Классические примеры таких иммунодефицитов - нарушения иммунитета, вызванные действием ионизирующей радиации и цитотоксических лекарственных средств.
Лимфоциты относят к немногочисленным клеткам, реагирующим на действие ряда факторов, в частности повреждающих ДНК, развитием апоптоза. Этот эффект проявляется при действии ионизирующей радиации и многих цитостатиков, используемых в лечении злокачественных опухолей (например, цисплатина, внедряющегося в двойную спираль ДНК). Причина развития апоптоза в этих случаях - накопление нерепарированных разрывов, регистрируемых клеткой с участием киназы АТМ (см. раздел 4.7.1.5), от которой сигнал поступает по нескольким направлениям, в том числе к белку р53. Этот белок отвечает за запуск апоптоза, биологический смысл которого состоит в защите многоклеточного организма ценой гибели единичных клеток, которые несут генетические нарушения, чреватые риском малигнизации клетки. В большинстве других клеток (как правило, покоящихся) срабатыванию этого механизма противодействует защита от апоптоза, обусловленная повышенной экспрессией белков Bcl-2 и Bcl-XL.
Радиационные иммунодефициты
Уже в первое десятилетие после открытия ионизирующих излучений была обнаружена их способность ослаблять резистентность к инфекционным заболеваниям и избирательно снижать содержание лимфоцитов в крови и лимфоидных органах.
Радиационный иммунодефицит развивается сразу после облучения организма. Действие радиации обусловлено преимущественно двумя эффектами:

  • нарушением естественных барьеров, прежде всего слизистых оболочек, что приводит к усилению доступа в организм патогенов;
  • избирательным повреждением лимфоцитов, а также всех делящихся клеток, включая предшественники клеток иммунной системы и клетки, вовлекаемые в иммунный ответ.
Предметом изучения радиационной иммунологии является, главным образом, второй эффект. Радиационная гибель клеток реализуется по двум механизмам - митотическому и интерфазному. Причина митотической гибели - нерепарируемые повреждения ДНК и хромосомного аппарата, препятствующие осуществлению митозов. Интерфазная гибель затрагивает покоящиеся клетки. Ее причиной служит развитие апоптоза по р53/АТМ- зависимому механизму (см. выше).
Если чувствительность всех типов клеток к митозу примерно одинакова (D0 - около 1 Гр), то по чувствительности к интерфазной гибели лимфоциты значительно превосходят все остальные клетки: большинство их погибает при облучении в дозах 1-3 Гр, тогда как клетки других типов погибают при дозах, превышающих 10 Гр. Высокая радиочувствительность лимфоцитов обусловлена, как уже сказано, низким уровнем экспрессии антиапопто- тических факторов Bcl-2 и Bcl-XL. Различные популяции и субпопуляции лимфоцитов несущественно различаются по чувствительности к апоптозу (В-клетки несколько чувствительнее Т-лимфоцитов; D0 для них составляет соответственно 1,7-2,2 и 2,5-3,0 Гр). В процессе лимфопоэза чувствительность к цитотоксическим воздействиям изменяется в соответствии с уровнем экспрессии в клетках антиапоптотических факторов: она наиболее высока в периоды селекции клеток (для Т-лифмоцитов - стадия кортикальных CD4+ CD8+ тимоцитов, D0 - 0,5-1,0 Гр). Радиочувствительность высока у покоящихся клеток, она дополнительно возрастает на начальных этапах активации, а затем резко снижается. Высокой радиочувствительностью характеризуется процесс пролиферативной экспансии лимфоцитов, причем при вступлении в пролиферацию могут погибнуть клетки, подвергшиеся действию излучения ранее и несущие нерепарированные разрывы ДНК. Сформировавшиеся эффекторные клетки, особенно плазматические, устойчивы к действию радиации (D0 - десятки Гр). В то же время клетки памяти радиочувствительны примерно в той же степени, что и наивные лимфоциты. Клетки врожденного иммунитета радиорезистентны. Радиочувствительны только периоды их пролиферации во время развития. Исключение составляют NK-клетки, а также дендритные клетки (погибают при дозах 6-7 Гр), которые по радиочувствительности занимают промежуточное положение между другими лимфоидными и миелоидными клетками.
Хотя зрелые миелоидные клетки и опосредуемые ими реакции радиорезистентны, в ранние сроки после облучения максимально проявляется именно недостаточность миелоидных клеток, в первую очередь нейтрофилов, вызванная радиационным нарушением гемопоэза. Его последствия раньше и тяжелее всего сказываются на нейтрофильных гранулоцитах как популяции клеток с наиболее быстрым обменом пула зрелых клеток. Это обусловливает резкое ослабление первой линии защиты, нагрузка на которую именно в этот период значительно возрастает в связи с нарушением барьеров и бесконтрольным поступлением в организм патогенов и других чужеродных агентов. Ослабление этого звена иммунитета служит главной причиной радиационной гибели в ранние сроки после облучения. В более поздние сроки последствия поражения факторов врожденного иммунитета сказываются значительно слабее. Функциональные проявления врожденного иммунитета сами по себе устойчивы к действию ионизирующих излучений.
Через 3-4 сут после облучения в дозах 4-6 Гр у мышей погибает более 90% лимфоидных клеток и происходит опустошение лимфоидных органов. Функциональная активность выживших клеток снижается. Резко нарушается хоминг лимфоцитов - их способность мигрировать в процессе рециркуляции во вторичные лимфоидные органы. Реакции адаптивного иммунитета при действии этих доз ослабляются в соответствии со степенью радиочувствительности клеток, которые опосредуют эти реакции. В наибольшей степени от действия радиации страдают те формы иммунного ответа, развитие которых нуждается во взаимодействиях радиочувствительных клеток. Поэтому клеточный иммунный ответ более радиорезистентен, чем гуморальный, а тимуснезависимое антителообразование более радиорезистентно, чем тимусзависимый гуморальный ответ.
Дозы радиации в интервале 0,1-0,5 Гр не вызывают повреждения периферических лимфоцитов и нередко оказывают стимулирующее действие на иммунный ответ, обусловленный прямой способностью квантов излучения,
генерирующих активные формы кислорода, активировать в лимфоцитах сигнальные пути. Иммуностимулирующее действие радиации, особенно в отношении IgE-ответа, закономерно проявляется при облучении после иммунизации. Полагают, что в этом случае стимулирующий эффект обусловлен относительно более высокой радиочувствительностью регуляторных Т-клеток, контролирующих эту форму иммунного ответа, по сравнению с эффекторными клетками. Стимулирующее действие радиации на клетки врожденного иммунитета проявляется даже при действии высоких доз, особенно в отношении способности клеток продуцировать цитокины (IL-1, TNF а и др.). Помимо прямого стимулирующего действия радиации на клетки, проявлению усиливающего эффекта способствует стимуляция этих клеток продуктами патогенов, поступающих в организм через поврежденные барьеры. Однако повышение активности клеток врожденного иммунитета под действием ионизирующей радиации не является адаптивным и не обеспечивает адекватной защиты. В связи с этим превалирует отрицательное действие облучения, проявляющееся в подавлении (при дозах, превышающих 1 Гр) адаптивного антигенспецифичекого иммунного ответа (рис. 4.50).

Уже в период развивающегося опустошения лимфоидной ткани включаются восстановительные процессы. Восстановление происходит двумя основными путями. С одной стороны, активизируются процессы лим- фопоэза за счет дифференцировки всех разновидностей лимфоцитов из кроветворных стволовых клеток. В случае Т-лимфопоэза к этому добавляется развитие Т-лимфоцитов из внутритимусных предшественников. При этом в определенной степени повторяется последовательность событий,

Рис. 4.50. Радиочувствительность некоторых клеток иммунной системы и опосредуемых ими реакций. Представлены величины D0. ЭБ - эритроциты барана
свойственных Т-лимфопоэзу в эмбриональном периоде: сначала образуются у5Т-клетки, затем - арТ-клетки. Процессу восстановления предшествует омоложение эпителиальных клеток тимуса, сопровождающееся повышением выработки ими пептидных гормонов. Численность тимоцитов быстро возрастает, достигая максимума к 15-м суткам, после чего происходит вторичная атрофия органа вследствие исчерпания популяции внутритимусных клеток-предшественников. Эта атрофия мало сказывается на численности периферических Т-лимфоцитов, поскольку к этому времени включается второй источник восстановления популяции лимфоцитов.
Этот источник - гомеостатическая пролиферация выживших зрелых лимфоцитов. Стимул к реализации этого механизма регенерации лимфоидных клеток - выработка IL-7, IL-15 и BAFF, служащих гомеостатическими цитокинами соответственно для Т-, NK- и В-клеток. Восстановление Т-лим- фоцитов происходит наиболее медленно, поскольку для реализации гомеостатической пролиферации необходим контакт Т-лимфоцитов с дендритными клетками, экспресирующими молекулы MHC. Численность дендритных клеток и экспрессия на них молекул MHC (особенно класса II) после облучения снижены. Эти изменения можно трактовать как индуцированные радиацией изменениия микроокружения лимфоцитов - лимфоцитарных ниш. С этим связана задержка восстановления пула лимфоидных клеток, особенно существенная для CD4+ Т-клеток, которая реализуется в неполном объеме.
Т-клетки, формирующиеся в процессе гомеостатической пролиферации, имеют фенотипические признаки клеток памяти (см. раздел 3.4.2.6). Для них характерны пути рециркуляции, свойственные этим клеткам (миграция в барьерные ткани и нелимфоидные органы, ослабление миграции в Т-зоны вторичных лимфоидных органов). Именно поэтому численность Т-лим- фоцитов в лимфоузлах практически не восстанавливается до нормы, в то время как в селезенке она восстанавливается полностью. Иммунный ответ, развивающийся в лимфатических узлах, также не достигает нормального уровня при его полной нормализации в селезенке. Таким образом, под влиянием ионизирующей радиации изменяется пространственная организация иммунной системы. Другое следствие конверсии фенотипа Т-лимфоцитов в процессе гомеостатической пролиферации - учащение аутоиммунных процессов вследствие повышения вероятности распознавания аутоантигенов при миграции в нелимфоидные органы, облегчения активации Т-клеток памяти и отставания регенерации регуляторных Т-клеток по сравнению с остальными субпопуляциями. Многие изменения в иммунной системе, индуцированные радиацией, напоминают следствия обычного старения; особенно наглядно это проявляется в тимусе, возрастное снижение активности которого ускоряется облучением.
Варьирование дозы облучения, его мощности, применение фракционированного, местного, внутреннего облучения (инкорпорированных радионуклидов) придает определенную специфику иммунологическим нарушениям в пострадиационном периоде. Однако принципиальные основы радиационного поражения и пострадиационного восстановления во всех этих случаях не отличаются от рассмотренных выше.
Особую практическую значимость действие умеренных и малых доз радиации приобрело в связи с радиационными катастрофами, особенно в Чернобыле. Сложно точно оценить эффекты малых доз радиации и дифференцировать влияние радиации от роли привходящих факторов (особенно таких, как стресс). В этом случае могут проявляться уже упоминавшееся стимулирующее действие радиации как часть эффекта гормезиса. Радиационную иммуностимуляцию нельзя рассматривать как положительное явление, поскольку оно, во-первых, не адаптивно, во-вторых сопряжено с разбалансировкой иммунных процессов. Пока затруднительно объективно оценить влияние на иммунную систему человека того незначительного повышения естественного фона радиации, которое наблюдается в местностях, прилегающих к зонам катастроф или связанных с особенностями производственной деятельности. В подобных случаях радиация становится одним из неблагоприятных факторов среды и ситуацию следует анализировать в контексте экологической медицины.
Иммунодефицитные состояния, вызываемые нерадиационной гибелью лимфоцитов
Массовая гибель лимфоцитов составляет основу иммунодефицитов, развивающихся при ряде инфекционных заболеваний как бактериальной, так и вирусной природы, особенно при участии суперантигенов. Суперантигены - субстанции, способные активировать CD4+ Т-лимфоциты с участием АПК и их молекул MHC-II. Действие суперантигенов отличается от эффекта обычной презентации антигенов.

  • Суперантиген не расщепляется до пептидов и встраивается не в анти- генсвязывающую щель, а подсоединяется к «боковой поверхности» в-цепи молекулы MHC-II.
  • Суперантиген распознается Т-клеткой по их сродству не к антигенсвя- зывающему центру TCR, а к так называемому 4-му гипервариабельному участку - последовательности 65-85, локализованной на боковой поверхности в-цепей TCR, относящихся к определенным семействам.
Таким образом, распознавание суперантигена не является клональным, а обусловлено принадлежностью TCR к тем или иным в-семействам. В результате суперантигены вовлекают в ответ значительное количество CD4+ Т-лимфоцитов (до 20-30%). Так, в ответе на стафилококковый экзотоксин SEB участвуют CD4+ Т-клетки мышей, экспрессирующих TCR, относящиеся к семействам Ув7 и Ув8. После периода активации и пролиферации, сопровождающихся гиперпродукцией цитокинов, эти клетки подвергаются апоптозу, что обусловливает значительную степень лимфопении, а поскольку гибнут только CD4+ Т-клетки, то нарушается также баланс субпопуляций лимфоцитов. Этот механизм лежит в основе Т-клеточного иммунодефицита, развивающегося на фоне некоторых вирусных и бактериальных инфекций.

Быстрый переход по странице

Иммунодефицит — что это такое?

Врачи отмечают, что в последнее у пациентов все чаще выявляются серьезные заболевания, трудно поддающие лечению. Иммунная недостаточность или по-научному – иммунодефицит – это патологическое состояние, при котором иммунная система не работает должным образом. С описываемыми нарушениями сталкиваются как взрослые, так и дети. Что это за состояние? Насколько оно опасно?

Иммунодефицит характеризуется снижением активности или неспособностью организма к созданию защитной реакции вследствие выпадения клеточного или гуморального иммунного звена.

Это состояние может быть врожденным или приобретенным. Во многих случаях ИДС (особенно при не лечении) является необратимым, тем не менее, заболевание может носить и транзитивную (временную) форму.

Причины иммунодефицита у человека

Факторы, вызывающие ИДС на сегодня еще до конца не изучены. Тем не менее, ученые постоянно изучают этот вопрос для предотвращения появления и прогрессирования иммунодефицита.

Иммунодефицит, причины:

Выявить причину можно только с помощью всесторонней гематологической диагностики. В первую очередь пациента отправляют на сдачу крови для оценивания показателей клеточного иммунитета. При проведении анализа подсчитывается относительное и абсолютное количество защитных клеток.

Иммунодефицит может быть первичным, вторичным и комбинированным. Каждое заболевание, связанное и ИДС, имеет определенную и индивидуальную тяжесть течения.

При возникновении патологических признаков важно своевременно обратиться к лечащему врачу для получения рекомендаций по дальнейшему лечению.

Первичный иммунодефицит (ПИД), особенности

Является сложнейшим генетическим заболеванием, проявляющимся в первые несколько месяцев после рождения (40% случаев), в раннем младенчестве (до двух лет – 30%), в детском и юношеском возрасте (20%), реже – после 20 лет (10%).

Следует понимать, что пациенты страдают не от ИДС, а от тех инфекционных и сопутствующих патологий, которые иммунная система не в силах подавить. В связи с этим у больных может наблюдаться следующее:

  • Политопный процесс. Это множественное поражение тканей и органов. Таким образом, у больного одновременно могут наблюдаться патологические изменения, к примеру, кожи и мочевыделительной системы.
  • Сложность в лечении отдельно взятого заболевания. Патология часто переходит в хроническое течение с частыми рецидивами (повторениями). Болезни носят стремительный и прогрессирующий характер.
  • Высокая восприимчивость ко всем инфекциям, ведущая к полиэтиологичности. Другими словами, одно заболевание может вызвать сразу несколько возбудителей.
  • Обычный терапевтический курс дает не полный эффект, поэтому дозировка препарата подбирается индивидуально, часто в ударных дозах. Тем не менее, организм очень сложно очистить от возбудителя, поэтому нередко наблюдается носительство и скрытое течение болезни.

Первичный иммунодефицит является врожденным состоянием, зачатки которого образовались еще внутриутробно. К сожалению, проведение скрининга во время беременности не позволяет выявить тяжелую аномалию на первоначальном этапе.

Это состояние развивается под действием внешнего фактора. Вторичный иммунодефицит не является генетическим отклонением, с одинаковой частотой впервые диагностируется как в детском возрасте, так и во взрослом.

Факторы, вызывающие приобретенный иммунодефицит:

  • ухудшение состояния экологической среды;
  • сверхвысокочастотное и ионизирующее излучение;
  • острые или хронические отравления химическими веществами, тяжелыми металлами, ядохимикатами, некачественными или просроченными продуктами питания;
  • длительное лечение лекарственными средствами, влияющими на работу иммунитета;
  • частые и чрезмерные умственные нагрузки, психоэмоциональные перенапряжения, переживания.

Вышеперечисленные факторы негативно отражаются на иммунной сопротивляемости, следовательно, такие пациенты, в сравнении со здоровыми, будут чаще болеть инфекционными и онкологическими патологиями.

Основные причины , из-за которых может развиться вторичный иммунодефицит, перечислены ниже.

Погрешности в питании — Организм человека очень чувствителен к нехватке витаминов, минералов, белков, аминокислот, жиров, углеводов. Эти элементы необходимы для создания кровяной клетки и поддержания ее функции. Кроме того, для нормальной работы иммунной системы требуется много энергии, которая приходит вместе с пищей.

Все хронические заболевания негативно отражаются на иммунной защите, ухудшая сопротивляемость к чужеродным агентам, проникающие из внешней среды в организм. При хроническом течении инфекционной патологии угнетается функция кроветворения, поэтому выработка молодых защитных клеток существенно снижается.

Гормоны надпочечников. Чрезмерное увеличение гормонов угнетает функцию иммунной сопротивляемости. Сбой работы наблюдается при нарушении вещественного обмена.

Кратковременное состояние, как защитная реакция, наблюдается вследствие проведения тяжелых хирургических процедур или получения сильной травмы. По этой причине пациенты, перенесшие хирургическое вмешательство, несколько месяцев подвержены инфекционным заболеваниям.

Физиологические особенности организма:

  • недоношенность;
  • дети с 1 года до 5 лет;
  • беременность и лактационный период;
  • преклонный возраст

Особенности у людей указанных категорий характеризуются угнетением функции иммунитета. Дело в том, что организм начинает интенсивно работать, чтобы перенести дополнительную нагрузку для выполнения своей функции или выживания.

Злокачественные новообразования. В первую очередь речь идет о раке крови – лейкемии. При этом заболевании наблюдается активная выработка защитных нефункциональных клеток, которые не могут обеспечить полноценного иммунитета.

Также опасной патологией является поражение красного костного мозга, отвечающего за кроветворение и замещение его структуры злокачественным очагом или метастазами.

Наряду с этим и все остальные онкологические заболевания наносят ощутимый удар по защитной функции, но проявляются нарушения гораздо позже и имеют не столь выраженные симптомы.

ВИЧ – вирус иммунодефицита человека. Угнетая иммунитет, приводит к опасному заболеванию – СПИДу. У пациента увеличиваются все лимфоидные узлы, часто рецидивируют язвы полости рта, диагностируются кандидозы, диареи, бронхиты, пневмонии, гаймориты, гнойные миозиты, менингиты.

Вирус иммунодефицита поражает защитную реакцию, поэтому пациенты погибают от тех заболеваний, которым здоровый организм тяжело воспрепятствует, а ослабленный ВИЧ-инфекцией – тем более (туберкулез, онкология, сепсис и т.п.).

Комбинированный иммунодефицит (КИД)

Является самым тяжелым и редким заболеванием, которое вылечить очень сложно. КИД – это группа наследственных патологий, приводящих к сложным нарушениям иммунной сопротивляемости.

Как правило, изменения происходят в нескольких видах лимфоцитах (например, Т и В), тогда как при ПИД нарушается всего лишь один вид лимфоцита.

КИД проявляется в раннем детском возрасте. Ребенок плохо набирает массу тела, отстает в росте и развитии. У таких детей наблюдается высокая восприимчивость к инфекциям: первые атаки могут начаться сразу после рождения (например, пневмония, диарея, кандидоз, омфалит).

Как правило, после выздоровления через несколько дней наступает рецидив или организм поражает другая патология вирусного, бактериального или грибкового характера.

Лечение первичного иммунодефицита

На сегодня медицина еще не изобрела универсальное лекарство, помогающее полностью побороть все виды иммунодефицитных состояний. Тем не менее, предлагается терапия, направленная на снятие и устранение негативных симптомов, увеличение лимфоцитарной защиты и улучшение качества жизни.

Это сложнейшая терапия, подбирающаяся в индивидуальном порядке. Продолжительность жизни пациента, как правило, полностью зависит от своевременного и регулярного приема медицинских средств.

Лечение первичного иммунодефицита достигается путем:

  • профилактики и сопутствующей терапии инфекционных заболеваний на ранних стадиях;
  • улучшения защиты методом пересадки костного мозга, замещения иммуноглобулинов, переливания нейтрофильной массы;
  • повышение функции лимфоцитов в виде лечения с помощью цитокинов;
    введения нуклеиновых кислот (генная терапия) с целью предотвращения или приостановления развития патологического процесса на хромосомном уровне;
  • витаминотерапии для поддержки иммунитета.

Если течение заболевания усугубляется, об этом необходимо сообщить лечащему врачу.

Лечение вторичного иммунодефицита

Как правило, агрессивность вторичных иммунодефицитных состояний не имеет серьезной выраженности. Лечение направлено на устранение причины, вызвавшей ИДС.

Терапевтическая направленность:

  • при инфекциях – устранение очага воспаления (с помощью антибактериальных и противовирусных препаратов);
  • для повышения иммунной защиты – иммуностимуляторы;
  • если ИДС была вызвана недостатком витаминов, то назначается длительный курс лечения витаминами и минералами;
  • вирус иммунодефицита человека – лечение заключается в высокоактивной антиретровирусной терапии;
  • при злокачественных образованиях – хирургическое удаление очага атипичной структуры (по возможности), проведение химио-, радио-,
  • томотерапии и прочих современных методов лечения.

Кроме того, при сахарном диабете следует тщательно следить за своим здоровьем: придерживаться гипоуглеводной диеты, регулярно проводить тест на уровень сахара в домашних условиях, своевременно принимать инсулин в таблетках или вводить подкожные инъекции.

Лечение КИД

Терапия первичной и комбинированной формы иммунодефицита очень похожа. Наиболее эффективным методом лечения считается пересадка костного мозга (при поражении Т-лимфоцитов).

  • На сегодня во многих странах успешно проводится трансплантация, помогающая побороть агрессивное генетическое заболевание.

Прогноз: что ожидает пациента

Больному необходимо предоставить качественную медицинскую помощь еще на первых этапах развития заболевания. Если речь идет о генетической патологии, то следует, как можно раньше ее выявить путем сдачи многих анализов и прохождения комплексного обследования.

Дети, которые с рождения страдают ПИД или КИД и не принимают соответствующую терапию, имеют низкий процент выживаемости до двух лет.

При ВИЧ инфекции важно регулярно сдавать анализ на антитела к вирусу иммунодефицита человека с целью контроля течения заболевания и предупреждения резкого прогрессирования.

Иммунодефицит называют вторичным, если он возникает вследствие заболевания Неиммунная природа или действия на организм определенного агента - радиации, лекарственных препаратов и т.д..

В мире наиболее распространенной причиной вторичных иммунодефицитов является недостаточное и неправильное питание. В развитых странах причиной вторичных иммунодефицитов могут быть лекарственные препараты, используемые в противоопухолевой терапии, и иммуносупрессанты, применяемые при трансплантации органов и аутоиммунных заболеваниях. Возникновение вторичных иммунодефицитов часто наблюдается как следствие развития аутоиммунных заболеваний, при тяжелых бактериальных и вирусных инфекциях.

Иммунодефициты, обусловленные нехваткой питания. Недостаток белков и энергетическая недостаточность пищи часто наблюдаются в развивающихся странах, и ассоциируются с нарушением клеточного и гуморального иммунитета в ответ на микроорганизмы. Основной причиной заболеваемости и смертности людей, недостаточно питаются, являются инфекционные заболевания. Причины этих иммунодефицитов еще точно не установлено, но предполагают, что серьезные нарушения метаболизма в пораженных лиц, косвенные ненормальным поступлением белков, жиров, витаминов и минералов, влияют на созревание и функции клеток иммунной системы.

Одним из признаков недостаточного питания является атрофия лимфоидной ткани. У истощенных детей часто развивается так называемая «пищевая тимэктомия», характеризующееся нарушением структуры тимуса, общим уменьшением количества лимфоцитов в нем и атрофией тимусзалежних периартериолярних участков селезенки и паракортикальная участков лимфатических узлов.

Недостаточного обеспечения питания белками и употребления малоенергетичнои пищи часто наблюдают угнетение клеточного иммунитета, о чем свидетельствует снижение количества CD4 Т-лимфоцитов. Лимфоциты имеют сниженную способность отвечать пролиферацией на митогены. Такие изменения количества и функции Т-клеток могут быть обусловлены снижением активности гормонов тимуса. Недостаточное обеспечение пищи белками и энергией в ослабленных лиц приводит к изменениям в фагоцитарной функции макрофагов, т.е. к нарушению способности этих клеток разрушать поглощены микробы. Наблюдается снижение уровней компонентов комплемента С3, С5 и фактора В, уменьшение выработки цитокинов ИЛ-2, ФНО, ИФН.

Иммунодефициты, индуцированные действием лекарственных препаратов. Имуномодулювальнии лекарственные препараты могут существенно подавлять функции иммунной системы.

Глюкокортикоиды являются достаточно сильными природными модуляторами иммунной ИиЛИюИиЛи. во-первых, они влияют на состав лейкоцитов, циркулирующих. Действие глюкокортикоидов индуцирует лимфоиитопению, причем CD4 ^-клетки являются чувствительными, и их количество уменьшается в большей степени, чем Т-лимфоцитов других субпопуляций. Кроме того, в крови человека заметил ости

моноцитов, эозинофилов и базофилов. Ввод стероидных препаратов> к

нейтрофилией вследствие выхода зрелых клеток из костного мозга и задержки их в циркуляции. Стероидные препараты влияют также на определенные функции клеток иммунной системы. Доказано, что стероиды тормозят активацию и пролиферацию Т-клеток и ингибируют выработку ФНО и ИЛ-1 моноцитами. Замечено, что после введения стероидных препаратов снижается продуцирование целого ряда цитокинов: ИФН-Y, ИЛ-1, ИЛ-2, ИЛ-6, ИЛ-10.

Формирование иммунодефицитных состояний могут вызвать препараты, используемые для иммуносупрессии при аллотрансплантации. Например, циклоспорин А и его аналог такролимус, тормозящих проведение активационных сигналов от рецепторов цитокинов, сдерживающее действуют не только на лимфоидные клетки, но и на клетки нелимфоидного происхождения, поскольку молекулярные мишени этих препаратов широко представлены в различных тканях. Препараты типа сиролимус и эверолимуса: активационного сигнала от костимуляторних молекул и рецепторов цитокинов.

Они тормозят синтез нуклеиновых кислот в стимулированных клетках. Побочные эффекты этих. "Еригаються в различных типах клеток. Кроме того, у пациентов, которых лечат этими

п ют повышение частоты возникновения пневмонии. У пациентов, получающих

п супрессию созревания клеток костного мозга, нарушение функции пищеварительного

канала и осложненные инфекции, вызываемые грибами.

Различные препараты, которые используются в противоопухолевой терапии, могут значительно подавлять функции иммунной системы. Супрессию иммунного ответа могут вызвать такие антиметаболиты, как азатиоприн и меркаптопурин, нарушающие синтез РНК и ДНК вследствие торможения инозиновой кислоты - предшественника синтеза аденина и гуанина. Метотрексат - аналог фолиевой кислоты, блокирует метаболические процессы, происходящие с ее участием и необходимые для синтеза ДНК. После применения метотрексата наблюдается длительное снижение в крови уровней иммуноглобулинов всех классов. Хлорамбуцил и циклофосфамид алкилують ДНК, и сначала использовали для лечения онкобольных. Однако исследование их цитотоксического действия на лимфоциты обусловили использование этих препаратов как иммуносупрессивных терапевтических агентов.

Инфекционные иммунодефициты. К развитию иммуносупрессии могут приводить различные виды инфекций. Один из самых известных вирусов, непосредственно поражает клетки иммунной системы, - вирус иммунодефицита человека (ВИЧ).

Синдром приобретенного иммунодефицита (СПИД) вызывается ВИЧ и характеризуется различными клиническими проявлениями, в том числе глубокой иммуносупрессией, ассоциированной с рядом оппортунистических инфекций и опухолей, и нарушениями нервной системы.

Вирус иммунодефицита человека было описано в 1983 г. одновременно французскими и американскими учеными. Вирус относится к ретровирусов, в которых генетический материал находится в виде РНК и превращается в ДНК с помощью обратной транскриптазы.

Существуют два типа ВИЧ-ВИЧ 1 и ВИЛ2. Они похожи на 40 - 60% на уровне генома, но ВИЛ2 является менее контагиозным и патогенным, чем ВИЧ1.

Вирусные частицы, которые инициируют инфицирования, могут находиться в различных жидкостях организма, включая кровь, семенную жидкость, и попадают в организм другого лица во время полового контакта или медицинских манипуляций (переливание крови, использования нестерильных игл). Доказано, что 75% поражений ВИЧ1 происходит вследствие гетеросексуальных отношений.

Частица вируса состоит из двух идентичных цепей вирусной РНК, каждая длиной 9,2 kb, упакованные в корове белки вируса и окружены билипидного слоем плазматической мембраны клетки хозяина. На поверхности мембраны размещены вирусные гликопротеиды, необходимые для адсорбции вирусной частицы на чувствительных клетках и попадания внутрь последних.

Геном ВИЧ имеет характерную для ретровирусов структуру. Длинные концевые повторы (Long terminal repeats - LTR) необходимы для интеграции в геном хозяина и репликации вирусных генов. Участок генома gag кодирует корове структурные белки, a env - поверхностные гликопротеиды gp120 и gp41. Последовательность Рои кодирует обратную транскриптазу, протеазу и интегразы - белки, необходимые для репликации вируса. Геном вируса содержит также ряд регуляторных генов rev, tat, vif, nef vpr и vpu, продукты которых регулируют образование вирусных частиц. Адсорбция вируса на чувствительных клетках происходит в результате взаимодействия поверхностного гликопротеидными комплекса вириона gp120/gp41 с комплементарными структурами CD4 и G-билокзвьязувальним рецептором (GCR) или, как его еще называют, корецепторов, на поверхности чувствительных клеток хозяина. Процесс проникновения вируса HIV в клетку еще до конца не изучен. Взаимодействие gp120 с CD4 индуцирует конформационные изменения в gp120, что приводит к экспозиции ранее скрытых доменов, которые взаимодействуют с корецепторов. При этом образуется тройной комплекс gp120-CD4-корецептор. Образование тройного комплекса gp120-CD4-корецептор приводит к дополнительным конформационных изменений в gp120, которые передаются в вирусного трансмембранного гликопротеида gp41 и индуцируют изменения структуры последнего. Вследствие этого N-конечная fusion последовательность gp41 направляется к клеточной мембране, где она входит в билипидный слой и инициирует слияние вирусной и клеточной мембран.

Большинство GCR, используемых ВИЧ для попадания в клетку, являются рецепторами для хемокинов. Первый идентифицирован корецептор, CXCR4, используют Т-клитинотронни, синцитиуминдукувальни (SI) штаммы ВИЧ. Другой корецептор, CCR5, используют вирусы, тропных к макрофагов, не образующих синцитиумы (NSI). Предполагают, что эти два типа корецепторов чаще всего используются вирусом и поэтому играют основную роль для поддержания инфекции ВИЧ in vivo. Существуют также другие GCR, как было показано in vitro, способствующих поражению клетки определенными штаммами ВИЧ: CCR2b, CCR3, CCR8, CCR9, CX3CR1 и др.. Например, CCR3 способствует инфицированию макрофагов и микроглии. Первичной мишенью инфицирования в таком случае нервная система. После проникновения вируса в клетку корове белки вириона нарушаются и РНК-геном ВИЧ с помощью обратной транскриптазы превращается в форму подвийнонитчастои ДНК, которая поступает в ядро инфицированной клетки. Вирусная интегразы способствует включению вирусной ДНК в геном клетки хозяина. В таком транскрипционно неактивном состоянии вирус может существовать на протяжении месяцев, а то и лет. При таких условиях происходит слабое продуцирования вирусных белков. Этот период инфекции называют латентным.

Экспрессию определенных генов ВИЧ можно разделить на два периода. Течение раннего периода экспрессируются ранние регуляторные гены nef, tat и rev. Поздние гены включают рои gag и env, продукты которых являются структурными компонентами вирусной частицы. мРНК, кодирующей различные белки ВИЧ, получается в результате альтернативного сплайсинга общего транскрипта полного вирусного генома. Некоторые белки вируса образуются в результате расщепления общего белкового предшественника клеточными протеазами. Например, продукт гена env общий предшественник gp160 расщепляется на два компонента - gp120 и gp41, которые нековалентно соединены и образуют комплекс в плазматической мембране клетки. Составление вирусных частиц начинается с упаковки РНК-транскриптов вируса в нуклеопротеидных комплексов с коревых белков и ферментов, необходимых для следующего цикла интеграции вируса. Нуклеопротеидный комплекс затем обволикуеться плазматической мембраной клетки с ексгоесованимы на ней вирусными белками gp120/gp41 и видбруньковуеться от клетки. Этот процесс приобретает стихийный характер, и клетка-мишень погибает.

Сайты нахождения вируса в организме можно разделить на клеточные и анатомические. Лимфатические узлы являются активными анатомическими сайтами репликации вируса. Основные клетки, которые поражаются при инфекции ВИЧ, является ОТ4-позитивные клетки, которыми прежде всего являются Т-хелперы, содержащие около 99% репликувального вируса в организме хозяина. Активность вируса истощает популяцию Т-хелперов, что приводит к нарушению гомеостаза всей иммунной системы. ОТ4-антиген несут также макрофаги, дендритные клетки, определенная популяция активированных CD8 Т-лимфоцитов. Сейчас еще существует неопределенность относительно того, какие именно клетки являются важнейшими мишенями при первичном инфицирования ВИЧ. Инфицированные макрофаги, которые составляют менее 1% всех инфицированных клеток, являются важнейшими для распространения вируса в организме. Количество инфицированных макрофагов небольшая, но макрофаги резистентные к цитопатический эффект ВИЧ и живут относительно долго, выделяя вирусные частицы протяжении этого времени. Клетки Лангерганса и дендритные клетки слизистых важны мишенями ВИЧ за полового способа передачи инфекции. Недавно было показано, что рецептор дендритных клеток (DC-SIGN) привлечен к эффективному связывания ВИЧ и передачи вируса Т-лимфоцитам. DC-SIGN - гомолог - dC-SIGnR - экспрессированных на эндотелиальных клетках синусоидов печени, клетках эндотелия лимфатических узлов и микроворсинки плаценты может играть определенную роль в передаче ВИЧ клеткам лимфоузлов или в вертикальном передаче вируса. + Течение СПИД определяют по количеству вирусных частиц в плазме крови и по количеству CD4 Т-лимфоцитов. Через несколько дней после попадания вируса в организм развивается виремия. Интенсивная репликация вируса наблюдается в лимфатических узлах. Считают, что именно пораженные дендритные клетки, которые не чувствительны к цитопатический эффект вируса, транспортируют вирус в лимфатические узлы и способствуют поражению лимфоцитов через прямые межклеточные контакты. Виремия способствует распространению вируса по всему организму и инфицирование Т-клеток, макрофагов и дендритных клеток периферических лимфоидных органов. Иммунная система, которая в настоящее время уже распознала вирусные антигены, начинает реагировать на них усилением гуморального и клитиноопосередкованои иммунного ответа. Иммунная система на этом этапе частично контролирует инфекцию и продуцирования вируса. Такой контроль выражается в уменьшении количества вирусных частиц в крови до низких уровней в течение примерно 12 мес. Во время этой фазы заболевания иммунная система остается компетентным и ловко обезвреживает инфекционные агенты другой природы. Никаких клинических проявлений поражения ВИЧ не регистрируется. В сыворотке крови наблюдают незначительное количество вирионов, но большинство ОТ4Т-лимфоцитов периферической крови свободные от вируса. Однако нарушение СD4Т-лимфоцитов в лимфоидных тканях постепенно прогрессирует, а количество СD4Т-лимфоцитов на периферии неуклонно снижается, несмотря на то, что эта популяция лимфоцитов постоянно обновляется.

При прогрессирования СПИДа иммунный ответ пациента на другие инфекционные агенты может стимулировать распространение вируса и поражения им лимфоидной ткани. Активация транскрипции генов ВИЧ в лимфоцитах может произойти в ответ на активационные цитокины. СПИД приобретает свою последней фазы, когда наблюдается значительное снижение CD4 Т-лимфоцитов периферической крови и поражаются лимфоидные ткани. Количество вирусных частиц в крови вновь возрастает. Пораженные люди страдают различными оппортунистические инфекции и неоплазмы, поскольку активность CD4 Т-лимфоцитов, необходимая для клитиноопосередкованои и гуморального иммунного ответа, резко снижена. У пациентов наблюдаются нарушения работы почек и нервной системы.

Вторая форма иммунной недостаточности - пострадиационные канцерогенез, один из самых частых и опасных проявлений удаленной патологии, развивающийся после воздействия ионизирующего излучения.

В каждом конкретном случае почти невозможно точно определить, благодаря сочетанию каких факторов образуются так называемые спонтанные нарушения ДНК, нередко в возрасте приводят к развитию опухолей. Показано, что при воздействии радиации чаще опухоли наблюдаются после облучения дозой 2 -2,5 Гр. Однако шкала радиационных доз, имеют канцерогенный риск, значительно шире. Есть сообщения, что канцерогенными оказываются даже некоторые малые (техногенные) дозы, которые раньше считались безопасными. Возможно, это связано с сочетанием действия радиации с другими факторами. Установлено, что вероятность возникновения онкологического процесса (в отдаленном пострадиационном периоде) части повышается после дозы 1 Гр и выше. В статистическом отношении вероятность заболеть раком возрастает прямо пропорционально дозе. По двойной дозы риск удваивается. Для человека характерно то, что канцерогенный риск после 30 лет удваивается каждые 9 - 10 лет.

Канцерогенный процесс возникает на молекулярном уровне в виде генных мутаций, но дальнейшее развитие этих перерожденных клеток зависит от того, пройдут ли они иммунный надзор лимфоцитов.

Иммунодефицитные состояния или иммунодефицит – группа различных патологических состояний, характеризующиеся нарушением работы иммунитета человека, на фоне чего инфекционные и воспалительные процессы повторяются намного чаще, протекают тяжело, а продолжаются они дольше, чем обычно. На фоне иммунодефицита у людей любой возрастной группы формируются тяжёлые заболевания, трудно поддающиеся лечению. Из-за протекания данного процесса могут формироваться раковые новообразования, несущие угрозу для жизни.

Такое состояние, в зависимости от причин возникновения, может быть наследственным и приобретённым. Это означает, что болезнь нередко поражает новорождённых детей. Вторичный иммунодефицит формируется на фоне множества факторов, среди которых – травмы, хирургические вмешательства, стрессовые ситуации, голод и рак. В зависимости от типа заболевания, могут проявляться различные симптомы, свидетельствующие о поражении внутренних органов и систем человека.

Диагностика нарушения работы иммунитета основывается на общих и биохимических анализах крови. Лечение индивидуальное для каждого пациента, и зависит от факторов, повлиявших на возникновение данного состояния, а также степени проявления характерных признаков.

Этиология

Причин возникновения иммунодефицитного состояния существует множество, и они условно делятся на несколько групп. Первую составляют генетические нарушения, при этом заболевание может проявляться с рождения или в раннем возрасте. Во вторую группу входят осложнения от широкого спектра патологических состояний или болезней.

Существует классификация иммунодефицитных состояний, разделяющаяся в зависимости от факторов, из-за которых сформировалось данное состояние:

  • первичный иммунодефицит – обусловлен генетическим нарушением. Может передаваться от родителей к детям или возникает по причине генетической мутации, отчего фактор наследственности отсутствует. Такие состояния зачастую диагностируются в первые двадцать лет жизни человека. Врождённый иммунодефицит сопровождает пострадавшего на протяжении всей жизни. Зачастую приводит к летальному исходу, из-за различных инфекционных процессов и осложнений от них;
  • вторичный иммунодефицит – последствие от многих состояний и заболеваний. Заболеть таким типом расстройства иммунитета может человек по указанным выше причинам. Встречается в несколько раз чаще, нежели первичный;
  • тяжёлый комбинированный иммунодефицит – наблюдается крайне редко и является врождённым. Дети погибают от данного типа заболевания на первом году жизни. Это обусловлено уменьшением количества или нарушением функционирования Т и В лимфоцитов, которые локализуются в костном мозге. Этим комбинированное состояние отличается от первых двух типов, при которых поражается только один вид клеток. Лечение такого расстройства успешно только в том случае, если оно было выявлено своевременно.

Симптомы

Поскольку классификация заболевания включает в себя несколько типов расстройства, то в зависимости от формы будет отличаться выражение специфических симптомов. Признаками первичного иммунодефицита являются частые поражения организма человека воспалительными процессами. Среди них:

  • абсцесс;

Помимо этого, иммунодефицит у детей характеризуется наличием проблем с пищеварением – отсутствием аппетита, постоянной диареей и рвотой. Наблюдаются задержки в росте и развитии. К внутренним проявлениям данного типа заболевания относятся – и селезёнки, изменения состава крови - уменьшается количество и .

Несмотря на то что первичный иммунодефицит зачастую диагностируется в детском возрасте, существует несколько характерных признаков, говорящих о том, что у взрослого человека может быть данный тип расстройства:

  • частые приступы отита, гнойного характера, и синусита более трёх раз за год;
  • тяжёлое протекание воспалительного процесса в бронхах;
  • повторяющиеся воспаления кожи;
  • часто повторяющаяся диарея;
  • возникновение аутоиммунных заболеваний;
  • перенесение не менее двух раз в год тяжёлых инфекционных процессов.

Симптомами вторичного иммунодефицита являются те признаки, которые характерны для недуга, его спровоцировавшего. В частности, отмечается симптоматика поражения:

  • верхних и нижних дыхательных путей;
  • верхних и более глубоких слоёв кожного покрова;
  • органов ЖКТ;
  • мочеполовой системы;
  • нервной системы. При этом человек чувствует хроническую усталость, которая не проходит даже после продолжительного отдыха.

Нередко у людей наблюдается незначительное повышение температуры тела, судорожные припадки, а также развитие генерализированных инфекций, которые поражают несколько внутренних органов и систем. Такие процессы представляют угрозу жизни человека.

Комбинированные иммунодефициты характеризуются наличием у детей задержки физического развития, высоким уровнем восприимчивости к различным инфекционным и воспалительным процессам, хронической диареи.

Осложнения

В зависимости от типа заболевания могут развиваться разные группы последствий несвоевременного лечения основного расстройства. Осложнениями иммунодефицита у детей могут быть:

  • повторяющиеся с высокой частотой различные инфекционные процессы, вирусной, грибковой или бактериальной природы;
  • формирование аутоиммунных расстройств, во время которых иммунная система действует против организма;
  • высокая вероятность возникновения различных заболеваний сердца, органов ЖКТ или нервной системы;
  • онкологические новообразования.

Последствия от вторичного иммунодефицита:

  • пневмонии;
  • абсцессы;
  • заражения крови.

Вне зависимости от классификации заболевания, при поздней диагностике и лечении наступает летальный исход.

Диагностика

Люди с иммунодефицитными состояниями имеют ярко выраженные признаки того, что болеют. Например, болезненный внешний вид, бледность кожи, наличие заболеваний кожи и ЛОР-органов, сильный кашель, воспалённые глаза с повышенным слезоотделением. Диагностика в первую очередь направлена на выявление типа заболевания. Для этого специалисту необходимо провести тщательный опрос и осмотр пациента. Ведь от того, каким является заболевание, приобретённым или наследственным, зависит тактика лечения.

Основу диагностических мероприятий составляют различные исследования крови. Общий анализ даёт информацию о количестве клеток иммунной системы. Изменение количества любого из них, говорит о наличии иммунодефицитного состояния у человека. Для определения вида расстройства проводится исследование иммуноглобулинов, т. е. количества белков в крови. Осуществляется исследование функционирования лимфоцитов. Кроме этого, проводится анализ на подтверждение или отрицание генетической патологии, а также наличие ВИЧ. После получения всех результатов анализов специалист устанавливает окончательный диагноз – первичный, вторичный или тяжёлый комбинированный иммунодефицит.

Лечение

Для выбора наиболее эффективной тактики терапии первичного иммунодефицита, необходимо определить на этапе диагностики область, в которой возникло нарушение. При недостаточности иммуноглобулинов пациентам назначают инъекции (на протяжении всей жизни) плазмы или сыворотки крови от доноров, которые содержат необходимые антитела. В зависимости от тяжести расстройства, периодичность внутривенных процедур может составлять от одной до четырёх недель. При осложнениях данного типа заболевания назначают антибиотики, в комбинации с приёмом антибактериальных, противовирусных и противогрибковых медикаментов.

Профилактика

Поскольку врождённый иммунодефицит формируется на фоне генетических нарушений, избежать его профилактическими мероприятиями невозможно. Людям, необходимо придерживаться нескольких правил, для избегания повторения инфекций:

  • не проводить длительное применение антибиотиков;
  • своевременно проходить вакцинации, рекомендованные специалистами;
  • тщательно выполнять все правила личной гигиены;
  • обогатить рацион питания витаминами;
  • отказаться от контактов с простуженными людьми.

Профилактика вторичного иммунодефицита включает в себя – вакцинацию, в зависимости от назначений врача, защищённые сексуальные контакты, своевременное лечение хронических инфекций, занятие умеренными физическими упражнениями, рациональный режим питания, прохождение курсов витаминотерапии.

При возникновении любых проявлений иммунодефицитных состояний, необходимо немедленно обращаться за консультациями к специалисту.

Все ли корректно в статье с медицинской точки зрения?

Ответьте только в том случае, если у вас есть подтвержденные медицинские знания

Вторичные (приобретенные) иммунодефициты

Вторичные (приобретенные) иммунодефициты имеют более широкое распространение в сравнении с врожденными иммунодефицитами. Приобретенные иммунодефициты могут быть результатом воздействия факторов окружающей среды и эндогенных субстанций. Факторы, ответственные за индукцию вторичных иммунодефицитов, включают в себя возбудителей инфекционных и инвазионных болезней, фармакологические вещества, эндогенные гормоны. Они могут быть результатом спленектомии, старения организма, неправильного питания, развития опухолей и радиоактивного облучения.

Инфекционные агенты. Вирус чумы собак, парвовирус собак, вирус панлейкопении кошек, вирус лейкемии кошек, вирус иммунодефицита кошек и другие вирусы индуцируют подавление клеточного звена иммунного ответа. Такие болезни, как демодекоз, эрлихиоз и системные грибковые болезни, также сопровождаются глубокой иммуносупрессией.

Фармакологические вещества. Кортикостероиды и различные антиопухолевые препараты являются наиболее распространенными фармакологическими агентами, индуцирующими иммуносупрессию. Такие препараты, как хлорамфеникол, сульфаметоксипиридазин, клиндамицин, дапсон, линкомицин, гризеофульвин, также связаны с иммуносупрессией.

Эндогенные гормоны. Гиперадренокортицизм, дефицит гормона роста, сахарный диабет и гиперэстрогенизм ассоциированы с приобретенными иммунодефицитными болезнями. Гиперадренокортицизм проявляется подавлением иммунных функций вследствие увеличения глюкокортикоидов, тогда как дефицит гормона роста вызывает иммунодефицитное состояние,связанное с торможением созревания Т-лимфоцитов за счет подавления развития тимуса. Пациенты с сахарным диабетом проявляют предрасположенность к кожным, системным и инфекциям мочеполового тракта, которые могут быть напрямую связаны со снижением концентрации сывороточного инсулина или с гликемией. Иммуносупрессивный эффект гиперэстрогенизма подобен таковому при лейкопении.

3.1. ИММУНОСУПРЕССИЯ, ИНДУЦИРУЕМАЯ ВИРУСАМИ

То, что вирусы могут влиять на показатели иммунитета, было обнаружено von Pirquet еще в 1908 году, когда он показал, что коревая инфекция задерживает развитие гиперчувствительности замедленного типа у пациентов, у которых был нормальный ответ на введение антигенов из микобактерий. Таким образом, von Pirquet был первым кто внес иммунологический аспект объяснения в проявлении повышенной чувствительности к суперинфекциям пациентов с вирусными заболеваниями. Следующим сообщением (1919г.), подтвердившим эту гипотезу, явилось то, что вирус инфлюэнцы также подавляет реакцию организма на туберкулин. В течение последующих 40 лет не было публикаций о влиянии вирусов на иммунную систему. С начала 1960 года появились данные о том, что онкогенные вирусы обладают иммуносупрессивным действием. Old и коллеги были первыми в этом вопросе, а затем пять лет спустя Good с соавторами представили первую систематизированную оценку супрессии антител, вызываемой вирусом лейкемии мышей. В течение конца 1960-х и начала 1970-х наблюдался бум в этой области: появилось большое количество сообщений, подтверждающих концепцию подавления иммунитета онкогенными вирусами. Причем было показано, что угнетается как гуморальное, так и клеточное звено иммунитета. Изучение многих неонкогенных вирусов показало, что они также проявляют иммуносупрессивную активность. Многие исследователи рассматривали иммуносупрессию, обусловленную вирусами, как важный фактор, вызывающий персистентные инфекции, ведущие к хроническим заболеваниям и к формированию опухолей. Однако, в середине 70-х количество исследований в этой области вирусологии резко сократилось, и их возрождение относится к 80-м годам. При этом авторы пытались выяснить молекулярные механизмы, обуславливающие вирус-индуцированную иммуносупрессию. Таким образом, "наука" об изучении взаимоотношений между вирусом и иммунитетом не является новой. Активизация исследований в этой области наметилась в последние годы. Этому способствовало открытие и изучение вируса иммунодефицита человека.

Вирусы могут препятствовать развитию иммунного ответа несколькими путями:

  • непосредственно лизировать лимфоидные клетки (например, вирус кори и вирус чумы собак);
  • инфицировать лимфоциты и различными путями нарушать их функции (например, вирус лейкоза крс);
  • продуцировать вирусные субстанции, которые могут непосредственно препятствовать антигенному распознаванию или клеточной кооперации (например, вирус лейкемии кошек);
  • вторично индуцировать иммуносупрессию образованием большого количества иммунных комплексов (например, вирус инфекционного перитонита кошек).

Вирус чумы собак (CDV), вирус лейкемии кошек (FeLV), парвовирусы вызывают вирус-индуцированную иммунную дисфункцию через различные механизмы.

Вирусная коревая инфекция у человека может индуцировать временное состояние иммуносупрессии за счет разрушения Т-лимфоцитов в Т-зависимых зонах лимфоидных структур. Это обусловлено наличием специфических рецепторов вируса кори на поверхности Т-клеток.

Вирус чумы собак тесно связан с вирусом кори, и хотя наличие эквивалентных вирусных рецепторов на поверхности Т-клеток собак не доказано, имеются убедительные клинические и экспериментальные данные, показывающие, что этот вирус также вызывает состояние временной иммуносупрессии. В результате инфицирования им собак-гнотобиотов наблюдается атрофия тимуса с генерализованным лимфоидным истощением, приводящее к лимфопении. При этом нарушается бласттрансформация лимфоцитов in vitro, однако способность отторгать аллогенный кожный трансплантат не изменяется. Степень лимфоидного истощения, и, следовательно, появление Т-клеточной иммуносупрессии коррелирует с исходом болезни. Более сильно поражены животные, у которых отсутствует ответ на внутрикожное введение ФГА, они быстро погибают от энцефалитов, в то время как животные, сохранившие Т-клеточный иммунный ответ, часто выздоравливают.

Впрус чумы собак вызывает иммуносупрессию прежде всего за счет цитотоксического действия при ранней репликации вируса в лимфоретикулярной ткани. В результате, возникают некроз лимфоцитов в лимфатических узлах, селезенке, тимусе и лимфопения. Кроме того, отмечается снижение Т-клеточного ответа на митогены in vitro и снижение гуморального иммунного ответа при инфекциях, сопутствующих CDV. Это наблюдается на ранней стадии заболевания с последующим вторичным развитием бактериальных инфекций.

Иные механизмы лежат в основе иммуносупрессии, вызываемой вирусом лейкемии кошек.

Заболевание, вызываемое FeLV, вероятно, является наиболее изученным в ветеринарии. Инфицирование котят ведет к вирус-индуцированной деструкции лимфоидных тканей с последующей их атрофией и повышенной чувствительностью к инфекциям. При этом, большинство иммунных показателей снижены, и у животных нарушается способность отторгать аллогенный кожный трансплантат. Обычно, инфекция ведет к иммуносупрессии без явного разрушения лимфоидных тканей. Это связано с продукцией излишних количеств вирусного оболочечного белка р15Е. Точный механизм действия этого избытка неясен, но есть предположение, что он препятствует активации лимфоцитов и распознаванию антигена. В литературе описана иммуносупрессия, вызываемая дефект-реплицированным мутантом вируса лейкемии кошек, которая происходила во время естественной болезни. Хотя FeLV часто называют AIDS у кошек из-за его сходства с HIV инфекцией, более подходящей моделью для животных может служить описанный Т-лимфотропный лентивирус кошек.

Для инфекции, вызываемой FeLV, характерным является атрофия тимуса, лимфопения, низкий уровень комплемента в крови и высокий уровень иммунных комплексов. При этом у кошек наблюдается повышенная чувствительность к различным инфекциям, включающих инфекционный перитонит, герпесвирусные риниты, вирусную панлейкопению, гемобартонеллез и токсоплазмоз. Дальнейшее развитие этих болезней вызывает фундаментальный дефект Т-клеток, который проявляется in vitro выраженным снижением Т-клеточного ответа на митогены. Первичному Т-клеточному дефекту сопутствует вторичный функциональный дефект В-клеток. Но дефект В-клеток может быть и не связан с дефектом Т-клеток. В-клетки не способны продуцировать IgG-антитела в отсутствие Т-хелперов, но могут сохранять способность синтеза IgM-антител через Т-клеточные независимые механизмы. Поэтому активность В-клеток только частично нарушена при инфекции, вызываемой FeLV.

Проявление дефекта Т-клеток связано с отсутствием требуемой стимуляции для активации Т-клеток. Сопутствующей проблемой является нарушение в продукции интерлейкина-2, лимфокина, необходимого для сохранения и поддержки активации Т-клеток, пролиферации и продукции Т-хелперов, что благоприятно влияет на продукцию антител В-клетками. В иммуносупрессивном действии FeLV инфекции, вероятно, участвуют два сывороточных фактора. Вирусный оболочечный белок р15Е непосредственно вызывает иммуносупрессию лимфоцитов и отменяет ответ лимфоцитов на различные митогенные стимулы in vitro. Это действие, возможно, связано с его способностью блокировать ответ Т-41 лимфоцитов на интерлейкин-1 и интерлейкин-2 и отменять синтез интерлейкина-2. Когда р15Е вводят кошкам одновременно с вакциной против FeLV, не происходит образования защитных антител к мембранному клеточному антигену онкорнавируса кошек. Таким образом, р15Е играет центральную роль в иммуносупрессии, вызываемой FeLV как in vivo так и in vitro. К тому же, пораженные кошки имеют высокий уровень циркулирующих иммунных комплексов, которые сами по себе являются иммуносупрессорами.

FeLV может непосредственно нарушать миграцию Т-клеток из костного мозга в периферические лимфоидные ткани, уменьшает число нормальных Т-клеток в тимусе, селезенке и в лимфатических узлах. Очевидно, несколько различных механизмов поражения В- и Т-клеток могут способствовать иммуносупрессии кошек, инфицированных FeLV.

Парвовирусная инфекция многих видов животных приводит к иммуносупрессии за счет митолитического влияния вируса на деление стволовых клеток в костном мозге. Следовательно, лимфопения и гранулоцитопения являются следствием прямого воздействия инфекции, вызываемой этим вирусом. Парвовирусная инфекция собак также сопровождается иммуносупрессией, и энцефалиты, обусловленные вакцинацией против чумы, описаны у собак, экспериментально инфицированных парвовирусом.

Вирус панлепкопенпп кошек, как и парвовирус, обладает менее сильным иммуносупрессивным эффектом, который в большей степени ограничивает временное истощение Т-клеток. Возможный иммуносупрессивный эффект живой аттенуированной вакцины, в частности, вакцины против парвовируса собак, остается под вопросом, но считается, что одновременная иммунизация аттенуированными парвовирусом и вирусом чумы безопасна и эффективна.

Инфекция жеребых кобыл, обусловленная герпесвирусом лошадей, может вызывать аборты в последней трети беременности. Если жеребенок вынашивается к сроку, он предрасположен к тяжелым инфекциям, которые обусловлены вирус-индуцированной атрофией всех лимфоидных структур.

Вирусная диарея крупного рогатого скота - другой пример вирус-индуцированной иммуносупрессии, которая сопровождается повреждением Т- и В-клеточного иммунитета. Это способствует развитию хронического изнуряющего синдрома с персистирующей инфекцией. Этот вирус также способен проходить через плаценту, вызывая иммунологическую толерантность и снижение иммунного ответа у телят.

Вирус лейкоза крупного рогатого скота - проявляет тропизм к В-клеткам, в которых он вызывает пролиферацию и иногда неопластическую трансформацию. Влияние его на иммунологические параметры зависит от типа и стадии болезни. Обычно наблюдается лимфоцитоз с увеличением количества В-клеток, экспрессирующих поверхностные иммуноглобулины.

3.2. ИММУНОСУПРЕССИЯ, ВЫЗЫВАЕМАЯ БАКТЕРИЯМИ

В сравнении с вирусными инфекциями, при которых иммуносупрессивный эффект обычно связан с прямым инфицированием лимфоидных тканей, механизм вторичной иммуносупрессии при бактериальных болезнях недостаточно изучен.

При болезни Ионе наблюдается парадокс, при котором несмотря на выраженный клеточный иммунный ответ к возбудителю, соответствующая реакция к другим антигенам может быть нарушенной или не проявляться совсем. Так у пораженного крупного рогатого скота не развивается кожная реакция на туберкулин. Такая же ситуация наблюдается при хронических микобактериальных болезнях у человека, при которых отмечается состояние анергии. При этом, лимфоциты не подвергаются трансформации в ответ на ФГА in vitro, увеличивается число клеток-супрессоров в присутствии растворимого фактора, который препятствует проявлению клеточных реакций.

К концу последнего десятилетия стало очевидным, что отсутствие стимуляции лимфоцитов in vitro ассоциируется со многими хроническими болезнями инфекционного и неинфекционного происхождения. Лимфоциты не способны отвечать на митогены в присутствии гомологичной нормальной сыворотки или фетальной сыворотки крупного рогатого скота. В других случаях лимфоциты проявляют реакцию, которая возникает при выделении их из аутологичной сыворотки. Супрессия в этом случае связана с действием супрессивных сывороточных иммунорегуляторных факторов. Причастность этих веществ к иммунному ответу in vivo остается неясной. Известно только, что вещества с такими свойствами обнаружены во многих сыворотках, полученных от нормальных и больных животных, однако природа этих веществ не установлена. Также неясно, являются ли они причиной болезни, или образуются в процессе ее, участвуя в механизме, с помощью которого микробный агент проявляет в дальнейшем свою патогенность. Необходимы эксперименты, чтобы показать повышение патогенности микроорганизмов под воздействием этих факторов, поскольку возможно, что они в этих случаях не играют никакой роли.

3.3. ИММУНОДЕФИЦИТ, АССОЦИИРОВАННЫЙ С ДЕМОДЕКОЗОМ У СОБАК

Особая генетическая чувствительность собак, предопределяющая развитие демодекоза, детерминируется их неспособностью к развитию гиперчувствительности замедленного типа при внутрикожной инъекции клещевого антигена. Молекулярные основы этого дефекта остаются невыясненными.

Многие исследователи изучают роль иммуносупрессии как этиологический фактор при демодекозе у собак с различными результатами, которые далеки от убедительных и каждая сторона имеет своих оппонентов. В защиту гипотезы, что демодекоз является результатом иммунодефицита Т-клеток свидетельствуют следующие наблюдения:

  • лимфоциты, полученные от животных с демодекозом, проявляют in vitro слабую реакцию бласттрансформации под воздействием ФГА;
  • внутрикожная проба с ФГА у Доберман-пинчеров сильно пораженных демодекозом, значительно снижена в сравнении со здоровыми животными того же возраста.

Другие данные свидетельствуют против предполагаемой роли иммунодефицита при демодекозе:

  • иммуносупрессия исчезает при уничтожении популяции клещей;
  • иммуностимуляция животных левамизолом приводит к реверсии иммуносупрессии;
  • факторы, супрессирующие бластогенез, обнаруживаются при демодекозе только при наличии вторичной стафилококковой инфекции, и не обнаруживаются в сыворотке собак с чешуйчатой формой болезни, при которой нет ассоциации со вторичными бактериальными инфекциями. Поэтому, угнетение функции Т-клеток не связано с пролиферацией клещей Demodex, а скорее всего является результатом вторичной стафилококковой инфекции.

Большинство данных свидетельствуют о том, что иммуносупрессия, наблюдаемая при демодекозе, является результатом вторичной пиодермы и не имеет этиологической роли в пролиферации клещей Demodex. Если в действительности иммунный ответ связан с этиологией демодекоза, существует одна гипотеза, по которой имеет место первичный дефект антиген-специфичных Т-клеток, который дает начальную пролиферацию клещей.

Несмотря на вероятность того, что иммуносупрессия не является причиной демодекоза, необходимо помнить, что у животных с генерализованной формой болезни, все-таки, отмечается состояние иммуносупрессии. В результате этого, иммунопрофилактические мероприятия у них оказываются недостаточно эффективными.

Генерализованный демодекоз собак приводит к развитию иммуносупрессии. Функции Т-клеток, как показывают результаты исследований бласттрансформации лимфоцитов под воздействием митогенов in vitro, и реакция гиперчувствительности замедленного типа на конкавалин А резко снижены. Интересным является то, что подавление реакции лимфоцитов на митогены in vitro имеет место только в присутствии сыворотки от пораженных собак. Если лимфоциты от пациента отмываются и инкубируются с нормальной сывороткой собаки, то процесс бласттрансформации протекает нормально. Эти результаты позволяют предполагать присутствие в сыворотке фактора супрессии, индуцированного популяцией клещей. В поддержку этого положения свидетельствует тот факт, что лимфоциты от нормальных собак имеют пониженную реакцию на митогены в случае, когда инкубируются с сывороткой от собак больных демодекозом. Фактор супрессии располагается в бета-глобулиновой фракции сыворотки пациента, и некоторые исследователи предполагают, что он действительно представляет комплекс антиген-антитело, состоящий из антигена клеща и антител хозяина. Поэтому, иммуносупрессивное действие циркулирующих иммунных комплексов выражается в снижении функции Т-клеток, что характерно для многих заболеваний подобных вирусной лейкемии кошек. Если возникает такая ситуация, дефект Т-клеток следует рассматривать как результат болезни, или же он связан С образованием пиодермы. Вряд ли здесь имеют место какие-либо другие причины. Это положение подтверждается наблюдениями, когда уничтожение популяции клещей и вызываемых ими пиодермальных эффектов, возвращает способность к нормальному Т-клеточному ответу на митогены. Гуморальный иммунитет, функции нейтрофилов и количество Т-клеток у собак с демодекозом остаются в норме.

В заключение, следует отметить, что демодекоз скорее всего является результатом врожденного дефекта Т-клеток, позволяющего клещу Demodex canis инфицировать хозяина. Присутствие большого числа клещей способствует дополнительному снижению функции Т-клеток посредством образования сывороточного фактора супрессии, приводящего к генерализованному иммунодефициту.

3.4. НАРУШЕНИЕ ПАССИВНОЙ ПЕРЕДАЧИ АНТИТЕЛ

Нарушение пассивной передачи материнских антител -один из наиболее распространенных примеров приобретенного иммунодефицита в ветеринарии, который является главной причиной неонатальной инфекции и ранней смертности преимущественно у жеребят, телят, козлят, ягнят и поросят. Нарушение в получении молозива вызывает у новорожденных омфалофлебиты, септические артриты, септицемию, пневмонию и диарею. Повышенная чувствительность к инфекции является результатом отсутствия материнских иммуноглобулинов, которые необходимы для прямого бактерицидного действия на патогены и для их опсонизации.

Важность этого положения зависит от родственного содействия плацентарной в сравнении с колостральной передачей антител в защите новорожденных, которое является отражением формирования плаценты. Плацента кобыл, ослиц, коров, овец и свиней препятствует передаче иммуноглобулинов от матери потомству, в то время как эндоте-лиохориальная плацента у собак и кошек обеспечивает ограниченный их трансплацентарный перенос. Считается, что кишечная абсорбция иммуноглобулинов имеет место только в первые 24 часа, и один из авторов отмечает, что у собак не происходит абсорбции после этого времени. Абсорбция наиболее эффективна в первые 6 часов.

Недостаток молозива у матери не оказывает существенного влияния на щенков, пока поддерживаются гигиенические условия, однако есть сообщения, которые предполагают, что недостаток молозива у кошек способствует увеличению заболеваемости и смертности у котят. Безусловно, недостаток пассивной передачи антител с молозивом имеет важное значение у коров, лошадей, овец и свиней, и очень трудно вырастить новорожденных телят, жеребят, ягнят и поросят даже в идеальных условиях при полном отсутствии молозива.

Жеребята обычно рождаются по существу агаммаглобулинемичными только с небольшим количеством IgМ, обнаруживаемого в их сыворотке. С другой стороны, ягнята способны образовывать низкий уровень IgG1 и IgM в поздней стадии беременности, но лишены IgG2 и IgA при рождении. В обоих случаях защита новорожденных зависит от получения молозива. Отсутствие материнских антител у новорожденных препятствует борьбе организма с инфекционными агентами, с которыми он сталкивается в ранней жизни.

Получение молозива новорожденными приводит к кишечной абсорбции большого количества интактных материнских иммуноглобулинов в течение первых 6-8 часов жизни. Ингибиторы трипсина в молозиве препятствуют разрушению глобулинов в желудке новорожденного. Абсорбция этих глобулинов происходит посредством рецепторов для Fc-фрагмента иммуноглобулина, расположенных на поверхности эпителиальных клеток кишечника. Эти свойства клеток, которые обеспечивают кишечную абсорбцию материнских антител, быстро снижаются после 12 часов; между 24 и 48 часами после рождения кишечник не способен абсорбировать иммуноглобулины, несмотря на высокую концентрацию иммуноглобулинов в кишечном содержимом. Прекращение абсорбции ассоциируется с замещением специализированных иммуноабсорбтивных энтероцитов зрелым эпителием. Обычно, абсорбированные материнские антитела постепенно исчезают в течение 6-8 недель жизни, как только новорожденные начинают синтезировать собственные антитела.

Нарушение пассивной передачи материнских антител может иметь место у любого вида домашних животных, но наиболее документировано у лошадей. Сообщения показывают, что нарушение передачи материнских антител может достигать у 24% жеребят. Нарушение передачи может определяться материнскими факторами, а также состоянием самих новорожденных и факторами окружающей среды. У некоторых матерей может нарушаться образование молозива с достаточной концентрацией иммуноглобулинов, преимущественно из-за генетического дефицита. С другой стороны, матери с нормальной продукцией молозива теряют иммуноглобулины в связи с преждевременной лактацией. Преждевременная лактация является главной причиной нарушения пассивной передачи и ассоциируется с плацентитами, двойневой беременностью и преждевременным отделением плаценты у лошади. Концентрация колостральных иммуноглобулинов ниже чем Юмг/мл, свидетельствующая о ненормальной продукции или преждевременной лактации, вызывает нарушение в пассивной передаче.

Жеребенок должен получать адекватное количество молозива в течение первых 12 часов жизни. Слабые или неприспособленные жеребята могут не получить необходимого количества. Скользкие полы усложняют процесс приема молозива. В этих случаях необходимо его скармливать из бутылки. Некоторые новорожденные жеребята не приспособлены хорошо пить из бутылки, поэтому они могут получать недостаточное количество молозива. Если жеребенок получил адекватное количество молозива, эпителий кишечника должен абсорбировать иммуноглобулины, причем скорость абсорбции варьирует у каждого жеребенка. Эндогенная продукция глюкокортикоида, ассоциированная со стрессом, может приводить к уменьшению абсорбции IgG специализированными иммуноабсорбтивными энтероцитами. Таким образом, нарушение пассивной передачи может иметь место по следующим причинам: количество и качество материнского молозива, способность жеребенка потреблять достаточное количество молозива и способность жеребенка абсорбировать иммуноглобулины.

В последние годы в литературе широко представлены данные по иммунодефицитам у телят, поросят и ягнят, связанные с несвоевременным и недостаточным получением молозива после рождения. Показано, что на процесс абсорбции иммуноглобулинов кишечником новорожденных животных влияют различные факторы окружающей среды и хозяйственной деятельности. При этом, заболеваемость и смертность молодняка находятся в прямой зависимости от времени получения первого молозива.

Диагноз нарушения пассивной передачи антител основан на определении концентрации IgG в сыворотке крови новорожденных животных в течение первых 12 часов жизни. Для этого используются 3 метода: тест помутнения с сульфатом цинка, радиальная иммунодиффузия или латекс-агглютинация. Тест помутнения является быстрым простым методом, в котором сульфат цинка (у жеребят), сульфат натрия (у телят) или сульфат аммония (у поросят) добавляется к испытуемой сыворотке. Полученные преципитаты иммуноглобулинов, могут быть качественно измерены колориметрически при 485 нм. Жеребята, которые имеют в сыворотке больше чем 8 мг/мл иммуноглобулинов, имеют хорошую материнскую передачу. Значение между 4 и 8 мг/мл свидетельствует о частичном нарушении передачи, и уровень ниже 4 мг/мл указывает на значительное нарушение колостральной абсорбции. Значения для каждого вида отличаются. Телята с содержанием иммуноглобулинов более 16 мг/мл имеют хорошую абсорбцию, уровень между 8 и 16 мг/мл показывает пониженную абсорбцию, и нарушение материнской передачи является явной, когда уровень ниже 8 мг/мл. Тест помутнения с сульфатом цинка является полуколичественным и имеет тенденцию к завышенной оценке уровня IgG в сыворотке. Поэтому, действительная концентрация IgG в сыворотке ниже 4 мг/мл может казаться выше в тесте помутнения, и эти иммунологически дефицитные жеребята могут не получать надлежащего лечения. Реакция с сульфатом цинка зависит от таких факторов, как температура, срок хранения и приготовления раствора сульфата цинка.

Более точным методом, с помощью которого определяется уровень IgG в сыворотке крови животных, является простая радиальная иммунодиффузия. Этот тест является коммерчески доступным, но время инкубации (18-24 часа), необходимое для постановки реакции, сдерживает его использование для диагностики пассивной передачи в течение первых критических 12 часов жизни. Латекс-агглютинация является коммерчески доступным тестом в практике для диагностики пассивной передачи и является более точным, чем турбидиметрический тест. Данные латекс-агглютинации на 90% согласуются с данными РИД в определении уровня IgG менее чем 4 мг/мл. Латекс-тест требует смеси 5 мкл исследуемой сыворотки с разведенным соответствующим образом набором с последующей визуальной оценкой агглютинации. Главным недостатком этого теста является то, что он не позволяет дифференцировать концентрацию 4 мг/мл от 8 мг/мл у жеребят.

Как только установлено нарушение пассивной передачи, для коррекции дефицита необходимо выпаивание молозива из бутылки или внутривенное введение иммуноглобулинов (в зависимости от возраста новорожденного). Введение 4 л плазмы в течение 2-5 дней необходимо для обеспечения надежного уровня IgG. Доноры плазмы должны быть свободны от антиэритроцитарных лизинов и агглютининов и содержаться в этих же условиях что и жеребята по крайней мере в течение нескольких месяцев. Коммерчески доступная плазма лошади, сертифицированная как негативная к эритроцитарным аллоантителам, также может быть использована в практике коневодства при лечении нарушения пассивной передачи.

3.5. БЕРЕМЕННОСТЬ И ЛАКТАЦИЯ

3.6. ДРУГИЕ ФАКТОРЫ, СПОСОБСТВУЮЩИЕ ИММУНОСУПРЕССИИ

Кандидоз кожи и слизистых оболочек. Возбудителем кандидоза являются условно патогенные дрожжеподобные грибы Candida albicans. Иммунодефициты, обычно включающие дефекты Т-клеток, могут предрасполагать к болезням, которые вызывают язвенные поражения кожи и слизистых поверхностей. Это состояние иногда наблюдается у собак, и его следует отличать от аутоиммунных кожных болезней. Не определено, в каких случаях это заболевание является результатом первичных или вторичных иммунодефицитов или при тех и других. Эксперименты показывают, что иммунологическое состояние изменяется под влиянием стимуляции левамизолом.

Микроэлементы и витамины. Их роль в иммунном ответе очевидна, хотя влияние многих агентов и механизм их действия не всегда ясен. Цинк является наиболее важным микроэлементом, и его связь с летальным признаком А46 (врожденный иммунодефицит) установлена. В дополнение, витамин Е и селен имеют важную роль в формировании нормального иммунного ответа, а иммуностимулирующее действие витамина Е используется в адъювантах. Собаки, потребляющие в пищу корм с дефицитом витамина Е и селена, имеют выраженные повреждения иммунной системы. Восстановление нормального иммунного ответа происходит в результате применения добавок витамина Е, но не селена.

Окружающие контаминанты. Окружающие контаминанты, включающие тяжелые металлы, такие как свинец, кадмий, ртуть, различные промышленные химикалии и пестициды, оказывают отрицательное влияние на иммунный ответ. Грибные метаболиты, которые контаминируют корма, также имеют важное значение; имеются данные о иммуносупрессивном действии афлатоксинов, выделяемых Aspergillus spp.

Терапевтические препараты. Перечень терапевтических веществ, оказывающих нежелательный эффект на иммунную систему, довольно длинный. Однако, в целом их влияние незначительно, в противном случае медикаменты не будут допущены на рынок. Известно действие обезболивающих препаратов на неспецифическую защиту, показано заметное нарушение бластогенного ответа лимфоцитов у собак после анестезии метоксифлуораном. Хотя это может не иметь какого-либо практического значения, оно, по крайней мере, подразумевает, что осторожность должна осуществляться в интерпретации результатов, полученных при изучении функций лимфоцитов после анестезии.

Табл.2. Основные причины вторичных иммунодефицитов у животных
НАРУШЕНИЯ ПАССИВНОЙ ПЕРЕДАЧИ АНТИТЕЛ (мать - плод - новорожденный) все виды

ВИРУСЫ: вирус чумы собак, парвовирус собак, вирус лейкемии кошек, вирус панлейкопении кошек, герпесвирус 1 лошадей, вирусная диарея КРС

ЛЕКАРСТВЕННЫЕ ПРЕПАРАТЫ: иммуносупрессивной / цитотоксической терапии, амфотерицин В

НАРУШЕНИЯ МЕТАБОЛИЗМА: дефицит цинка, дефицит железа, дефицит витамина Е

ДИАБЕТЫ, ГИПЕРАДРЕНОКОРТИЦИЗМ, УРЕМИЯ, БЕРЕМЕННОСТЬ

БАКТЕРИИ: Mycobacterium paratuberculosis (болезнь Ионе)

ТОКСИНЫ: микотоксин папоротник-орляк трихлорэтилен-экстракт сои

РАДИАЦИЯ
НАРУШЕНИЯ ЭНДОКРИННОЙ СИСТЕМЫ:
дефицит гормона роста, эстрогенная токсичность

ОПУХОЛИ: лимфома, множественная миелома

Табл.4. Иммуносупрессивное действие лимфоидных опухолей

Опухоль Тип клеток Проявление иммуносупрессии Механизм
Лейкемия кошек Т-клетки лимфопения, задержка отторжения кожных трансплантантов, повышенная чувствитель ность к инфекциям, отсутствие ответа на митогены Супрессивные вирусные белки, р15Е, супрессия клеток
Болезнь Марека Т-клетки отсутствие ответа на митогены, подавление клеточной цитотоксичности, подавление продукции IgG супрессия макрофагов
Лимфоидный лейкоз птиц В-клетки супрессия лимфоцитов
Лейкоз КРС В-клетки подавление синтеза сывороточного IgM растворимый супрессорный фактор
Миелома В-клетки повышенная чувствительность к инфекциям растворимый опухолевый клеточный фактор
Злокачественная лимфома собак В-клетки Предрасположенность к инфекциям, сопровождающихся аутоиммунными расстройствами не известен
Лимфосаркома лошадей Т-клетки повышенная чувстви тельность к инфекциям опухоль клеток-супрессоров