделяется большое количество энергии. Обычно клетка извлекает энергию из АТФ, отщепляя только концевую фосфатную группу. При этом образуется АДФ (аденозиндифосфат), фосфорная кислота и освобождается 40 кДж/моль.

Молекулы АТФ играют роль универсальной энергетической разменной монеты клетки. Они поставляются к месту протекания энергоемкого процесса, будь ферментативный синтез органических соединений, работа белков-молекулярных моторов или мембранных транспортных белков и др. Обратный синтез молекул АТФ осуществляется путем присоединения фосфатной группы к АДФ с поглощением энергии. Запасание клеткой энергии в виде АТФ осуществляется в ходе реакций энергетического обмена. Он тесно связан с пластическим обменом, в ходе которого клетка производит необходимые для ее функционирования органические соединения.

Обмен веществ и энергии в клетке (метаболизм).

Метаболизмом обозначают совокупность всех реакций пластического и энергетического обмена, связанных между собой. В клетках постоянно идет синтез углеводов, сложных жиров, нуклеиновых кислот. Одним из важнейших процессов в пластическом обмене является биосинтез белков. Синтез соединений в ходе реакций пластического обмена всегда энергозатратен и идет при непременном участии АТФ.

Одним из источников энергии для образования АТФ служит ферментативное расщепление поступающих в клетку органических соединений (белков, жиров и углеводов). В ходе этого процесса высвобождается энергия, которая аккумулируется в АТФ. Особую роль в энергетическом обмене клетки играет расщепление глюкозы. Этот сахар синтезируется в результате реакций фотосинтеза и может накапливаться в клетках в виде полисахаридов: крахмала и гликогена. По мере необходимости полисахариды распадаются, а молекулы глюкозы претерпевают ряд последовательных превращений.

Первый этап, получивший название гликолиз, проходит в цитоплазме клеток и не требует кислорода. В результате последовательных реакций с участием ферментов глюкоза распадается на две молекулы пировиноградной кислоты . При этом задействуются две молекулы АТФ, а высвобождающейся при расщеплении химических связей энергии хватает на производство четырех молекул АТФ. В итоге энергетический выход гликолиза невелик и составляет две молекулы АТФ:

С 6 Н 12 О 6 → 2С 3 Н 4 О 3 + 4Н + + 2АТФ

В анаэробных условиях (при отсутствии кислорода) дальнейшие превращения связаны с различными типами брожений .

Всем известно молочнокислое брожение (скисание молока), которое проходит благодаря деятельности молочнокислых грибков и бактерий. По механизму оно сходно с гликолизом, только окончательным продуктом здесь является молочная кислота. Этот тип брожения проходит в клетках при дефиците кислорода, например, в интенсивно работающих мышцах. Близко к молочному и спиртовое брожение . Различие заключается лишь в том, что продуктами при спиртового брожения являются этиловый спирт и углекислый газ.

Следующий этап, в ходе которого пировиноградная кислота окисляется до углекислого газа и воды, получил название клеточного дыхания . Связанные с дыханием реакции проходят в митохондриях растительных и животных клеток и только при наличии кислорода. Во внутренней среде митохондрий происходит ряд химических превращений вплоть до конечного продук-та – углекислого газа. При этом на различных этапах этого процесса образуются промежуточные продукты распада исходного вещества с отщеплением атомов водорода. Атомы водорода, в свою очередь, участвуют в ряде других химических реакций, итогом которых является выделение энергии и «консервация» ее в химических связях АТФ и образование молекул воды. Становится понятным, что именно для того, чтобы связать отщепленные атомы водорода, и нужен кислород. Данный ряд химических превращений достаточно сложный и происходит с участием внутренних мембран митохондрий, ферментов, белков-переносчиков.

Клеточное дыхание имеет чрезвычайно высокую эффективность. Происходит энергетический синтез 30 молекул АТФ, еще две молекулы образуются при гликолизе и шесть молекул АТФ образуются как результат превращений на мембранах митохондрий продуктов гликолиза. Всего в результате окисления одной молекулы глюкозы образуется 38 молекул АТФ:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О + 38АТФ

В митохондриях проходят конечные этапы окисления не только сахаров, но и других органических соединений – белков и липидов. Эти вещества используются клетками, главным образом, когда подходит к концу запас углеводов. Вначале расходуется жир, при окислении которого выделяется существенно больше энергии, чем из равного объема углеводов и белков. Поэтому жир у животных представляет собой основной «стратегический резерв» энергетических ресурсов. У растений же роль энергетического резерва играет крахмал. При хранении он занимает значительно больше места, чем энергетически эквивалентное ему количество жира. Для растений это не служит помехой, поскольку они неподвижны и не носят, как животные, запасы на себе. Извлечь же энергию из углеводов можно гораздо быстрее, чем из жиров. Белки выполняют в организме многие важные функции, поэтому вовлекаются в энергетический обмен только при исчерпании ресурсов сахаров и жиров, например, при длительном голодании.

Фотосинтез. Фотосинтез – это процесс, в ходе которого энергия солнечных лучей преобразуется в энергию химических связей органических соединений. В растительных клетках связанные с фотосинтезом процессы протекают в хлоропластах. Внутри этой органеллы находятся системы мембран в которые встроены пигменты, улавливающие лучистую энергию солнца. Основной пигмент фотосинтеза – хлорофилл, который поглощает преимущественно синие и фиолетовые, а также красные лучи спектра. Зеленый свет при этом отражается, поэтому сам хлорофилл и содержащие его части растений кажутся зелеными.

Различают хлорофиллы a , b , c , d , формулы которых имеют незначительные отличая. Главный из них – хлорофилл a , без него фотосинтез невозможен. Остальные хлорофиллы, называемые вспомогательными, способны улавливать свет несколько иной волны, чем хлорофилл a , что расширяет спектр поглощения света при фотосинтезе. Ту же роль играют и каротиноиды, воспринимающие кванты синего и зеленого света. В разных группах растительных организмов распределение дополнительных хлорофиллов неодинаково, что используется в систематике.

Собственно улавливание и преобразование лучистой энергии происходит во время световой фазы . При поглощении квантов света хлорофилл переходит в возбужденное состояние и становится донором электронов. Его электроны передаются от одного белкового комплекса к другому по цепи переноса электронов. Белки этой цепи, как и пигменты, сосредоточены на внутренней мембране хлоропластов. При переходе электрона по цепи переносчиков он теряет энергию, которая используется для синтеза АТФ.

Под действием солнечного света в хлоропластах происходит также расщепление молекул воды – фотолиз, при этом возникают электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта, при этом образуется кислород.

Таким образом, функциональный смысл световой фазы заключается в синтезе АТФ и НАДФ·Н путем преобразования световой энергии в химическую.

Из всех улавливающих кванты света пигментов только хлорофилл a способен передавать электроны в цепь переноса. Остальные пигменты сначала передают энергию возбужденных светом электронов хлорофиллу a , а от него уже начинается описанная выше цепочка реакций световой фазы.

Для реализации темновой фазы фотосинтеза свет не нужен. Суть проходящих здесь процессов заключается в том, что полученные в световую фазу молекулы используются в серии химических реакций, «фиксирующих» СО 2 в форме углеводов. Все реакции темновой фазы осуществляются внутри хлоропластов, а освобождающиеся при «фиксации» углекислоты вещества вновь используются в реакциях световой фазы.

Суммарное уравнение фотосинтеза имеет вид:

6СО 2 + 6Н 2 О –→ С 6 Н 12 О 6 + 6О 2

Взаимосвязь и единство процессов пластического и энергетического обмена. Процессы синтеза АТФ происходят в цитоплазме (гликолиз), в митохондриях (клеточное дыхание) и в хлоропластах (фотосинтез). Все осуществляющиеся в ходе этих процессов реакции – это реакции энергетического обмена. Запасенная в виде АТФ энергия, расходуется в реакциях пластического обмена для производства необходимых для жизнедеятельности клетки белков, жиров, углеводов и нуклеиновых кислот. Заметим, что темновая фаза фотосинтеза – это цепь реакций пластического обмена, а световая – энергетического.

В. Н. Селуянов, В. А. Рыбаков, М. П. Шестаков

Глава 1. Модели систем организма

1.1.3. Биохимия клетки (энергетика)

Процессы мышечного сокращения, передачи нервного импульса, синтеза белка и др. идут с затратами энергии. В клетках энергия используется только в виде АТФ. Освобождение энергии, заключенной в АТФ, осуществляется благодаря ферменту АТФ азе, который имеется во всех местах клетки, где требуется энергия. По мере освобождения энергии образуются молекулы АДФ, Ф, Н. Ресинтез АТФ осуществляется в основном за счет запаса КрФ. Когда КрФ отдает свою энергию для ресинтеза АТФ, то образуется Кр и Ф. Эти молекулы распространяются по цитоплазме и активизируют ферментативную активность, связанную с синтезом АТФ. Существуют два основных пути образования АТФ: анаэробный и аэробный (Аулик И. В., 1990; Хочачка П., Сомеро Дж., 1988 и др.).

Анаэробный путь или анаэробный гликолиз связан с ферментативными системами, расположенными на мембране сарко-плазматического ретикулума и в саркоплазме. При появлении рядом с этими ферментами Кр и Ф запускается цепь химических реакций, в ходе которых гликоген или глюкоза распадаются до пирувата с образованием молекул АТФ. Молекулы АТФ тут же отдают свою энергию для ресинтеза КрФ, а АДФ и Ф вновь используются в гликолизе для образования новой молекулы АТФ. Пируват имеет две возможности для преобразования:

1) Превратиться в Ацетил коэнзим А, подвергнуться в митохондриях окислительному фосфорилированию до образования углекислого газа, воды и молекул АТФ. Этот метаболический путь - гликоген-пируват-митохондрия-углекислый газ и вода - называют аэробным гликолизом.

2) С помощью фермента ЛДГ М (лактат-дегидрогеназы мышечного типа) пируват превращается в лактат. Этот метаболический путь - гликоген-пируват-лактат - называется анаэробным гликолизом и сопровождается образованием и накоплением ионов водорода.

Аэробный путь, или окислительное фосфорилирование, связан с митохондриальной системой. При появлении рядом с митохондриями Кр и Ф с помощью митохондриальной КФК азы выполняется ресинтез КрФ за счет АТФ, образовавшейся в митохондрии. АДФ и Ф поступают обратно в митохондрию для образования новой молекулы АТФ. Для синтеза АТФ имеется два метаболических пути:

    1) аэробный гликолиз;
    2) окисление липидов (жиров).

Аэробные процессы связаны с поглощением ионов водорода, а в медленных мышечных волокнах (МВ сердца и диафрагмы) преобладает фермент ЛДГ Н (лактат дегидрогеназа сердечного типа), который более интенсивно превращает лактат в пируват. Поэтому при функционировании медленных мышечных волокон (ММВ) идет быстрое устранение лактата и ионов водорода.

Увеличение в МВ лактата и Н приводит к ингибированию окисления жиров, а интенсивное окисление жиров приводит к накоплению в клетке цитрата, а он угнетает ферменты гликолиза.



Введение
1.1
  • аблица 10. Строение клетки. Структурная система цитоплазмы
  • Важно не время приема пищи, а момент, когда она попадает в клетки.
  • Вакша-стхала-шакти-викасака-1 (укрепление грудной клетки)
  • Если Артур или Евгений получают деньги от зрителей, они отдают их Администратору. Работники сайта украшают сцену, готовятся к Новому году.
  • Закон № 3. Идея создает образ формы, который притягивает физическую энергию и, по истечении необходимого времени, воплощается в реальности.
  • Известно, что альдостерон регулирует содержимое натрия в организм. Какие клетки надпочечныхжелез вырабатывают этот гормон?
  • КИСЛОРОД

    КИСЛОРОД: ЖИЗНЕТВОРНАЯ НЕОБХОДИМОСТЬ

    И «РАЗУМНЫЙ УБИЙЦА»

    КИСЛОРОД КАК ЖИЗНЕННАЯ НЕОБХОДИМОСТЬ

    Кислород – важнейшее вещество организма, абсолютно необходимое для жизни человека и животных. Кислород является источником жизни всех клеток. Без него мы не можем прожить и нескольких минут. Кислород необходим, прежде всего, для выработки энергии в клетках. Это происходит в так называемой дыхательной цепи во внутренней мембране митохондрий. Именно здесь формируется основной состав универсальной энергетической молекулы АТФ. Без кислорода нет энергии, а без энергии невозможна никакая работа, совершается ли она биохимическим или мускульным путем.

    КАК КЛЕТКИ ПОЛУЧАЮТ ЭНЕРГИЮ

    Доктор Отто Варбург дважды удостаивался Нобелевской премии за свои исследования о большом значении кислорода в жизни клеток. Вкратце его заключения сводятся к следующему.

    Здоровые клетки разлагают поглощаемые с пищей углеводы до глюкозы. Глюкоза запасается организмом. Когда клетки нуждаются в энергии, они разлагают глюкозу посредством цепи химических реакций, в последнем звене которой нужен кислород. При этом вырабатывается энергия, запасаемая в форме АТФ, энергетической молекулы клеток.

    В процессе дыхания кислород поступает в легкие, где он абсорбируется в кровь и переносится к миллиардам клеток организма. Носителем выступает гемоглобин красных кровяных телец. Достигнувший клеток кислород расходуется на превращение принимаемой пищи с образованием АТФ, тепла и воды. Чем

    больше наша потребность в тепле или энергии, тем интенсивнее поглощение кислорода.

    Питательные вещества служат топливом для выработки энергии в организме, а кислород обеспечивает сгорание этого топлива. Этот процесс горения называется окислением, причем топливом служат, прежде всего, углеводы, которые окисляются (сгорают) при участии кислорода. Именно поэтому клетки нуждаются в непрекращающемся и достаточном поступлении кислорода. Лишь в этом случае они будут нормально функционировать, оставаясь здоровыми и снабжая организм энергией.

    Кровь состоит из трех основных компонентов: плазмы, красных и белых кровяных телец. В плазме содержатся все необходимые клеткам вещества, в частности, кислород. Однако клеткам организма человека, в отличие от рыб, для жизни которых достаточно несвязанного кислорода плазмы крови, нужно больше кислорода, чем в состоянии доставить плазма. Эту потребность восполняют красные кровяные тельца, которые важны именно потому, что они могут транспортировать большое количество кислорода к различным тканям тела.

    Вместе с тем важно знать, что красные кровяные тельца получают кислород из плазмы, переносят его к капиллярам, где кислород отдается плазме и транспортируется через клеточные мембраны для использования в происходящем в клетках обмене веществ. Логично, таким образом, предположить, что если можно увеличить количество кислорода в плазме, то увеличится и количество кислорода, достигающего клеток.

    Для нормального транспорта кислорода в клетки через клеточные мембраны необходима определенная среда во внеклеточной жидкости. Организм регулирует ее состав с высокой точностью. Эта среда должна иметь необходимый баланс жидкости, минералов и электролитов, рН, белков, осмотического давления и др., а также очищаться от токсичных метаболитов для облегчения переноса кислорода в клетки. Различные нарушения этого баланса во внеклеточной жидкости приводят к кислородному голоданию клеток. Это служит причиной большинства заболеваний.


    1 | | | | | |

    Неспособные к фотосинтезу клетки (например, человека) получают энергию из пищи, которой служит или биомасса растений, созданная в результате фотосинтеза, или биомасса других живых существ, питающихся растениями, или останки любых живых организмов.

    Питательные вещества (белки, жиры и углеводы) преобразуются животной клеткой в ограниченный набор низкомолекулярных соединений - органических кислот, построенных из атомов углерода, которые с помощью специальных молекулярных механизмов окисляются до углекислоты и воды. При этом освобождается энергия, она аккумулируется в форме электрохимической разности потенциалов на мембранах и используется для синтеза АТФ или напрямую для совершения определенных видов работы.

    История изучения проблем преобразования энергии в животной клетке, как и история фотосинтеза, насчитывает более двух веков.

    У аэробных организмов окисление углеродных атомов органических кислот до углекислого газа и воды протекает с помощью кислорода и называется внутриклеточным дыханием, которое происходит в специализированных частицах - митохондриях. Трансформация энергии окисления осуществляется ферментами, расположенными в строгом порядке во внутренних мембранах митохондрий. Эти ферменты составляют так называемую дыхательную цепь и работают как генераторы, создавая разность электрохимических потенциалов на мембране, за счет которой синтезируется АТФ, подобно тому, как это происходит при фотосинтезе.

    Основная задача и дыхания и фотосинтеза — поддерживать соотношение АТФ/АДФ на определенном уровне, далеком от термодинамического равновесия, что и позволяет АТФ служить донором энергии, смещая равновесие тех реакций, в которых он участвует.

    Основными энергетическими станциями живых клеток служат митохондрии — внутриклеточные частицы размером 0,1-10μ, покрытые двумя мембранами. В митохондриях свободная энергия окисления продуктов питания превращается в свободную энергию АТФ. Когда АТФ соединяется с водой, при нормальных концентрациях реагирующих веществ, выделяется свободная энергия порядка 10 ккал/моль.

    В неорганической природе смесь водорода и кислорода носит название «гремучей»: достаточно небольшой искры, чтобы произошел взрыв - мгновенное образование воды с огромным выделением энергии в виде тепла. Задача, которую выполняют ферменты дыхательной цепи: произвести «взрыв» так, чтобы освобождающаяся энергия была запасена в форме, пригодной для синтеза АТФ. Что они и делают: упорядоченно переносят электроны от одного компонента к другому (в конечном счете, на кислород), постепенно понижая потенциал водорода и запасая энергию.

    О масштабах этой работы говорят следующие цифры. Митохондрии взрослого человека среднего роста и веса перекачивают через свои мембраны около 500 г ионов водорода в день, образуя мембранный потенциал. За это же время Н + -АТФ-синтаза производит около 40 кг АТФ из АДФ и фосфата, а использующие АТФ процессы гидролизуют всю массу АТФ назад в АДФ и фосфат.

    Исследования показали, что митохондриальная мембрана действует как трансформатор напряжения. Если передавать электроны субстрата от НАДН прямо к кислороду сквозь мембрану, возникнет разность потенциалов около 1 В. Но биологические мембраны - двухслойные фосфолипидные пленки не выдерживают такую разность - возникает пробой. Кроме того, для производства АТФ из АДФ, фосфата и воды требуется всего 0,25 В, значит, нужен трансформатор напряжения. И задолго до появления человека клетки «изобрели» такой молекулярный прибор. Он позволяет в четыре раза увеличить ток и за счет энергии каждого передаваемого от субстрата к кислороду электрона перенести через мембрану четыре протона благодаря строго согласованной последовательности химических реакций между молекулярными компонентами дыхательной цепи.

    Итак, два главных пути генерации и регенерации АТФ в живых клетках: окислительное фосфорилирование (дыхание) и фотофосфорилирование (поглощение света), — хотя и поддерживаются разными внешними источниками энергии, но оба зависят от работы цепочек каталитических ферментов, погруженных в мембраны: внутренние мембраны митохондрий, тилакоидные мембраны хлоропластов или плазматические мембраны некоторых бактерий.