Основные положения. Клетки крови и плазма содержат огромное количество антигенов. Так, эритроциты несут около 400 антигенов, лейкоциты и тромбоциты в дополнение к специфическим для них антигенам — антигены HLA . Белки плазмы также характеризуются большим антигенным разнообразием. Патологический иммунный ответ на эти антигены лежит в основе патогенеза целого ряда заболеваний.

1. Реакция гемагглютинации — один из основных методов, с помощью которого определяют эритроцитарные антигены. Агглютинация эритроцитов опосредована антителами. Скорость и выраженность этого процесса зависят от числа эритроцитов, концентрации антител, pH , температуры и ионной силы раствора. Агглютинация происходит, когда силы связывания превышают силы отталкивания, обусловленные отрицательным зарядом клеточной поверхности эритроцитов. IgM , несущие 10 участков связывания, вызывают агглютинацию эритроцитов даже в физиологическом растворе. IgG не могут вызвать агглютинацию, пока отрицательный заряд эритроцитов не будет снижен с помощью какого-либо высокомолекулярного вещества (например, бычьего альбумина) или удаления сиаловых кислот (для этого эритроциты обрабатывают протеазами: фицином, папаином, бромелином или трипсином). Агглютинация также зависит от доступности, т. е. количества и локализации молекул антигена на поверхности эритроцита. Антигены системы AB0 (эритроцитарные антигены A и B) находятся на внешней поверхности клеточной мембраны и поэтому легко связываются с антителами, а антигены системы Rh — в ее толще. Доступность таких антигенов повышается при обработке эритроцитов ферментами.

2. Проба Кумбса — метод лабораторной диагностики, основанный на реакции гемагглютинации.

а. Прямая проба Кумбса применяется для выявления антител или компонентов комплемента, фиксированных на поверхности эритроцитов. Она проводится следующим образом.

1) Для получения антител к человеческим иммуноглобулинам (антиглобулиновой сыворотки) или комплементу (антикомплементарной сыворотки) животное иммунизируют человеческой сывороткой, иммуноглобулинами или комплементом человека. Полученную от животного сыворотку очищают от антител к другим белкам.

2) Эритроциты больного отмывают физиологическим раствором для полного удаления сыворотки, которая нейтрализует антитела к иммуноглобулинам и комплементу и может стать причиной ложноотрицательного результата.

3) Если на поверхности эритроцитов фиксированы антитела или компоненты комплемента, добавление антиглобулиновой или антикомплементарной сыворотки вызывает агглютинацию эритроцитов.

б. Непрямая проба Кумбса позволяет обнаружить антитела к эритроцитам в сыворотке. Для этого сыворотку больного инкубируют с донорскими эритроцитами группы 0, а затем проводят прямую пробу Кумбса, как описано выше.

в. Прямую пробу Кумбса

1) Аутоиммунный гемолиз.

2) Гемолитическая болезнь новорожденных.

3) Лекарственная иммунная гемолитическая анемия.

4) Гемолитические трансфузионные реакции.

г. Непрямую пробу Кумбса применяют в следующих случаях.

1) Определение индивидуальной совместимости крови донора и реципиента.

2) Выявление аллоантител, включая антитела, вызывающие гемолитические трансфузионные реакции.

3) Определение поверхностных эритроцитарных антигенов в медицинской генетике и судебной медицине.

4) Подтверждение однояйцовости близнецов при трансплантации костного мозга.

Б. Поверхностные антигены эритроцитов делятся на полисахаридные и белковые. К полисахаридным относятся антигены систем AB0, MNSs, Ii и P, к белковым — антигены систем Rh , Келл, Кидд и Даффи.

1. Полисахаридные антигены обладают следующими свойствами.

а. Стимулируют преимущественно выработку IgM .

б. Стимулируют выработку как тепловых (реагирующих с антигеном при 37°C), так и холодовых (реагирующих с антигеном при 4°C) антител.

в. Изогемагглютинины направлены против полисахаридных антигенов системы AB0: кровь группы A содержит антитела к антигену B, кровь группы B — антитела к антигену A, кровь группы 0 — антитела к антигенам A и B, кровь группы AB не содержит изогемагглютининов.

г. Связывание полисахаридных антигенов эритроцитов с антителами вызывает острые гемолитические трансфузионные реакции.

2. Белковые антигены стимулируют преимущественно выработку тепловых антител — IgG , которые вызывают отсроченные гемолитические трансфузионные реакции.

На поверхности эритроцитов находится большое количество антигенов. В зависимости от вида этих антигенов выделяют группы крови, самые изученные группы - АВО, Rh, Kell, Duffy и др...

Средняя цена в вашем регионе: 986.94 от 650 … до 1330

Описание исследования

Подготовка к исследованию: Кровь берут из вены, а затем получают сыворотку (плазма крови без фибриногена) путем естественного свертывания или путем осаждения фибриногена. Исследуемый материал: Взятие крови

На поверхности эритроцитов находится большое количество антигенов. В зависимости от вида этих антигенов выделяют группы крови, самые изученные группы - АВО, Rh, Kell, Duffy и др. В норме в крови существуют антитела (иммуноглобулины) к антигенам другой группы, но при переливании крови, беременности, аутоиммунных заболеваниях и др. обнаруживаются антитела к своим антигенам.

Все иммуноглобулины можно разделить на полные и неполные антитела. Полные антитела образовывают в реакции агглютинации осадок, вследствие того, что у одной молекулы антитела имеются несколько мест связывания антигена. К полным антителам относят иммуноглобулины M и др. Неполные антитела (иммуноглобулины G и др.) не образуют осадка сами по себе, так как у них только одно место связывания антигена или остальные места по каким-либо причинам не связываются с антигеном, их называют блокирующими антителами. Такие антитела выявляют прямой и непрямой реакцией Кумбса, при которой добавляют антитела к неполным антителам (антиглобулиновую сыворотку) и образуется осадок.Полные и неполные антитела к эритроцитам.

Метод

Полные антитела выявляют реакцией солевой агглютинации. Реакция агглютинации заключается в связывании антителами исследуемой сыворотки стандартных эритроцитов набором антигенов на них, которая проявляется образованием хлопьевидного осадка. Реакция проходит при наличии раствора натрия хлорида, проводится при разных температурах для выявления всех полных антител.

Неполные антитела определяются реакцией Кумбса - выявление агглютинации (слипания) эритроцитов с неполными антителами при добавлении антиглобулиновой сыворотки.

Референсные значения - норма
(Антигены эритроцитов, определение полных и неполных антител, кровь)

Информация, касающаяся референсных значений показателей, а также сам состав входящих в анализ показателей может несколько отличаться в зависимости от лаборатории!

Норма:

В норме антител к собственным эритроцитам не должно быть, при постановке реакции агглютинации и реакции Кумбса агрегации эритроцитов не происходит.

Показания

1. Исследование гуморального специфического иммунитета при подозрении на аутоиммунные реакции в организме

2. Резус-конфликт между матерью и плодом

3. Определение совместимости крови донора и реципиента

Повышение значений (положительный результат)

Антитела к эритроцитам обнаруживают при:
1. Аутоиммунных гемолитических анемиях
2. Гемолитической болезни новорожденных
3. Системных заболеваниях соединительной ткани
4. Хроническом активном гепатите

5. Резус-иммунизация

6. Гемотрансфузии

Где сдать анализ

34 лабораторий делают данный анализ в вашем регионе . Чтобы найти ближайшую лабораторию и сравнить цены на анализ - Антитела к антигенам эритроцитов (полные и неполные) - нажмите кнопку.

Среди антигенных систем, после системы А, В, 0, наиболее частой причиной посттрансфузионных осложнений как при повторных переливаниях крови, так и у женщин, сенсибилизированных в процессе беременности, является система Резус, включающая 51 эритроцитарный антиген. Гены, кодирующие антигены этой системы, открыли в 1939 г. П. Левин и Р. Стетсон, антигены экспрессируются также на эритроцитах обезьян Macaca rhesus, антитела к которым агглютинировали эритроциты человека. Именно поэтому их назвали резус-антигенами (Rh) в 1940 г. К. Ландштейнер и А. Винер, работавшие с этими обезьянами при изучении эритроцитарных изоантигенов. Основные отличия системы Резус от системы А, В, 0 заключаются в том, что антигены А, В, 0 определяются в биологических жидкостях, тогда как антигены Rh в таких жидкостях отсутствуют. Антитела против изоантигенов системы А, В, 0 являются естественными, тогда как антирезусные антитела образуются во время беременности, при попадании резус-положительных эритроцитов плода в организм резус-отрицательной самки. Антирезусные антитела являются иммунными.
После антигенов систем А, В, 0 и Резус наибольшую клиническую значимость имеют антигены систем Келл, Даффи, MNS и др., однако антигенность компонентов этих систем по сравнению с антигенами систем A, В, 0 и Резус существенно меньшая.

Природа антигенов системы резус


Среди известных более 50 антигенов системы Rhesus (Rh) наиболее иммуногенными, а следовательно, и имеющими наибольшее клиническое значение, являются антигены D, С, Е, с и е (классификация Е. Фишера и Р. Рейса), контролируемые двумя высокогомологичными тесно сцепленными локусами генов 1-й хромосомы - RhD (экспрессии антигена D) и RhCE (экспрессия антигенов Ce и Ее). Среди этих антигенов наибольшей иммуногенностью характеризуется антиген D, поэтому он был назван антигеном Rh, его обозначение используется для обозначения Rh-положительных лиц. Среди жителей Европы он выявляется на эритроцитах 85% людей, 15% лиц являются Rh-отрицательными, Антиген d на эритроцитах Rh-положительных лиц не определяется, но обнаруживается на эритроцитах Rh-негативных особей. В связи с этим антиген d фактически является маркером Rh-негативных лиц. Иммуногенность других антигенов системы Резус убывает в ряду D>C>E>c>e. Экспрессия антигена С обнаруживается на эритроцитах 70% лиц, С - на эритроцитах 30% лиц, с - 85%, е - 97%. Помимо эритроцитов антигены системы Резус обнаружены в клетках фиксированных тканей человека - печени, почек, селезенки, надпочечников, слюнных желез, поджелудочной железы, мышцы сердца, пищевода, желудка, раковых опухолей человека.

Антитела к антигенам системы резус и эритобластоз новорожденных


Антитела к антигенам Rh, как и к антигенам системы А, В, 0, образуются при переливаниях крови, несовместимой по Rh-антигенам, а также при беременности в результате иммунизации Rh-негативной матери эритроцитами Rh-положительного плода. Образование таких антител возможно и при пересадках аллогенных тканей. Однако поскольку при пересадках тканей наибольшую роль в судьбе аллотрансплантата играют антигены главного комплекса гистосовместимости, а переливания Rh-несовместимой крови в клинической практике фактически исключены, наибольшую клиническую значимость имеет несовместимость матери и плода по антигенам системы Резус. Такая ситуация имеет место в тех случаях, когда мать и отец характеризуются, соответственно, как Rh- и Rh+. Плод, наследуя Rh-антигены отца, несовместим по Rh-антигенам с матерью, не имеющей таких антигенов. В результате эритроциты плода или антиген разрушенных эритроцитов, попадая в кровь матери, например вследствие родовой травмы, индуцируют образование анти-Rh-антител. Как отмечалось выше, эти антитела относятся к классу IgG, способны проникать через плаценту. При первой беременности сенсибилизация матери Rh-антигенами плода практически незначима для немедленной массивной продукции анти-Rh-антител. Однако при повторных беременностях против антигенов Rh продуцируется большое количество антител, которые проникают через плаценту, транспортируются в кровь плода и атакуют его зрелые эритроциты. Вследствие их гемолиза кровь плода остается насыщенной незрелыми эритроцитами - эритробластами. В результате происходящих процессов развивается общий отек плода, желтуха, анемия. В тяжелых случаях возможен летальный исход или рождение ребенка с симптомами тяжелой гемолитической болезни (эритробластоза).
Вместе с тем несмотря на то, что достаточно большое количество женщин являются Rh-отрицательными, возможность указанного исхода не очень велика, по имеющимся данным около 10% от теоретически вероятного. Это объясняется несколькими причинами. Во- первых, попадание эритроцитов плода в кровь матери в количествах, достаточных для образования антител к антигенам Rh, происходит не так уж часто. Во-вторых, вследствие генетических причин (отсутствие соответствующего гена или наличие слабого гена иммунного ответа), не все матери являются сильно реагирующими на данный конкретный антиген и могут относиться к слабо- или к нереагирующему на антигены Rh генотипу. В-третьих, если отец гетерозиготен по антигену Rh (т.е. наследовал резус-отрицательный ген одного из своих родителей), то дети являются резус-положительными лишь в 50% случаев. В-четвертых, примерно в 20% случаев предсуществующие антитела матери, например группы 0 (I), атакуют Rh+ эритроциты плода и лизируют их, если они относятся к группам А, В или AB системы А, В, 0. В этом случае устраняются эритроциты плода, способные индуцировать образование антител к антигенам Rh. Наконец, немаловажным обстоятельством является то, что первая беременность очень редко приводит к болезни плода. Чаще всего осложнения наступают при второй, а иногда и при третьей беременности.
Следует отметить, что гемолитическая болезнь новорожденных - не единственный пример нарушения нормального процесса беременности вследствие сенсибилизации матери клетками плода. Е.А. Зотиков приводит примеры нейтропении (врожденная нейтропения или агранулоцитоз) и транзиторной тромбоцитопении новорожденных, индуцированных описанными выше механизмами. В первом случае заболевание индуцировалось в результате сенсибилизации матери лейкоцитами плода. Образованные антилейкоцитарные антитела при повторных беременностях проходят через плаценту, оказывают цитопатогенное действие на нейтрофилы крови плода и подавляют кроветворную функцию костного мозга. Другие антитела матери реагировали с антигенами гистосовместимости плода, экспрессируемыми на всех клетках белой крови - нейтрофилах, моноцитах, тромбоцитах, лимфоцитах, а также на клетках всех органов и тканей. Нейтропения новорожденных характеризовалась транзиторным характером с частыми проявлениями инфекционных заболеваний - флегмонами, гастроэнтеритами, бронхопневмониями и др. Во втором случае заболевание новорожденных было следствием сенсибилизации матери во время беременности антигенами плода, индуцировавшими образование как лимфоцитотоксических, так и антитромбоцитарных антител, поражающих форменные элементы крови плода, в первую очередь тромбоцитов. Наконец, как отмечалось выше, гемолитическая болезнь новорожденных может быть следствием несовместимости матери и плода но антигенам системы А, В, 0.

Диагностика и профилактика гемолитической болезни


Для определения уровня антител после родов и во время последующей беременности ставят серологическую реакцию с использованием сыворотки Rh-негативной матери и эритроцитов Rh-позитивного плода. Взаимодействие антиген-антитело в титре 1:16 считается диагностически значимым.
Антитела к антигенам Rh характеризуют двумя типами - полными и неполными. Полные антитела эффективно агглютинируют или лизируют эритроциты Rh-позитивных лиц. Такие антитела относятся к классу IgM, выявляются у 50% матерей, родивших детей с эритробластозом. У остальных антитела прикрепляются к поверхности чувствительных к ним эритроцитов и блокируют действие полных антител. По другим данным, в 53% сывороток матерей обнаруживаются полные антитела, в 24% - неполные и в 15,8% - смесь обоих типов антител. Считают, что неполные антитела характеризуются относительно низким сродством к антигенной детерминанте, относятся к классу IgG, при гемотрансфузиях имеют большую значимость по сравнению с полными антителами. Неполные антитела определяют с помощью метода Кумбса, используя антисыворотку к иммуноглобулинам класса IgG. В этом случае антисывороточ-ные антитела будут взаимодействовать с неполными антителами, связанными с поверхностью Rh-позитивных эритроцитов. Антирезусные антитела, помимо сыворотки, могут определяться в небольших количествах в молоке рожениц.
Для профилактики гемолитической болезни новорожденных матери непосредственно после рождения первого ребенка (обычно в первые 2 суток) вводят внутривенно 150-300 мкг препарата человеческих иммуноглобулинов класса IgG против Rh (D) антигенов. Введение антител сопровождается разрушением и выведением из кровотока матери эритроцитов плода, вследствие чего антитела против антигенов системы Резус не образуются, и вторая беременность протекает без осложнений. По свидетельству Р.B. Петрова, гемолитическая болезнь новорожденных - это болезнь, единственный метод диагностики которой иммунологический, так же, как и эффективный метод предупреждения которой тоже иммунологический. Это болезнь, искорененная иммунологией.

Основные понятия

В эритроцитах человека имеются 5 основных антигенов системы резус (D, C, c, E, e), из которых наиболее иммуногенным является антиген D – Rh(D). Наличие или отсутствие этого антигена определяет резус-принадлежность крови: лица, имеющие D-антиген, принадлежат к группе резус-положительных (среди лиц белой расы их приблизительно 85%); лица, не имеющие его, относятся к резус-отрицательным (их, соответственно, около 15%).

Иммуногенность других (минорных) антигенов системы Rh значительно ниже и убывает в ряду: с>Е>С>е. Определение минорных антигенов системы резус, как правило, производится при необходимости многократных трансфузий, в тех случаях, когда в сыворотке реципиента обнаружены иммунные антитела к антигенам системы резус, в том числе при индивидуальном подборе крови.

Антиген D имеет слабые варианты, объединяемые в группу Dweek (Du), частота которой в популяции составляет около 1% . Эти эритроциты слабо или вообще не агглютинируются полными анти-Rh-антителами в реакции прямой агглютинации.

Доноры, содержащие Du, должны быть отнесены к резус-положительным, так как, во-первых, переливание их крови сенсибилизированным к D-антигену резус-отрицательным реципиентам может вызвать тяжелые трансфузионные реакции и, во-вторых, может вызвать иммунный ответ у резус-отрицательных реципиентов. Поэтому кровь доноров должна обязательно тестироваться на присутствие Du и, в случае его обнаружения считаться резус-положительной.

Реципиенты, содержащие антиген Du, должны быть отнесены к резус-отрицательным и им должна быть перелита только резус-отрицательная кровь, так как нормальный антиген D может вызвать у таких лиц иммунный ответ. Поэтому кровь реципиентов не обязательно тестировать на присутствие Du.

Резус-принадлежность определяется в реакции агглютинации с помощью моноклональных реагентов или изоиммунных антирезусных сывороток, предназначенных для выявления Rh(D)-aнтигена в реакции прямой агглютинации (на плоскости и в пробирочном тесте; в солевой среде; в присутствии высокомолекулярных усилителей; с эритроцитами, обработанными протеолитическими ферментами) или в непрямом антиглобулиновом тесте (непрямая проба Кумбса). Метод определения зависит от класса антител в реагенте: если в нем присутствуют полные антитела (класса IgM), то реагент используется для определения резус-фактора методом прямой агглютинации в солевой среде; если в нем содержатся неполные антитела (класса Ig G), то он используется в реакции агглютинации в присутствии высокомолекулярных усилителей (альбумина, желатины и др.), с эритроцитами, обработанными протеолитическими ферментами, в непрямом антиглобулиновом тесте.

Техника определения резус-принадлежности крови

Реакция агглютинации на плоскости с помощью анти-D моноклональных реагентов (полных антител)

Определение проводят в помещении с хорошим освещением. Наилучшие результаты тест дает при использовании высокой концентрации эритроцитов и температуре около +37° С, поэтому желательно использовать подогретую пластинку. Для исследования используют цельную кровь, отмытые эритроциты, эритроциты в плазме, сыворотке, консерванте или физиологическом растворе.

Процедура проводится в следующей последовательности:

1. Наносится большая капля (около 0,1 мл) реагента на пластинку или планшет.

2. Рядом наносится маленькая капля (около 0,03 мл) исследуемой крови (эритроцитов).

3. Тщательно смешивается реагент с кровью чистой стеклянной палочкой.

4. Через 10–20 с пластинка мягко покачивается. Несмотря на то, что четкая агглютинация наступает в первые 30 с, результаты реакции следует учитывать через 3 мин после смешивания.

5. Результаты реакции записываются немедленно после окончания.

При наличии агглютинации исследуемая кровь маркируется как резус-положительная, если агглютинация отсутствует – как резус-отрицательная. Если агглютинация намного слабее наблюдаемой с Rh (D)-положительными эритроцитами, исследуемая кровь принадлежит к подгруппе слабых антигенов Rh – Du. Для уточнения принадлежности такого образца крови к группе Du исследование проводят со вторым реагентом, содержащим IgG (неполные) анти-D антитела (см. гл. 6.2.2.3).

Реакция агглютинации с помощью неполных анти-D-антител (IgG) в присутствии высокомолекулярных добавок

Реакция проводится либо со специально приготовленным реагентом, уже содержащим усилитель (универсальный реагент с полиглюкином или альбумином для плоскости), либо усилитель добавляют в процессе проведения реакции (реакция конглютинации с желатином в пробирке).

Техника постановки реакции агглютинации на плоскости не отличается от описанной в гл.6.2.2.1. Однако универсальные реагенты могут давать ложноположительную реакцию с резус-отрицательными эритроцитами за счет содержащихся в них высокомолекулярных веществ, а также могут вызывать агглютинацию эритроцитов, покрытых антителами другой (не антирезус) специфичности. Поэтому необходимо проведение параллельных тестов с контрольным раствором используемого усилителя, но без анти-0-антител. Если контрольный раствор вызывает агглютинацию эритроцитов, то результаты тестирования не достоверны и следует повторить определение с другим реагентом, содержащим полные антитела IgM (лучше с моноклональными).

Реакции конглютинации с применением желатина. Для проведения этого теста могут быть использованы моноклональные реагенты и стандартные изоиммунные антирезус сыворотки с неполными антителами.

1. Вносят в пробирку 1 каплю (около 0,05 мл) исследуемой крови или взвеси эритроцитов (примерно 50%) в сыворотке.

2. Добавляют 2 капли (0,1 мл) 10% раствора желатина, предварительно подогретого до разжижения при +46...+48°С.

3. Добавляют 2 капли (0,1 мл) реагента анти-D и смешивают.

4. Помещают пробирку в водяную баню с температурой +46...+48°С на 5–10 мин или в суховоздушный термостат при той же температуре на 30 мин.

5. Доливают в пробирку 5–8 мл физиологического раствора и осторожно 1–2 раза переворачивают закрытую пробкой пробирку для перемешивания.

6. Определяют наличие агглютинатов, просматривая пробирку на свет невооруженным глазом или через лупу.

7. Немедленно записывают результаты определения.

Желатиновая проба требует обязательного проведения следующих контролей:

Со стандартными резус-положительными эритроцитами;

Со стандартными резус-отрицательными эритроцитами;

С исследуемыми эритроцитами и раствором желатина, но без анти-0-антител.

При положительном результате агглютинаты различимы в виде агрегатов разной величины на прозрачном фоне – кровь является резус-положительной. При отрицательном результате в пробирке агрегатов нет, а видна равномерно окрашенная непрозрачная взвесь эритроцитов – кровь является резус-отрицательной. Если наблюдается мелкозернистая, вызывающая сомнение агглютинация, то кровь необходимо тестировать в непрямом антиглобулиновом тесте (см. гл.6.2.2.3). Результаты желатиновой пробы являются достоверными только в случае, когда желатин сам не вызывает агглютинацию исследуемых эритроцитов, а результаты контролей со стандартными эритроцитами соответствуют ожидаемым. В случае неадекватных результатов контролей определение резус-принадлежности следует повторить с использованием другого реагента или образца желатина. Если желатин вызывает сам по себе агглютинацию исследуемых эритроцитов, то можно предполагать наличие на них антиэритроцитарных антител антирезус или иной специфичности (это наблюдается при гемолитической болезни новорожденных, аутоиммунной гемолитической анемии и некоторых инфекционных заболеваниях). В этом случае кровь должна быть направлена на исследование в специальную серологическую лабораторию.

Непрямой антиглобулиновый тест с помощью неполных анти-0-антител (IgG)

1. Приготовить 2–5% взвесь трижды отмытых в физиологическом растворе исследуемых эритроцитов. Для этого поместить в пробирку 5 капель (около 0,25 мл) исследуемой крови, трижды отмыть в 5–10 мл физиологического раствора; суспендировать осадок эритроцитов в 2–3 мл физиологического раствора или, предпочтительнее, в 2–3 мл раствора LISS, в котором фиксация антител на эритроцитах прочнее и происходит быстрее, чем в физиологическом растворе.

2. Внести 1 каплю анти-0-реагента в чистую маркированную пробирку.

3. Добавить 1 каплю 2–5% взвеси эритроцитов.

4. Инкубировать смесь при +37°С 30–45 мин (если эритроциты взвешены в физиологическом растворе) или 10–15 мин (если эритроциты взвешены в LISS).

5. Отмыть эритроциты 1 раз (в случае использования мо-ноклонального реагента) или 3 раза (в случае использования изоиммунной анти-0-сыворотки) большим объемом (5–10 мл) физиологического раствора. Однократная отмывка допустима только при использовании моноклональных реагентов. Полностью удалить физиологический раствор.

6. Добавить к осадку 1 каплю антиглобулинового реагента и тщательно смешать.

7. Центрифугировать 15–20 с при 2 000–3 000 об./мин.

8. Мягко ресуспендировать осадок и визуально определить наличие агглютинации.

9. Немедленно записать результаты определения.

При отсутствии агглютинации кровь является резус-отрицательной. При положительной реакции – резус-положительной; подгруппы Du могут вызывать слабую агглютинацию даже в этом высокочувствительном тесте. Прежде чем отнести донора Du к резус-положительным следует подтвердить заключение контрольным исследованием антиглобулиновой сыворотки со стандартными эритроцитами. Если контрольный тест положительный, интерпретация не является достоверной. В этом случае реципиент должен получать только резус-отрицательную кровь (эритроциты), а кровь такого донора не должна использоваться для трансфузий до окончательного выяснения его резус-принадлежности.

Агглютинация эритроцитов, обработанных протеолитическими ферментами, с помощью неполных анти-0-антител (IgG)

Неполные антитела способны вызывать прямую агглютинацию в солевой среде эритроцитов, обработанных бромелином, папаином, трипсином и другими протеазами. Этот метод высокочувствителен и надежен при выявлении слабых форм D-антигена. Он используется, главным образом, при автоматическом определении групп крови в системах "Gruppomatic”, в которых обеспечивается стандартность обработки эритроцитов ферментами и специально подбирается нужное разведение реагента, так как для этого теста характерен феномен прозоны (ингибирование агглютинации избытком антител).

При неавтоматизированном определении групп крови метод может быть использован в специализированных серологических лабораториях.

1. Функции антигенов эритроцитов

антиген кровь эритроцит резус

Антигены эритроцитов человека являются структурными образованиями, расположенными на внешней поверхности мембраны эритроцитов, обладающими способностью взаимодействовать с соответствующими антителами и образовывать комплекс антиген-антитело. Антигены эритроцитов наследуются от родителей.

Часть антигена, непосредственно взаимодействующая с антителом, называется антигенной детерминантой. Одна молекула антигена может содержать одну или несколько антигенных детерминант.

Свойство антигенов взаимодействовать со специфическими антителами используется для диагностики антигенов in vitro. При этом их взаимодействие проявляется в виде реакции агглютинации эритроцитов антителами и появление агрегатов эритроцитов. Первостепенное клиническое значение имеют антигены системы АВ0 и Резус. Меньшее клиническое значение других антигенов эритроцитов объясняется низкой иммуногенностью антигенов, и соответственно, редкой выработкой антител.

В настоящее время известно около 236 антигенов эритроцитов, которые распределяются в 29 генетически независимых системах (рис. 1.). Каждая система антигенов эритроцитов кодируется одним геном (система Н) или несколькими гомологичными генами (Резус, MNS).


Рис. 1. Перечень некоторых систем антигенов эритроцитов


Антигены эритроцитов:

структурные компоненты мембраны эритроцитов;

передаются по наследству;

обладают иммуногенностью (вызывают выработку антител);

взаимодействуют с антителами, образуя комплекс антиген-антитело.


2. Химическая природа антигенов эритроцитов


Антигены эритроцитов являются:

) протеинами (антигены эритроцитов системы Резус, Кидд, Диего, Колтон);

2) гликопротеинами (антигены эритроцитов систем MNS, Гебрих, Лютеран);

3) гликолипидами (антигены эритроцитов систем AB0, Н, Le, I).

Гены полисахаридных антигенов (AB0, Н, Р, Левис, I) кодируют специфические гликозилтрансферазы - ферменты, присоединяющие различные сахара к полисахаридным цепям-предшественниками формирующие таким образом антигенную структуру антигенов.

Гены белковых антигенов эритроцитов кодируют полипептиды, которые сами встраиваются в мембрану эритроцита и формируют антигенные детерминанты. Ряд антигенов представлен только на эритроцитах (Резус, Келл), другие же экспрессируются и в некроветворных тканях (AB0, Левис, Индиан).

Большинство антигенов эритроцитов крови человека было открыто при изучении причин посттрансфузионных осложнений гемолитического типа или гемолитической болезни новорожденных и получило название по имени лиц, у которых обнаружена данная патология. Так, например, система антигенов эритроцитов Лютеран, была названа по фамилии донора, у которого впервые были выявлены антитела, названные затем анти-Lu2. Система антигенов Келл была названа по первым буквам фамилии лица, выработавшего антитела (Kelleher).

Схематическое строение антигенов эритроцитов и расположение их на мембране эритроцитов представлено на рис. 2.



3. Современная классификация антигенов


Все антигены эритроцитов принадлежат к одной из трех категорий:

1) системе антигенов эритроцитов (основной признак, объединяющий антигены эритроцитов в систему, является общность контролируемых их генов);

) коллекции антигенов эритроцитов (антигены эритроцитов связаны биохимически и серологически на уровне фенотипа);

) серии антигенов эритроцитов (включают антигены эритроцитов, для которых не изучены гены, кодирующие их).


4. Антигены эритроцитов системы АВ0


Одной из основных систем антигенов является система антигенов АВ0, которая включает 4 антигена: А, В, АВ, А1. Характерной особенностью, отличающей систему антигенов эритроцитов АВ0 от других систем антигенов, является постоянное присутствие в сыворотках людей (кроме лиц с группой крови АВ) антител, направленных к антигенам А или В. Антитела к антигенам эритроцитов других систем не являются врожденными и вырабатываются в следствие антигенной стимуляции.

Характеристика антигенов А и В. Антигены системы АВ0 развиваются на эритроцитах еще до рождения ребенка. Обнаружено присутствие А антигена на эритроцитах 37-дневного плода. Однако полное созревание антигенов данной системы, со всеми им присущими серологическими свойствами, происходит только через несколько месяцев после рождения.

У взрослых людей на эритроцитах могут присутствовать следующие антигены системы АВ0: А, В. Кроме того, на эритроцитах присутствует антиген Н1. Последний является предшественником антигенов А и В, а также обнаруживается в большом количестве на поверхности эритроцитов, принадлежащих к группе крови 0.

А, В и Н антигены присутствуют не только на эритроцитах, но в различных концентрациях и в клетках большинства тканей организма. Эти антигены являются частью мембран клеток. Кроме существования водонерастворимого материала на поверхности клеток у 78% лиц имеются АВН антигены в растворенном виде в различных секреторных жидкостях организма.

Антиген Н не входит в систему антигенов эритроцитов АВ0, а принадлежит к системе антигенов Н.

Биохимическая природа антигенов А, В, Н. Антигены А, В и Н по химической природе являются гликолипидами и гликопротеинами. Три детерминанты (А, В и Н), в основном, имеют один и тот же химический состав. Отличия в серологической специфичности определяются терминальными сахарами, прикрепленными к основной цепи. Они различны у трех антигенов:

·L-фукоза - для антигена Н;

·б-N-ацетилгалактозамин для антигена А;

·D-галактоза - для антигена В (рис. 3.)



5. Система антигенов эритроцитов Резус


Резус обнаружен в 1919 г. в крови обезьян, у человека была открыта в 1940 году Ландшейнером и Винером и насчитывает в настоящее время 48 антигенов.

Антигены системы Резус имеют белковую природу. Чаще всего встречаются резус-антигены типа D (85%), С (70%), Е (30%), е (80%) - они же и обладают наиболее выраженной антигенностью. Среди антигенов системы Резус наибольшее клиническое значение имеет антиген D. Обладая выраженными иммуногенными свойствами, антиген D в 95% случаев является причиной гемолитической болезни новорожденных при несовместимости матери и плода, а также частой причиной тяжелых посттрансфузионных осложнений. Лиц, имеющих антиген D, относят к резус-положительным, а не имеющих антиген D - к резус-отрицательным.



Разновидности антигена D. Характерной чертой антигенов системы Резус является полиморфизм, что обусловливает наличие большого количества разновидностей антигенов.

Согласно современному представлению о строении антигена D известно, что антиген состоит из структурных единиц - эпитопов. В последние годы описано более 36 эпитопов. На эритроцитах различных индивидов с резус-положительной принадлежностью могут присутствовать все эпитопы или отсутствовать некоторые из них. Чаще всего эритроциты здоровых лиц экспрессируют все эпитопы антигена D (нормально выраженный D антиген). Образцы эритроцитов, экспрессирующие не все эпитопы антигена D, обозначают термином D вариантный (D partial - частичный). В то время, как образцы эритроцитов, имеющие сниженную экспрессию антигена D, называют D слабый (D weak) (рис. 5).


Рис. 5. Разновидность антигена D


Ранее не существовало возможности дифференцировать D слабый и D вариантные антигены друг от друга, поэтому они обозначались общим термином Du. Но в настоящее время, благодаря использованию моноклинальных антител, это стало возможно. Поэтому за рубежом термин Du больше не используется.


6. Второстепенные антигенные системы крови


Второстепенные эритроцитарные групповые системы также представлены большим количеством антигенов. Знание этого множества систем имеет значение для решения некоторых вопросов в антропологии, для судебно-медицинских исследований, а также для предотвращения развития посттрансфузионных осложнений и предотвращения развития некоторых заболеваний у новорожденных.

Наиболее изученные антигенные системы эритроцитов:

а) групповая система Келл (Kell) состоит из 2 антигенов, образующих 3 группы крови (К-К, К-k, k-k). Антигены системы Келл по активности стоят на втором месте после системы резус. Они могут вызвать сенсибилизацию при беременности, переливании крови; служат причиной гемолитической болезни новорожденных и гемотрансфузионных осложнений.

б)групповая система Кидд (Kidd) включает 2 антигена, образующих 3 группы крови: lk (a+b-), lk (A+b+) и lk (a-b+). Антигены системы Кидд также изоиммунными свойствами и могут привести к гемолитической болезни новорожденных и гемотрансфузионным осложнениям.

в) групповая система Даффи (Duffy) включает 2 антигена, образующих 3 группы крови Fy (a+b-), Fy (a+b+) и Fy (a-b+). Антигены системы Даффи в редких случаях могут вызвать сенсибилизацию и гемотрансфузионные осложнения.

г) групповая система MNSs является сложной системой; она состоит из 9 групп крови. Антигены этой системы активны, могут вызвать образование изоиммунных антител, то есть привести к несовместимости при переливании крови; известны случаи гемолитической болезни новорожденных, вызванные антителами, образованными к антигенам этой системы.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.