Все живое на Земле стремится к размножению, которое может проходить по одному из двух путей - митозом или мейозом. Оба эти процесса имеют одинаковые фазы, протекание которых, однако, и конечный результат совершенно разные. Отсюда вытекает логичный вопрос - чем митоз отличается от мейоза?

Представляет собой непрямое клеточное деление. Самый распространенный в природе способ, благодаря которому делятся клетки всей флоры и даже фауны. Появление в нашем организме новых мышечных, нервных, эпителиальных и других клеток обязано именно митозу.

Это бесполый способ размножения, также его иногда называют вегетативный. По своей сути - это клонирование, так как результатом деления является клетка идентичная изначальной.

Что такое мейоз?

Является редукционным делением клеток репродуктивной системы, в процессе которого количество хромосом снижается в 2 раза. Уже из этого определения можно вывести первое и основное отличие данных способов.

Читайте также:

Мейоз протекает не только у многоклеточных, но даже и у простейших организмов, хотя у вторых он может разительно отличаться длительностью и количеством фаз.

Основные отличия двух процессов

В процессе митоза клетка делится с сохранением количества хромосом, чего не происходит в мейозе, который вдобавок проходит в 2 этапа. Как уже было упомянуто выше, названия и количество фаз митоза и мейоза одинаково, отличается лишь их протекание. Поэтому рассматривать отличия следует именно с этого ракурса.

  • Интерфаза. Первая фаза обоих процессов протекает идентично, за исключением продолжительности, которая больше у мейоза. Здесь наблюдается синтез важных органических веществ, в том числе необходимых белков. Набор хромосом имеет вид 2n.
  • Профаза. В митозе отмечается спирализация хромосом и возникновение особого веретена деления. Данный этап у мейоза более длительный в первом делении, так как помимо указанных процессов происходит кроссинговер, только после которого хромосомы начинают расходиться. Второе деление мейоза в профазе идентично митозу, за исключением в два раза меньшего набора хромосом, участвующих в процессе.

  • Метафаза. Следующий пункт тождественен для обоих процессов. В нем происходит распределение центромер строго по экватору.
  • Анафаза. Этот этап отличается дальнейшим поведением центромер. Если в митозе они делятся, в результате чего образуется новая хромосома, то в первом делении мейоза ничего подобного не происходит. Имеет место лишь смещение одной из хромосом к противоположному полюсу.
  • Телофаза. Конечный этап митоза, в котором происходит разделение цитоплазмы и образование новых полноценных клеток с ядрами. Что касается мейоза, то в первом делении образуются клетки с одинарным (гаплоидным) набором хромосом, которые продолжают вторичное деление до 4 конечных клеток.

В чем биологическое значение каждого?

Главное назначение митоза - точный перенос генетической информации от старой клетки к новой. Это основа для роста и развития всех живых организмов. Более того, благодаря митозу количество хромосом в дочерних клетках сохраняется.

Роль мейоза в природе противоположна, ведь результатом мейоза становится новая комбинация генов. Вместе с тем, мейоз считается основным этапом столь важного для продолжения жизни гематогенеза.

Сходства:

    для митоза и мейоза характерны одинаковые фазы

    в интерфазе происходит удвоение хромосом и ДНК

    характерны для всех живых организмов, кроме бактерий

Отличия:

    митоз включает одно деление клетки, мейоз – два деления (редукционное и уравнительное)

    в результате митоза образуются соматические клетки, а в результате мейоза формируются гаметы и споры

    в митозе ДНК удваивается перед каждым делением клетки в интерфазе, в мейозе ДНК удваивается один раз: перед первым делением в интерфазе

    в митозе отсутствуют конъюгация и кроссинговер, а в мейозе осуществляются процессы конъюгации и кроссинговера

    в метафазе митоза хромосомы выстраиваются в один слой по экватору клетки и содержат по 2 хроматиды каждая. В мейозе в метафазе 1 хромосомы выстраиваются по экватору клетки в 2 слоя и состоят из 4 хроматид каждая

    в анафазе митоза расходятся к полюсам хроматиды, а в анафазе 1 мейоза расходятся к полюсам хромосомы

    в митозе из одной материнской образуются 2 дочерние клетки (2n с), а в мейозе из одной материнской образуются 4 дочерние клетки (n c)

Решение типовых задач

Задача 1. Какой набор хромосом и сколько хроматид будет содержаться в клетке к концу интерфазы, если в деление вступает клетка с диплоидным набором хромосом? (набор хромосом обозначается n, а число хроматид – с).

Решение . В деление вступает клетка 2n c, т. к. все хроматиды идентичные, парные, но неудвоенные. В интерфазе, перед митотическим делением происходит их удвоение. Поэтому набор хромосом и количество хроматид составят 2n2c.

Задача 2. Диплоидный набор клетки составляет 8 хромосом. Сколько хроматид направляется к каждому полюсу в анафазе первого и второго мейотического деления?

Решение. Перед первым делением в интерфазе хромосомы (хроматиды) удваиваются, и количество хроматид будет равно 16. Это же количество сохранится в профазе -1 и метафазе-1. В анафазе первого мейотического деления к каждому полюсу отойдут по 8 хроматид. В анафазе второго мейотического деления к каждому полюсу направляется 4 хроматиды.

Задачи с ответами

    Для организма с кариотипом 18 хромосом в метафазе -II мейоза количество хромосом и количество хроматид в клетке соответственно составляет. Ответ : 9 и 18.

    Для организма (n=23) в метафазе-II мейоза количество хромосом и хроматид в клетке соответственно составляет. Ответ : 23 и 46.

    Какое количество яйцеклеток и направительных телец может образоваться у животного из 40 ооцитов первого порядка? Ответ: 40 и 120.

    Для организма с кариотипом 18 хромосом в анафазе-1 мейоза количество хромосом и количество хроматид, направляющихся к разным полюсам, соответственно составляет: а) 9 и 18; б) 18 и 36; в) 18 и 9.

    Число хромосом n, число хроматид – с. После первого деления мейоза диплоидной клетки хромосомный набор в дочерних клетках составляет? Ответ : 1n2c.

Задачи для самостоятельного решения

    Диплоидный набор клетки составляет 32 хромосомы. Сколько хроматид направляется к каждому полюсу в анафазе второго мейотического деления.

    Диплоидный набор клетки составляет 28 хромосом. Сколько хроматид направляется к каждому полюсу в анафазе первого мейотического деления.

    В клетках пыльцы вишни садовой 16 хромосом. Сколько хроматид в клетках вишни садовой в метафазе -1 и метафазе-2 мейоза.

Гаметогенез – процесс образования и развития гамет. Гамета – половая гаплоидная клетка, которая обеспечивает передачу наследственной информации. Выделяют два типа гаметогенеза: сперматогенез и овогенез.

Сперматогенез – процесс образования мужских гамет – сперматозоидов. Процесс сперматогенеза осуществляется в мужских половых гонадах из сперматогониев – диплоидных клеток семенника. Он подразделяется на 4 периода:

    размножение (митоз);

    рост (соответствует интерфазе, когда клетки увеличиваются в размерах, и происходит репликация ДНК);

    созревание (мейоз – два деления);

    формирование сперматозоидов.

Схема процесса сперматогенеза (рис. 29)

    сперматогонии делятся митозом на 2 дочерние клетки – сперматоциты первого порядка;

    сперматоциты первого порядка делятся мейозом (первое деление) на 2 дочерние клетки – сперматоциты 2 порядка

    сперматоциты 2-го порядка вступают во второе деление мейоза, в результате которого образуются 4 гаплоидные сперматиды

    сперматиды после периода формирования превращаются в зрелые сперматозоиды

Половые клетки развиваются в половых железах, где различают три зоны: размножения, роста, созревания половых клеток. Зона размножения находится по периферии половой железы. Здесь находятся первичные половые клетки, которые размножаются путем митоза. Затем первичные половые клетки попадают в зону роста, где они растут и достигают морфологической зрелости. Далее половые клетки переходят в зону созревания, где проходят два деления мейоза (редукционное и митоз мейоза, или уравнительное).

В семеннике выделяют три зоны развития половых клеток:

    размножения сперматогониев, расположенная по периферии семенника;

  1. созревания (двух делений мейоза).

Рис . 29 . Схема сперматогенеза

Сперматозоиды – мелкие подвижные клетки. В них выделяют головку, шейку и хвост (рис. 30). В передней части головки находится акросома, по форме пузырек, в котором содержится фермент гиалуронидаза, обладающий способностью растворять оболочки яйцеклетки в процессе оплодотворения. Большая часть головки сперматозоида занята ядром, а цитоплазма располагается только по периферии. В шейке расположены центриоли и митохондрии. При оплодотворении в яйцеклетке оказывается только ядро и центриоли сперматозоида, а другие органеллы не попадают в яйцеклетку. Митохондрии, содержащиеся в шейке, вырабатывают энергию для движения сперматозоида.

Рис . 30. Строение сперматозоида

Оогенез – процесс образования женских половых клеток – яйцеклеток из оогониев – диплоидных клеток яичника. Он подразделяется на 4 периода:

    размножение (митоз);

    рост (в интерфазе происходит рост клеток и репликация ДНК);

    созревание (мейоз);

    формирование яйцеклеток

Схема процесса оогенеза (рис. 31)

    В зоне размножения в яичнике находятся оогонии первичные половые клетки , делящиеся митозом.

    Отдельные оогонии вступают в период роста, при этом клетки увеличиваются, и образуются ооциты первого порядка . Зрелые ооциты первого порядка (граафовы пузырьки) подходят к поверхности яичника, при этом стенка яичника разрывается, и ооцит первого порядка попадает в маточную трубу. Происходит захватывание ооцита бахромками маточной трубы.

3. Далее ооциты первого порядка вступают в период созревания и претерпевают мейоз. Из ооцита первого порядка в результате первого деления мейоза образуются ооцит второго порядка и первое полярное (направительное) тельце.

4. Ооциты второго порядка вступают во второе мейотическое деление. В результате второго деления формируется одна зрелая яйцеклетка (крупная клетка) и 3 полярных тельца, которые рассасываются и служат питательной средой для яйцеклетки. Таким образом, период созревания, два деления мейоза, происходят в маточной трубе.

В ходе оогенеза, как и сперматогенеза, наблюдается процесс дифференцировки клеток, приводящий к образованию гамет.

Рис. 31 . Схема оогенеза

Яйцеклетка – неподвижная клетка, крупная (размеры от 100 мкм до 1 см), которая имеет несколько оболочек, состоящих из гликопротеидов, содержит большое количество цитоплазмы, питательных веществ и ядро, митохондрии, рибосомы (рис. 32). В цитоплазме яйцеклетки содержатся митохондрии, где имеются кольцевые ДНК, через которые передается генетическая информация. Поэтому цитоплазма яйцеклетки обладает митохондриальной наследственностью. Яйцеклетка содержит все органеллы, характерные для эукариотической клетки.

Рис . 32 . Строение яйцеклетки

Оплодотворение – слияние зрелых гамет – яйцеклетки и сперматозоида, содержащих гаплоидный набор хромосом, с образованием зиготы (2n), из которой развивается многоклеточный организм.

Процесс оплодотворения включает 2 этапа (рис. 33):

    проникновение головки сперматозоида в яйцеклетку

    слияние гаплоидных ядер обоих гамет и образование зиготы

Зигота – клетка, образующаяся в результате слияния гамет разного пола.

Рис . 33 . Стадии оплодотворения яйцеклетки и начала деления зиготы у животных: 1 – сперматозоид, содержащий две хромосомы, прикрепляется к поверхности яйцеклетки; 2 – сперматозоид проник в яйцеклетку; 3 – слияние ядер сперматозоида и яйцеклетки и формирование в зиготе диплоидного числа хромосом; 4 – удвоение хромосом; 5 – метафаза первого деления.

15. Выберите пару из перечисленных триплетов нуклеотидов, которые не кодируют аминокислоту, а служат сигналом о прекращении синтеза полипептидной цепи в рибосоме: а) УАГ, ГАГ; б) УАА, УГА; в) ААГ, УГА.

16. Как называется свойство генетического кода, свидетельствующее о том, что он одинаков у организмов, стоящих на разных уровнях развития: а) неперекрываемость; б) дискретность; в) универсальность; г) однозначность.

27. Первая закономерность правила Чаргаффа:

а) А=Г; б) А=Т; в) А=Ц.

28. Вторая закономерность правила Чаргаффа: а) А+Г=Т+Ц; б) А+Т=Г+Ц; в) А+У=Г+Ц.

29. Транскрибируемый участок цепи ДНК, кодирующий полипептид, имеет следующую последовательность нуклеотидов: ТТТЦГАГЦАААА. Укажите антикодоны т-РНК, принимающие участие в биосинтезе данного полипептида: а) АААГЦУЦГУУУУ; б) ТТТЦГАГЦАААА; в) АААГЦТЦГТТТТ; г ) УУУЦГАГЦАААА.

30. Диплоидный набор клетки составляет 64 хромосомы. Сколько хроматид направляется к каждому полюсу в анафазе второго мейотического деления? а) 8; б) 16; в) 32; г) 64.

31. Отметьте признаки, характерные для и-РНК: а) одна полинуклеотидная цепь; б) две полинуклеотидные цепи; в) содержит урацил; г) содержит тимин; д) содержит рибозу; е) содержит дезоксиоибозу.

32. Сколько адениловых нуклеотидов содержится во фрагменте молекулы ДНК, если в нем обнаружено 50 цитидиловых нуклеотидов, что составляет 20 % от общего количества нуклеотидов в данном фрагменте ДНК? а) 50; б) 75; в) 100.

Отличия мейоза от митоза по итогам

1. После митоза получается две клетки, а после мейоза – четыре.

2. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

3. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

4. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).

Отличия мейоза от митоза по ходу

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

Второе деление мейоза ничем не отличается от митоза. Как и в митозе, в анафазе II мейоза к полюсам клетки расходятся одинарные сестринские хромосомы (бывшие хроматиды).

11.Стадии формирования гамет, строение сперматозойда, строение яйцеклетки.

Гаметогенез - это процесс образования половых клеток. Протекает он в половых железах - гонадах (в яичниках у самок и в семенниках у самцов). Гаметогенез в организме женской особи сводится к образованию женских половых клеток (яйцеклеток) и носит название овогенеза. У особей мужского пола возникают мужские половые клетки (сперматозоиды), процесс образования которых называется сперматогенезом.

Гаметогенез - это последовательный процесс, которых складывается из нескольких стадий - размножения, роста, созревания клеток. В процесс сперматогенеза включается также стадия формирования, которой нет при овогенезе.

Стадии гаметогенеза

1. Стадия размножения. Клетки, из которых в последующем образуются мужские и женские гаметы, называются сперматогониями и овогониями соответственно. Они несут диплоидный набор хромосом 2n2c. На этой стадии первичные половые клетки многократно делятся митозом, в результате чего их количество существенно возрастает. Сперматогонии размножаются в течение всего репродуктивного периода в мужском организме. Размножение овогоний происходит главным образом в эмбриональном периоде. У человека в яичниках женского организма процесс размножения овогоний наиболее интенсивно протекает между 2 и 5 месяцами внутриутробного развития.

К концу 7 месяца большая часть овоцитов переходит в профазу I мейоза.

Если в одинарном гаплоидном наборе количество хромосом обозначить как n, а количество ДНК - как c, то генетическая формула клеток в стадии размножения соответствует 2n2c до синтетического периода митоза (когда происходит репликация ДНК) и 2n4c после него.

2. Стадия роста. Kлетки увеличиваются в размерах и превращаются в сперматоциты и овоциты I порядка (последние достигают особенно больших размеров в связи с накоплением питательных веществ в виде желтка и белковых гранул). Эта стадия соответствует интерфазе I мейоза. Важное событие этого периода - репликация молекул ДНК при неизменном количестве хромосом. Они приобретают двунитчатую структуру: генетическая формула клеток в этот период выглядит как 2n4c.

3. Стадия созревания. Происходят два последовательных деления - редукционное (мейоз I) и эквационное (мейоз II), которые вместе составляют мейоз. После первого деления (мейоза I) образуются сперматоциты и овоциты II порядка (с генетической формулой n2c), после второго деления (мейоза II) - сперматиды и зрелые яйцеклетки (с формулой nc) с тремя редукционными тельцами, которые погибают и в процессе размножения не участвуют. Так сохраняется максимальное количество желтка в яйцеклетках. Таким образом, в результате стадии созревания один сперматоцит I порядка (с формулой 2n4c) дает четыре сперматиды (с формулой nc), а один овоцит I порядка (с формулой 2n4c) образует одну зрелую яйцеклетку (с формулой nc) и три редукционных тельца. Отмеченные выше различия в ходе овогенеза и сперматогенеза имеют определенный биологический смысл, связанный с разным функциональным назначением мужских и женских гамет (помимо переноса генетической информации). Накопление в цитоплазме яйцеклетки большого количества запасных питательных веществ необходимо, так как на этой «базе» осуществляется развитие дочернего организма из оплодотворенного яйца. Неравномерное клеточное деление при овогенезе и обеспечивает формирование крупной яйцеклетки. Функция же сперматозоидов заключается в отыскании яйцеклетки, проникновении в нее и доставке своего хромосомного набора. Их существование кратковременно, а поэтому нет необходимости в запасании большого количества веществ в цитоплазме. А поскольку сперматозоиды в массе гибнут в процессе поиска яйцеклетки, их образуется огромное количество.

Центральное событие в процессе гаметогенеза - редукция диплоидного набора хромосом (в ходе мейоза) и формирование гаплоидных гамет.

4. Стадия формирования, или спермиогенеза (только при сперматогенезе). В результате этого процесса каждая незрелая сперматида превращается в зрелый сперматозоид (с формулой nc), приобретая все структуры, ему свойственные. Ядро сперматиды уплотняется, происходит сверхспирализация хромосом, которые становятся функционально инертными. Комплекс Гольджи перемещается к одному из полюсов ядра, формируя акросому. К другому полюсу ядра устремляются центриоли, причем одна из них принимает участие в формировании жгутика. Вокруг жгутика спирально закручивается одна митохондрия. Почти вся цитоплазма сперматиды отторгается, поэтому головка сперматозоида ее почти не содержит.

Сперматозоид - это мужская половая клетка (гамета). Он обладает способностью к движению, чем в известной мере обеспечивается возможность встречи разнополых гамет. Размеры сперматозоида микроскопические: длина этой клетки у человека составляет 50-70 мкм (самые крупные они у тритона - до 500 мкм). Все сперматозоиды несут отрицательный электрический заряд, что препятствует их склеиванию в сперме. Количество сперматозоидов, образующихся у особи мужского пола, всегда колоссально. Например, эякулят здорового мужчины содержит около 200 млн сперматозоидов (жеребец выделяет около 10 млрд сперматозоидов).

Строение сперматозоида

По морфологии сперматозоиды резко отличаются от всех других клеток, но все основные органеллы в них имеются. Каждый сперматозоид имеет головку, шейку, промежуточный отдел и хвост в виде жгутика (рис.1). Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина. На переднем конце головки (на ее вершине) располагается акросома, которая представляет собой видоизмененный комплекс Гольджи. Здесь происходит образование гиалуронидазы - фермента, который способен расщеплять мукополисахариды оболочек яйцеклетки, что делает возможным проникновение сперматозоида внутрь яйцеклетки. В шейке сперматозоида расположена митохондрия, которая имеет спиральное строение. Она необходима для выработки энергии, которая тратится на активные движения сперматозоида по направлению к яйцеклетке. Большую часть энергии сперматозоид получает в виде фруктозы, которой очень богат эякулят. На границе головки и шейки располагается центриоль. На поперечном срезе жгутика видны 9 пар микротрубочек, еще 2 пары есть в центре. Жгутик является органоидом активного движения. В семенной жидкости мужская гамета развивает скорость, равную 5 см/ч (что применительно к ее размерам примерно в 1,5 раза быстрее, чем скорость пловца-олимпийца).

При электронной микроскопии сперматозоида обнаружено, что цитоплазма головки имеет не коллоидное, а жидкокристаллическое состояние. Этим достигается устойчивость сперматозоида к неблагоприятным условиям внешней среды (например, к кислой среде женских половых путей). Установлено, что сперматозоиды более устойчивы к воздействию ионизирующей радиации, чем незрелые яйцеклетки.

Сперматозоиды некоторых видов животных имеют акросомный аппарат, который выбрасывает длинную и тонкую нить для захвата яйцеклетки.

Установлено, что оболочка сперматозоида имеет специфические рецепторы, которые узнают химические вещества, выделяемые яйцеклеткой. Поэтому сперматозоиды человека способны к направленному движению по направлению к яйцеклетке (это называется положительным хемотаксисом).

При оплодотворении в яйцеклетку проникает только головка сперматозоида, несущая наследственный аппарат, а остальные части остаются снаружи.

Яйцеклетка - крупная неподвижная клетка, обладающая запасом питательных веществ. Размеры женской яйцеклетки составляют 150-170 мкм (гораздо больше мужских сперматозоидов, размер которых 50-70 мкм). Функции питательных веществ различны. Их выполняют:

1) компоненты, нужные для процессов биосинтеза белка (ферменты, рибосомы, м-РНК, т-РНК и их предшественники);

2) специфические регуляторные вещества, которые контролируют все процессы, происходящие с яйцеклеткой, например, фактор дезинтеграции ядерной оболочки (с этого процесса начинается профаза 1 мейотического деления), фактор, преобразующий ядро сперматозоида в пронуклеус перед фазой дробления, фактор, ответственный за блок мейоза на стадии метафазы II и др.;

3) желток, в состав которого входят белки, фосфолипиды,различные жиры, минеральные соли. Именно он обеспечивает питание зародыша в эмбриональном периоде.

По количеству желтка в яйцеклетке она может быть алецитальной, т. е. содержащей ничтожно малое количество желтка, поли-, мезо- или олиголецитальной. Человеческая яйцеклетка относится к алецитальным. Это обусловлено тем, что человеческий зародыш очень быстро переходит от гистиотрофного типа питания к гематотрофному. Также человеческая яйцеклетка по распределению желтка является изолецитальной: при ничтожно малом количестве желтка он равномерно располагается в клетке, поэтому ядро оказывается примерно в центре.

Яйцеклетка имеет оболочки, которые выполняют защитные функции, препятствуют проникновению в яйцеклетку более одного сперматозоида, способствуют имплантации зародыша в стенку матки и определяют первичную форму зародыша.

Яйцеклетка обычно имеет шарообразную или слегка вытянутую форму, содержит набор тех типичных органелл, что и любая клетка. Как и другие клетки, яйцеклетка отграничена плазматической мембраной, но снаружи она окружена блестящей оболочкой, состоящей из мукополисахаридов (получила свое название за оптические свойства). Блестящая оболочка покрыта лучистым венцом, или фолликулярной оболочкой, которая представляет собой микроворсинки фолликулярных клеток. Она играет защитную роль, питает яйцеклетку.

Яйцеклетка лишена аппарата активного движения. За 4-7 суток она проходит по яйцеводу до полости матки расстояние, которое примерно составляет 10 см. Для яйцеклетки характерна плазматическая сегрегация. Это означает, что после оплодотворения в еще не дробящемся яйце происходит такое равномерное распределение цитоплазмы, что в дальнейшем клетки зачатков будущих тканей получают ее в определенном закономерном количестве

Половой процесс , или оплодотворение , или амфимиксис (др.-греч. ἀμφι- - приставка со значением обоюдности, двойственности и μῖξις - смешение), или сингамия - процесс слияниягаплоидных половых клеток, или гамет, приводящий к образованию диплоидной клетки зиготы. Не следует смешивать это понятие с половым актом (встречей половых партнёров у многоклеточныхживотных).

Половой процесс закономерно встречается в жизненном цикле всех организмов, у которых отмечен мейоз. Мейоз приводит к уменьшению числа хромосом в два раза (переход от диплоидного состояния к гаплоидному), половой процесс - к восстановлению числа хромосом (переход от гаплоидного состояния к диплоидному).

Различают несколько форм полового процесса:

    изогамия - гаметы не отличаются друг от друга по размерам, подвижны, жгутиковые или амебоидные;

    анизогамия (гетерогамия) - гаметы отличаются друг от друга по размерам, но оба типа гамет (макрогаметы и микрогаметы) подвижны и имеют жгутики;

    оогамия - одна из гамет (яйцеклетка) значительно крупнее другой, неподвижна, деления мейоза, приводящие к её образованию, резко асимметричны (вместо четырёх клеток формируется одна яйцеклетка и два абортивных «полярных тельца»); другая (спермий, или сперматозоид) подвижна, обычно жгутиковая или амебоидная.


Мейоз (от греч. meiosis – уменьшение) - это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом и переход клеток из диплоидного состояния 2n в гаплоидное n. Этот вид деления был впервые описан В. Флемингом в 1882 г. у животных и Э. Страсбургером в 1888 г. у растений. Мейоз включает два последовательных деления: первое (редукционное) и второе (эквационное). В каждом делении выделяют 4 фазы: профаза, метафаза, анафаза, телофаза. Все фазы первого мейотического деления обозначают цифрой I, а все фазы второго деления - цифрой II. Мейозу предшествует интерфаза, в процессе которой происходит удвоение ДНК и клетки вступают в мейоз с хромосомным набором 2n4с (n - хромосомы, с - хроматиды).

Профаза I мейоза отличается значительной продолжительностью и сложностью. Ее условно разделяют на пять последовательных стадий: лептотена, зиготена, пахитена, диплотена и диакинез. Каждая из этих стадий обладает своими отличительными особенностями.

Лептотена (стадия тонких нитей). Для этой стадии характерно наличие тонких и длинных хромосомных нитей. Число хромосомных нитей соответствует диплоидному числу хромосом. Каждая хромосомная нить состоит из двух хроматид, соединенных общим участком - центромерой. Хроматиды очень близко сближены, и поэтому каждая хромосома кажется одиночной.

Зиготена (стадия соединения нитей). Моментом перехода лептотены в зиготену считают начало синапса. Синапс – процесс тесной конъюгации двух гомологичных хромосом. Подобная конъюгация отличается высокой точностью. Конъюгация часто начинается с того, что гомологичные концы двух хромосом сближаются на ядерной мембране, а затем процесс соединения гомологов распространяется вдоль хромосом от обоих концов. В других случаях синапс может начаться во внутренних участках хромосом и продолжаться по направлению к их концам. В результате каждый ген входит с соприкосновение с гомологичным ему геном той же хромосомы. Такой тесный контакт между гомологичными участками хроматид обеспечивается благодаря специализированной структуре – синаптонемальному комплексу. Синаптонемальный комплекс представляет собой длинное белковое образование, напоминающее веревочную лестницу, к противоположным сторонам которого плотно прилегают два гомолога.

Пахитена (стадия толстых нитей). Как только завершается синапс по всей длине хромосом, клетки вступают в стадию пахитены, на которой они могут оставаться несколько суток. Соединение гомологов становится столь тесным, что уже трудно отличить две отдельные хромосомы. Однако это пары хромосом, которые называют бивалентами. В этой стадии происходит кроссинговер, или перекрест хромосом.

Кроссинговер (от англ. crossingover - пересечение, скрещивание) - взаимный обмен гомологичными участками гомологичных хромосом. В результате кроссинговера хромосомы несут комбинации генов в новом сочетании. Например, ребенок родителей, один из которых имеет темные волосы и карие глаза, а другой - светловолосый и голубоглазый, может иметь карие глаза и светлые волосы.

Диплотена (стадия двойных нитей). Стадия диплотены начинается с разделения конъюгировавших хромосом. Процесс отталкивания начинается в области центромеры и распространяется к концам. В это время хорошо видно, что бивалент состоит из двух хромосом (откуда и название стадии «двойные нити»), и что каждая хромосома состоит из двух хроматид. Всего в биваленте структурно обособлены четыре хроматиды, поэтому бивалент называют тетрадой. В это же время становится видно, что тела двух гомологичных хромосом переплетаются. Фигуры перекрещенных хромосом напоминают греческую букву «хи» (χ), поэтому места перекреста назвали хиазмами. Наличие хиазм связано с произошедшим кроссинговером. По мере прохождения этой стадии хромосомы как бы раскручиваются, происходит перемещение хиазм от центра к концам хромосом (терминализация хиазм). Это обеспечивает возможность движения хромосом к полюсам в анафазе.

Диакинез. Диплотена незаметно переходит в диакинез, завершающую стадию профазы I. На этой стадии биваленты, которые заполняли весь объем ядра, начинают перемещаться ближе к ядерной оболочке. К концу диакинеза контакт между хроматидами сохраняется на одном или обоих концах. Исчезновение оболочки ядра и ядрышек, а также окончательное формирование веретена деления завершают профазу I.

Метафаза I. В метафазе I биваленты располагаются в экваториальной плоскости клетки. Нити веретена прикрепляются к центромерам гомологичных хромосом.

Анафаза I. В анафазе I к полюсам отходят не хроматиды, как при митозе, а гомологичные хромосомы из каждого бивалента. В этом принципиальное отличие мейоза от митоза. При этом расхождение гомологичных хромосом носит случайный характер.

Телофаза I очень короткая, в процессе ее идет формирование новых ядер. Хромосомы деконденсируются и деспирализуются. Так заканчивается редукционное деление, и клетка переходит в короткую интерфазу, после которой наступает второе мейотическое деление. От обычной интерфазы эта интерфаза отличается тем, что в ней не происходит синтеза ДНК и дупликации хромосом, хотя синтез РНК, белка и других веществ может происходить.

Цитокинез у многих организмов происходит не сразу после деления ядер, так что в одной клетке лежат два ядра более мелких, чем исходное.

Затем наступает второе деление мейоза, сходное с обычным митозом.

Профаза II очень короткая. Она характеризуется спирализацией хромосом, исчезновением ядерной оболочки, ядрышка, формированием веретена деления.

Метафаза II. Хромосомы располагаютсяв экваториальной плоскости. Центромеры, соединяющие пары хроматид, делятся (в первый и единственный раз в течение мейоза), что свидетельствует о начале анафазы II.

В анафазе II хроматиды расходятся и быстро увлекаются нитями веретена от плоскости экватора к противоположным полюсам.

Телофаза II. Для этой стадии характерно деспирализация хромосом, образование ядер, цитокинез. В итоге из двух клеток мейоза I в телофазе II образуются четыре клетки с гаплоидным числом хромосом. Описанный процесс типичен для образования мужских половых клеток. Образование женских половых клеток идет аналогично, но при овогенезе развивается лишь одна яйцеклетка, а три мелких направительных (редукционных) тельца впоследствии отмирают. Направительные тельца несут полноценные хромосомные наборы, но практически лишены цитоплазмы и вскоре погибают. Биологический смысл образования этих телец заключается в необходимости сохранения в цитоплазме яйцеклетки максимального количества желтка, потребного для развития будущего зародыша.

Таким образом, для мейоза характерно два деления: в ходе первого расходятся хромосомы, в ходе второго - хроматиды.

Разновидности мейоза. В зависимости от места в жизненном цикле организма выделяют три основных типа мейоза: зиготный, или начальный, споровый, или промежуточный, гаметный, или конечный. Зиготный тип происходит в зиготе сразу после оплодотворения и приводит к образованию гаплоидного мицелия или таллома, а затем спор и гамет. Этот тип характерен для многих грибов и водорослей. У высших растений наблюдается споровый тип мейоза, который проходит перед цветением и приводит к образованию гаплоидного гаметофита. Позднее в гаметофите образуются гаметы. Для всех многоклеточных животных и ряда низших растений свойственен гаметный, или конечный, тип мейоза. Протекает он в половых органах и приводит к образованию гамет.

Биологическое значение мейоза заключается в том, что:

· поддерживается постоянный кариотип в ряду поколений организмов, размножающихся половым путем (после оплодотворения образуется зигота, содержащая характерный для данного вида набор хромосом).

· обеспечивается перекомбинация генетического материала как на уровне целых хромосом (новые комбинации хромосом), так и на уровне участков хромосом.

Митоз (наряду со стадией цитокинеза) - процесс, в результате которого эукариотическая соматическая (или клетка тела) делится на две идентичные .

Мейоз - другой тип деления клеток, который начинается с одной клетки, имеющей правильное количество хромосом и заканчивается образованием четырех клеток с уменьшенным в двое количеством хромосом ().

У людей практически все клетки подвергаются митозу. Единственными клетками человека, которые делятся при помощи мейоза, являются или (яйцеклетка у женщин и сперма у мужчин).

Гаметы имеют только половину относительно клеток тела, потому что когда половые клетки сливаются во время оплодотворения, результирующая клетка (называемая зиготой) имеет правильное количество хромосом. Вот почему потомство представляет собой смесь генетики матери и отца (гаметы отца содержат одну половину хромосом, а гаметы матери - другую).

Хотя митоз и мейоз дают очень разные результаты, эти процессы довольно схожи и протекают с небольшими различиями на основных этапах. Давайте разберем основные отличия митоза и мейоза, чтобы лучше понять, как они работают.

Оба процесса начинаются после того, как клетка проходит через интерфазу и синтезирует ДНК на стадии S-фазы (или фазы синтеза). В этот момент каждая хромосома состоит из сестринских хроматид, которые удерживаются вместе .

Митотическая анафаза отделяет одинаковые сестринские хроматиды, поэтому идентичная генетика будет в каждой клетке. В анафазе I сестринские хроматиды, не идентичны, так как подверглись переходу во время профазы I. В анафазе I сестринские хроматиды остаются вместе, но гомологичные пары хромосом раздвигаются и переносятся на противоположные полюса клетки.

Телофаза

Заключительный этап называется телофазой. В митотической телофазе и телофазе II большая часть того, что было сделано во время профазы, будет отменено. Веретено деление разрушается и исчезает, образовывается ядерная оболочка, хромосомы распутываться, а клетка готовится к разделению во время цитокинеза.

В этот момент митотическая телофаза переходит в цитокинез, результатом которого будут две идентичные диплоидные клетки. Телофаза II уже прошла одно деление в конце мейоза I, поэтому она войдет в цитокинез, чтобы сделать в общей сложности четыре гаплоидных клетки. В телофазе I подобные события наблюдаться в зависимости от типа клетки. Веретено разрушается, но новая ядерная оболочка не формируется, а хромосомы могут оставаться плотно спутанными. Кроме того, некоторые клетки переходят сразу в профазу II вместо разделения на две клетки посредством цитокинеза.

Таблица основных различий между митозом и мейозом

Сравниваемые характеристики Митоз Мейоз
Деление клеток Соматическая клетка делится один раз. Цитокинез (разделение ) происходит в конце телофазы. Половая клетка, как правило делится дважды. Цитокинез происходит в конце телофазы I и телофазы II.
Дочерние клетки Производится две дочерние диплоидные клетки, содержащие полный набор хромосом. Производится четыре . Каждая клетка представляет собой гаплоид, содержащий половину числа хромосом от родительской клетки.
Генетическая композиция Полученные в митозе дочерние клетки являются генетическими клонами (они генетически идентичны). Не происходит рекомбинации или перекрестка. Полученные в мейозе дочерние клетки содержат различные комбинации генов. Генетическая рекомбинация происходит в результате случайной сегрегации гомологичных хромосом в разные клетки и путем перехода (переноса генов между гомологичными хромосомами).
Длительность профазы Во время первой митотической стадии, известной как профаза, конденсируется в дискретные хромосомы, ядерная оболочка ломается, а волокна веретена деления формируются на противоположных полюсах клетки. Клетка проводит меньше времени в профазе митоза, чем клетка в профазе I мейоза. Профаза I состоит из пяти этапов и длится дольше, чем профаза митоза. Этапы мейотической профазы I включают: лептотен, зиготен, пахитен, диплотен и диакинез. Эти пять стадий не происходят при митозе. Генетическая рекомбинация и скрещивание происходят во время профазы I.
Образование тетрада (бивалента) Тетрада не образовывается. В профазе I пары гомологичных хромосом выстраиваются близко друг к другу, образуя так называемую тетраду, которая состоит из четырех хроматид (два набора сестринских хроматид).
Согласование хромосом в метафазе Сестринские хроматиды (дублированная хромосома, состоящая из двух идентичных хромосом, соединенных в области центромера) выровнены на метафазной пластине (плоскость, которая одинаково удалена от двух полюсов клетки). Тетрада гомологичных хромосом выравнивается на метафазной пластинке в метафазе I.
Разделение хромосом Во время анафазы сестринские хроматиды разделяются и начинают мигрировать к противоположным полюсам клетки. Отделяемая сестринская хроматида становится полной хромосомой дочерней клетки. Гомологичные хромосомы мигрируют к противоположным полюсам клетки во время анафазы I. Сестринские хроматиды не разделяются в анафазе I.

Митоз и мейоз в эволюции

Обычно мутации в ДНК соматических клеток, которые подвергаются митозу, не передаются потомству и поэтому не применимы к естественному отбору и не способствуют вида. Однако ошибки в мейозе и случайное смешивание генов и хромосом в течение всего процесса, действительно способствуют генетическому разнообразию и приводит к эволюции. Пересечение создает новую комбинацию генов, которые могут кодировать благоприятную адаптацию.

Кроме того, независимый ассортимент хромосом во время метафазы I также приводит к генетическому разнообразию. Гомологичные пары хромосом выстраиваются в линию на этом этапе, поэтому смешивание и сопоставление признаков имеет много вариантов, что способствует разнообразию. Наконец, случайное также может увеличить генетическое разнообразие. Поскольку в конце мейоза II образовывается четыре генетически разных гамета, которые фактически используются во время оплодотворения. По мере того, как имеющиеся признаки смешиваются и передаются, естественный отбор воздействует на них и выбирает наиболее благоприятные адаптации в качестве предпочтительных индивидуумов.