Фармакокинетические процессы - всасывание, распределение, депонирование, биотрансформация и выведение - связаны с проникновением ЛВ через биологические мембраны (в основном через цитоплазматические мембраны клеток). Существуют следующие способы проникновения веществ через биологические мембраны: пассивная диффузия, фильтрация, активный транспорт, облегченная диффузия, пиноцитоз (рис. 1.1).
Пассивная диффузия. Путем пассивной диффузии вещества проникают через мембрану по градиенту концентрации (если концентрация вещества с одной стороны мембраны выше, чем с другой, вещество перемещается через мембрану от большей концентрации к меньшей). Этот процесс не требует затраты энергии. Поскольку биологические мембраны в основном состоят из липидов, таким способом через них легко проникают вещества, растворимые в липидах и не имеющие заряда, т.е. липофильные неполярные вещества. И напротив, гидрофильные полярные соединения непосредственно через липиды мембран практически не проникают.

Внеклеточное через липиды пространство
Активный
транспорт
Биологическая
мембрана
Рис. 1.1. Основные способы проникновения веществ через биологические мембраны (Из: Rang Н.Р. etal. Pharmacology. - Ln, 2003, с изм.).

Если Л В являются слабыми электролитами - слабыми кислотами или слабыми основаниями, то проникновение таких веществ через мембраны зависит от степени их ионизации, так как путем пассивной диффузии через двойной липидный слой мембраны легко проходят только неионизированные (незаряженные) молекулы вещества.
Степень ионизации слабых кислот и слабых оснований определяется: значениями pH среды; константой ионизации (Ка) веществ.
Слабые кислоты в большей степени ионизированы в щелочной среде, а слабые основания - в кислой.
Ионизация слабых кислот
НА ^ Н+ + А~
щелочная среда
Ионизация слабых оснований
ВН+ ^ В + Н+
кислая
среда
Константа ионизации характеризует способность вещества к ионизации при определенном значении pH среды. На практике для характеристики способности веществ к ионизации используют показатель рКа, который является отрицательным логарифмом Ka(-lg Ка). Показатель рКа численно равен значению pH среды, при котором ионизирована половина молекул данного вещества. Значения рКа слабых кислот, так же как и слабых оснований, варьируют в широких пределах. Чем меньше рКа слабой кислоты, тем легче она ионизируется даже при относительно низких значениях pH среды. Так, ацетилсалициловая кислота (рКа= 3,5) при pH 4,5 ионизирована более чем на 90%, в то же время степень ионизации аскорбиновой кислоты (рКа=11,5) при том же значении pH составляет доли % (рис. 1.2). Для слабых оснований существует обратная зависимость. Чем выше рКа слабого основания, тем в большей степени оно ионизировано даже при относительно высоких значениях pH среды.
Степень ионизации слабой кислоты или слабого основания можно рассчитать по формуле Гендерсона-Гассельбальха:

Рис. 1.2. Зависимость степени ионизации слабых кислот от pH среды и рКа соединений.
А - ацетилсалициловая кислота (рКа = 3,5); Б - аскорбиновая кислота (рКа = 11,5).

lg-^-U рН-рК [ЯД] “
для слабых кислот, %-Щ- = рН-рКа [ВН + ]
для слабых оснований.
Эта формула позволяет определить, какова будет степень проникновения ЛВ (слабых кислот или слабых оснований) через мембраны, разделяющие среды организма с различными значениями pH, например при всасывании Л В из желудка (pH 2) в плазму крови (pH 7,4).
Пассивная диффузия гидрофильных полярных веществ возможна через водные поры (см. рис. 1.1). Это белковые молекулы в мембране клеток, проницаемые для воды и растворенных в ней веществ. Однако диаметр водных пор невелик (порядка 0,4 нм) и через них могут проникать только небольшие гидрофильные молекулы (например, мочевина). Большинство гидрофильных лекарственных веществ, диаметр молекул которых составляет более 1 нм, через водные поры в мембране клеток не проходят. Поэтому большинство гидрофильных лекарственных веществ не проникают внутрь клеток.
Фильтрация - этот термин используют как по отношению к проникновению гидрофильных веществ через водные поры в мембране клеток, так и по отношению к их проникновению через межклеточные промежутки. Фильтрация гидрофильных веществ через межклеточные промежутки происходит под гидростатическим или осмотическим давлением. Этот процесс имеет существенное значение для всасывания, распределения и выведения гидрофильных Л В и зависит от величины межклеточных промежутков.
Так как межклеточные промежутки в различных тканях не одинаковы по величине, гидрофильные ЛВ при различных путях введения всасываются в неодинаковой степени и распределяются в организме неравномерно. Например, про
межутки между эпителиальными клетками слизистой оболочки кишечника невелики, что затрудняет всасывание гидрофильных Л В из кишечника в кровь.
Промежутки между эндотелиальными клетками сосудов периферических тканей (скелетных мышц, подкожной клетчатки, внутренних органов) имеют достаточно большие размеры (порядка 2 нм) и пропускают большинство гидрофильных Л В, что обеспечивает достаточно быстрое проникновение Л В из тканей в кровь и из крови в ткани. В то же время в эндотелии сосудов мозга межклеточные промежутки отсутствуют. Эндотелиальные клетки плотно прилегают к друг другу, образуя барьер (гематоэнцефалический барьер), препятствующий проникновению гидрофильных полярных веществ из крови в мозг (рис. 1.3).
Активный транспорт осуществляется с помощью специальных транспортных систем. Обычно это белковые молекулы, которые пронизывают мембрану клетки (см. рис. 1.1). Вещество связывается с белком-переносчиком с наружной стороны мембраны. Под влиянием энергии АТФ происходит изменение конформации белковой молекулы, что приводит к уменьшению силы связывания между переносчиком и транспортируемым веществом и высвобождению вещества с внутренней стороны мембраны. Таким образом в клетку могут проникать некоторые гидрофильные полярные вещества.
Фильтрация гидрофильных веществ через межклеточные промежутки

Пассивная
диффузия
липофильных
веществ
Рис. 1.3. Проникновение веществ через стенки капилляров мозга (А) и капилляров скелетных мышц (Б). (Из: Wingard L.B. Human Pharmacology. - Phil., 1991, с изм.).
Активный транспорт веществ через мембрану обладает следующими характеристиками: специфичностью (транспортные белки избирательно связывают и пе-

реносят через мембрану только определенные вещества), насыщаемостью (при связывании всех белков-переносчиков количество вещества, переносимого через мембрану, не увеличивается), происходит против градиента концентрации, требует затраты энергии (поэтому угнетается метаболическими ядами).
Активный транспорт участвует в переносе через клеточные мембраны таких веществ, необходимых для жизнедеятельности клеток, как аминокислоты, сахара, пиримидиновые и пуриновые основания, железо, витамины. Некоторые гидрофильные лекарственные вещества проникают через клеточные мембраны с помощью активного транспорта. Эти Л В связываются с теми же транспортными системами, которые осуществляют перенос через мембраны вышеперечисленных соединений.
Облегченная диффузия - перенос веществ через мембраны с помощью транспортных систем, который осуществляется по градиенту концентрации и не требует затраты энергии. Так же, как активный транспорт, облегченная диффузия - это специфичный по отношению к определенным веществам и насыщаемый процесс. Этот транспорт облегчает поступление в клетку гидрофильных полярных веществ. Таким образом через мембрану клеток может транспортироваться глюкоза.
Кроме белков-переносчиков, которые осуществляют трансмембранный перенос веществ внутрь клетки, в мембранах многих клеток есть транспортные белки - Р-гликопротеины, способствующие удалению из клеток чужеродных соединений. Р-гликопротеиновый насос обнаружен в эпителиальных клетках кишечника, в эндотелиальных клетках сосудов мозга, образующих гематоэнцефалический барьер, в плаценте, печени, почках и других тканях. Эти транспортные белки препятствуют всасыванию некоторых веществ, их проникновению через гистогема- тические барьеры, влияют на выведение веществ из организма.
Пиноцитоз (от греч. ріпо - пью). Крупные молекулы или агрегаты молекул соприкасаются с наружной поверхностью мембраны и окружаются ею с образованием пузырька (вакуоли), который отделяется от мембраны и погружается внутрь клетки. Далее содержимое пузырька может высвобождаться внутри клетки или с другой стороны клетки наружу путем экзоцитоза.

Общая фармакология

А. Фармакокинетика

Фармакокинетика - всасывание, распределение, депонирование, превращения и выведение лекарственных веществ.

Все эти процессы связаны с проникновением лекарственных веществ через клеточную (цитоплазматическую) мембрану. Основ­ные способы проникновения веществ через клеточную мембрану: пассивная диффузия, фильтрация, активный транспорт, облегчен­ная диффузия, пиноцитоз.

Пассивная диффузия - проникновение веществ через мембрану в любом ее месте по градиенту концентрации (если с одной стороны мембраны концентрация вещества выше, чем с дру­гой стороны, вещество проникает через мембрану в сторону мень­шей концентрации). Так как мембраны состоят в основном из ли-пидов, путем пассивной диффузии через клеточную мембрану легко проникают липофильные неполярные вещества, т.е. вещества, ко­торые хорошо растворимы в липидах и не несут электрических за­рядов. Наоборот, гидрофильные полярные вещества (вещества, хо­рошо растворимые в воде и имеющие электрические заряды) путем пассивной диффузии через мембрану практически не проникают.

Многие лекарственные вещества являются слабыми электролита­ми - слабокислыми соединениями или слабыми основаниями. В ра­створе часть таких веществ находится в неионизированной (неполяр­ной) форме, а часть - в виде ионов, несущих электрические заряды. Ионизация кислых соединений происходит путем их диссоциа­ции.

Ионизация оснований происходит путем их протонирования.

Путем пассивной диффузии через мембраны проникает неиони-зированная (неполярная) часть слабого электролита. Таким обра­зом, пассивная диффузия слабых электролитов обратно пропорци­ональна степени их ионизации.

В кислой среде увеличивается ионизация оснований, а в щелоч­ной среде - ионизация кислых соединений. Однако при этом сле­дует учитывать показатель рК а - отрицательный логарифм константы ионизации. Численно рК а равен рН, при котором ионизирована половина молекул соединения.

Значения рК а для разных кислот и разных оснований могут су­щественно различаться. Можно предположить, например, что аце­тилсалициловая кислота (аспирин) при рН 4,5 будет мало диссоци­ировать. Однако для ацетилсалициловой кислоты рК а = 3,5, и результат получается неожиданным.

Для определения степени ионизации используют формулу Henderson-Hasselbalch:

Следовательно, при рН 4,5 ацетилсалициловая кислота почти полностью диссоциирована.

Фильтрация. В клеточной мембране имеются водные кана­лы (водные поры), через которые проходит вода и могут проходить растворенные в воде гидрофильные полярные вещества, если раз­меры их молекул не превышают диаметра каналов. Этот процесс называют фильтрацией.

Так как через водные каналы цитоплазматической мембраны нет постоянного однонаправленного движения воды, ряд авторов счи­тают, что через водные каналы гидрофильные полярные вещества

проникают путем пассивной диффузии по градиенту концентра­ции (пассивная диффузия в водной фазе).

Однако диаметр водных каналов цитоплазматической мембраны очень мал - 0,4 нм, поэтому большинство лекарственных веществ через эти каналы не проходят.

Фильтрацией называют также прохождение воды и растворен­ных в ней веществ через межклеточные промежутки. Путем фильт­рации через межклеточные промежутки проходят гидрофильные полярные вещества. Степень их фильтрации зависит от величины межклеточных промежутков.

В эндотелии сосудов мозга межклеточные промежутки отсутству­ют и фильтрация большинства лекарственных веществ невозмож­на. Эндотелий сосудов мозга образует барьер, который препятству­ет проникновению гидрофильных полярных веществ из крови в мозг, - гематоэнцефалический барьер.

В некоторых областях головного мозга имеются «дефекты» гематоэнцефалического барьера, через которые возможно прохождение гидрофильных полярных веществ. Так, в area postrema продолгова­того мозга гидрофильные полярные вещества могут проникать в триггер-зону рвотного центра.

Некоторые гидрофильные полярные вещества проникают через гематоэнцефалический барьер путем активного транспорта (напри­мер, леводопа).

Липофильные неполярные вещества легко проходят через гема­тоэнцефалический барьер путем пассивной диффузии.

В эндотелии сосудов периферических тканей (мышцы, подкож­ная клетчатка, внутренние органы) межклеточные промежутки до­статочно велики и большинство гидрофильных полярных лекар­ственных веществ легко проходят через них путем фильтрации. При внутривенном введении эти вещества быстро проникают в ткани. При подкожном, внутримышечном введении вещества проникают из тканей в кровь и распространяются по организму.

В желудочно-кишечном тракте промежутки между клетками эпи­телия слизистой оболочки невелики и фильтрация веществ ограни­чена, поэтому в желудочно-кишечном тракте гидрофильные поляр­ные соединения всасываются плохо. Так, гидрофильное полярное соединение неостигмин (прозерин) под кожу вводят в дозе 0,0005 г, а для получения сходного эффекта при приеме внутрь требуется до­за 0,015 г.

Липофильные неполярные вещества в желудочно-кишечном трак­те хорошо всасываются путем пассивной диффузии.

Активный транспорт - транспорт лекарственных веществ через мембраны с помощью специальных транспортных систем. Такими транспортными системами обычно являются фун­кционально активные белковые молекулы, встроенные в цитоплазматическую мембрану. Лекарственное вещество, имеющее аффи­нитет к транспортной системе, соединяется с местами связывания этой системы с одной стороны мембраны; затем происходит кон-формация белковой молекулы и вещество высвобождается с другой стороны мембраны.

Активный транспорт избирателен, насыщаем, требует затрат энергии, может происходить против градиента концентрации.

Облегченная диффузия- перенос вещества через мем­браны специальными транспортными системами по градиенту кон­центрации без затрат энергии.

Пиноцитоз - впячивания клеточной мембраны, окружаю­щие молекулы вещества и образующие вакуоли, которые проникают через клетку и высвобождают вещество с другой стороны клетки.

Всасывание (абсорбция)

При большинстве путей введения лекарственные вещества, преж­де чем они попадут в кровь, проходят процесс всасывания.

Различают энтеральные (через пищеварительный тракт) и па­рентеральные (помимо пищеварительного тракта) пути введения лекарственных веществ.

Энтеральные пути введения - введение веществ под язык, внутрь, ректально. При этих путях введения вещества всасываются в ос­новном путем пассивной диффузии. Поэтому хорошо всасываются липофильные неполярные вещества и плохо - гидрофильные по­лярные соединения.

При введении веществ под язык (сублингвально) всасыва­ние происходит быстро и вещества попадают в кровь, минуя пе­чень. Однако всасывающая поверхность невелика и таким путем можно вводить только высокоактивные вещества, назначаемые в малых дозах. Например, сублингвально применяют таблетки нит­роглицерина, содержащие 0,0005 г нитроглицерина; действие на­ступает через 1-2 мин.

При назначении веществ внутрь (per os) лекарственные сред­ства (таблетки, драже, микстуры и др.) проглатывают; всасывание веществ происходит в основном в тонком кишечнике.

Из тонкого кишечника вещества через систему воротной вены попадают в печень и только затем - в общий кровоток. В печени многие вещества подвергаются превращениям (биотрансформация); некоторые вещества выделяются из печени с желчью. В связи с этим в кровь может попасть лишь часть вводимого вещества; ос­тальная часть подвергается элиминации при первом прохождении (пас­саже) через печень.

Лекарственные вещества могут неполностью всасываться в ки­шечнике, подвергаться метаболизму в стенке кишечника. Поэтому часто используют более общий термин - «пресистемная элимина­ция».

Количество неизмененного вещества, попавшего в общий кро­воток, в процентном отношении к введенному количеству обозна­чают термином «биодоступность». Например, биодоступность про-пранолола 30%. Это означает, что при приеме внутрь в дозе 0,01 г (10 мг) только 0,003 г (3 мг) неизмененного пропранолола попадает в кровь.

Для определения биодоступности лекарственное вещество вводят в вену (при внутривенном введении биодоступность вещества - 100%). Через определенные интервалы времени определяют концентрации вещества в плазме крови и строят кривую изменения концентрации вещества во времени. Затем ту же дозу вещества назначают внутрь, определяют концентрации вещества в крови и строят кривую кон­центрация-время (рис. 1).

Измеряют площади под кривыми - AUC (Area Under the Curve). Биодоступность - F (Fraction) определяют как отношение AUC при назначении внутрь к AUC при внутривенном введении и обознача­ют в процентах

При одинаковой биодоступности двух веществ скорость их по­ступления в общий кровоток может быть различной. Соответствен­но различными будут время достижения пиковой концентрации, максимальная концентрация в плазме крови, величина фармаколо­гического эффекта. В связи с этим вводят понятие «биоэквивален­тность». Биоэквивалентность двух веществ означает сходные био­доступность, пик действия, характер и величину фармакологического эффекта.

Некоторые лекарственные средства вводят ректально (в пря­мую кишку) в виде ректальных суппозиториев (свечей) или лекар­ственных клизм. При этом 50% вещества после всасывания попадает в кровь, минуя печень.

Рис. 1. Биодоступность лекарственного вещества

Биодоступность (F - Fraction) определяется как отношение площадей под кривыми

концентрация - время (AUC) при приеме вещества внутрь и введении внутривенно.

Парентеральные пути введения - введение веществ, минуя пище­варительный тракт. Наиболее употребительные парентеральные пути введения - в вену, под кожу, в мышцы.

При внутривенном введении лекарственное вещество сра­зу попадает в кровь; действие вещества развивается очень быстро, обычно в течение 1-2 мин. Чтобы не создавать в крови слишком высокой концентрации вещества, большинство лекарственных средств перед внутривенным введением разводят в 10-20 мл изото­нического (0,9%) раствора натрия хлорида или изотонического (5%) раствора глюкозы и вводят медленно - в течение нескольких ми­нут. Нередко лекарственные вещества в 250-500 мл изотоническо­го раствора водят в вену капельно, иногда в течение многих часов.

В вену нельзя вводить масляные растворы и взвеси (суспензии) в связи с опасностью закупорки сосудов (эмболии). Однако внутри­венно иногда вводят небольшие количества гипертонических растворов (например, 10-20 мл 40% раствора глюкозы), которые быстро разводятся кровью.

При внутримышечном введении (чаще всего в мышцы яго­дицы) вещества могут всасываться путем пассивной диффузии и пу­тем фильтрации (через межклеточные промежутки в эндотелии кро­веносных сосудов). Таким образом, внутримышечно можно вводить и липофильные неполярные, и гидрофильные полярные соединения.

В мышцы нельзя вводить гипертонические растворы и раздра­жающие вещества. В то же время, в мышцы вводят масляные ра­створы и взвеси (суспензии). При введении взвеси в мышце созда­ется депо препарата, из которого лекарственное вещество может медленно и длительно всасываться в кровь.

При подкожном введении (в подкожную жировую клетчат­ку) вещества всасываются так же, как и при внутримышечном вве­дении, но более медленно, так как кровоснабжение подкожной клет­чатки меньше, чем кровоснабжение скелетных мышц. Под кожу иногда вводят масляные растворы и взвеси. Однако по сравнению с введением в мышцы масляные растворы и взвеси медленнее вса­сываются и могут образовывать инфильтраты.

Из других путей введения лекарственных средств в клинической практике используют ингаляционное введение (вдыхание газообраз­ных веществ, паров летучих жидкостей, аэрозолей), введение веществ под оболочки мозга, внутриартериальное введение и некоторые другие.

Распределение

При попадании в общий кровоток липофильные неполярные вещества распределяются в организме относительно равномерно, а гидрофильные полярные вещества - неравномерно, Препятствия­ми для распределения гидрофильных полярных веществ являются, в частности, гисто-гемагпические барьеры, т.е. барьеры, отделяющие некоторые ткани от крови. К таким барьерам относятся гематоэн-цефалический, гематоофтальмический и плацентарный барьеры.

Гематоэнцефалический барьер образован слоем эндотелиальных клеток капилляров мозга, в котором отсутствуют межклеточные промежутки. Гематоэнцефалический барьер препятствует проник­новению гидрофильных полярных веществ из крови в ткани мозга. При воспалении мозговых оболочек проницаемость гематоэнцефа-лического барьера повышается.

Гематоофтальмический барьер препятствует проникновению гидрофильных полярных веществ из крови в ткани глаз.

Плацентарный барьер во время беременности препятствует про­никновению ряда веществ из организма матери в организм плода.

Для характеристики распределения лекарственного вещества ис­пользуют кажущийся объем распределения - V d (Volume of distribution).

В системе однокамерной фармакокинетической модели ,

где D - доза, С о - начальная концентрация. Поэтому кажущийся объем распределения можно определить как гипотетический объем жидкостей организма, в котором после внутривенного введения, при условии мгновенного и равномерного распределения концент­рация вещества равна его концентрации в плазме крови. V d опреде­ляют в литрах или л/кг.

Если для условного человека с массой тела 70 кг V d = 3 л (объем плазмы крови), это означает, что вещество находится в плазме кро­ви, не проникает в форменные элементы крови и не выходит за пределы кровеносного русла.

V d = 15 л означает, что вещество находится в плазме крови (3 л), в межклеточной жидкости (12 л) и не проникает в клетки тканей.

V d = 40 л (общее количество жидкости в организме) означает, что вещество распределено во внеклеточной и внутриклеточной жидкости.

V d = 400 - 600 -1000 л означает, что вещество депонировано в периферических тканях и его концентрация в крови низкая. Напри­мер, для имипрамина (трициклический антидепрессант) V d = 23 л/кг, т.е. примерно 1600 л. В связи с этим концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ не эффективен.

Депонирование

При распределении лекарственного вещества в организме часть вещества может задерживаться (депонироваться) в различных тканях. Из «депо» вещество высвобождается в кровь и оказывает фармакологическое действие. Липофильные вещества могут депо­нироваться в жировой ткани. Так, средство для внутривенного наркоза тиопентал-натрий вызывает наркоз, который продолжа­ется 15-20 мин. Кратковременность действия связана с тем, что 90% тиопентала-натрия депонируется в жировой ткани. После пре­кращения наркоза наступает посленаркозный сон, который про­должается 2-3 ч и связан с действием препарата, высвобождаемо­го из жирового депо.

Антибиотики из группы тетрациклинов на длительное время депонируются в костной ткани. Тетрациклины не рекомендуют назначать детям до 8 лет, так как, депонируясь в костной ткани, они могут нарушать развитие скелета.

Многие вещества депонируются в крови, связываясь с белками плазмы крови. В соединении с белками плазмы вещества не прояв­ляют фармакологической активности. Однако часть вещества выс­вобождается из связи с белками и оказывает фармакологическое действие. Вещества, которые более прочно связываются с белками, могут вытеснять вещества с меньшей прочностью связывания. Дей­ствие вытесненного вещества при этом усиливается, так как увели­чивается концентрация в плазме крови его свободной (активной) формы. Например, сульфаниламиды, салицилаты могут таким об­разом усиливать действие назначаемых одновременно непрямых антикоагулянтов. При этом свертываемость крови может чрезмер­но снижаться, что ведет к кровотечениям.

Биотрансформация

Большинство лекарственных веществ в организме подвергается превращениям (биотрансформации). Различают метаболическую трансформацию (окисление, восстановление, гидролиз) и конъюга­цию (ацетилирование, метилирование, образование соединений с глюкуроновой кислотой и др.). Соответственно, продукты превра­щений называют метаболитами и конъюгатами. Обычно вещество подвергается сначала метаболической трансформации, а затем конъ­югации. Метаболиты, как правило, менее активны, чем исходные соединения, но иногда оказываются активнее (токсичнее) исход­ных веществ. Конъюгаты обычно малоактивны.

Большинство лекарственных веществ подвергается биотрансфор­мации в печени под влиянием ферментов, локализованных в эндоплазматическом ретикулуме клеток печени и называемых микросомальными ферментами (в основном изоферменты цитохрома Р-450).

Эти ферменты действуют на липофильные неполярные веще­ства, превращая их в гидрофильные полярные соединения, кото­рые легче выводятся из организма. Активность микросомальных ферментов зависит от пола, возраста, заболеваний печени, действия некоторых лекарственных средств.

Так, у мужчин активность микросомальных ферментов несколь­ко выше, чем у женщин (синтез этих ферментов стимулируется мужскими половыми гормонами). Поэтому мужчины более устой­чивы к действию многих фармакологических веществ.

У новорожденных система микросомальных ферментов несовер­шенна, поэтому ряд лекарственных веществ (например, хлорамфеникол) в первые недели жизни назначать не рекомендуют в связи с их выраженным токсическим действием.

Активность микросомальных ферментов печени снижается в пожилом возрасте, поэтому многие лекарственные препараты ли­цам старше 60 лет назначают в меньших дозах по сравнению с ли­цами среднего возраста.

При заболеваниях печени активность микросомальных фермен­тов может снижаться, замедляется биотрансформация лекарствен­ных средств, усиливается и удлиняется их действие.

Известны лекарственные вещества, индуцирующие синтез мик­росомальных ферментов печени, например, фенобарбитал, гризеофульвин, рифампицин. Индукция синтеза микросомальных фермен­тов при применении указанных лекарственных веществ развивается постепенно (примерно в течение 2 нед). При одновременном назна­чении с ними других препаратов (например, глюкокортикоидов, противозачаточных средств для приема внутрь) действие последних может ослабляться.

Некоторые лекарственные вещества (циметидин, хлорамфени-кол и др.) снижают активность микросомальных ферментов печени и поэтому могут усиливать действие других препаратов.

Дифильные основы представляют собой иногда очень сложные композиции, которым присущи свойства как липофильных, так и гидрофильных основ. Они обеспечивают хорошее всасывание лекарственных субстанций, имеют хорошие консистентные свойства, не задерживают природный газо- и теплообмен кожи.

Таким образом, им присущи более оптимальные свойства, чем липофильным и особенно углеводородным основам. Условно их подразделяют на абсорбционные (способные поглощать значительное количество воды или водных растворов) и эмульсионные.

В состав абсорбционных мазевых основ входят липофильные компоненты: вазелин, растительные масла, масло вазелиновое, церезин и эмульгаторы типа в/м (ланолин безводный, эмульгатор №1, эмульгатор Т-2, моноглицериды дистиллированные, спирты шерстного воска, гидролин, спены, пентод, спирты цетиловый, стеариновый).

Из абсорбционных основ наиболее широко используются различные сплавы вазелина с ланолином безводным: основа для приготовления глазных мазей (9:1) и основа для приготовления мазей с антибиотиками (6:4). Для приготовления мазей с серой, цинка оксидом, салициловой и борной кислотами, гидрокортизоном, дегтем, калия иодидом, ихтиолоим, стрептоцидом и т.д. со сроком годности 2 года может быть использована абсорбционная основа такого состава: спиртов шерстного воска 6 г, церезина 24 г, вазелина 10 г, масла вазелинового 60 г. Если церезин заменить парафином, получим абсорбционную основу, которая используется для приготовления мази “Салипар” (салициловой кислоты 2%).

Эмульсионное основы типа в/м могут быть представлены известной консистентной эмульсией вода - вазелин (состав см. табл. 19.6). Эта основа предложена как заменитель свиного жира. Ее следует использовать для приготовления таких мазей: серной простой, с калия иодидом, со скипидаром, “Сунореф” и др. Она легко поглощает воду и глицерин (100%), спирт этиловый (25%), димексид (35%), водные и спиртовые вьггяжки. Например, мазь с календулой имеет такой состав: настойки календулы 10 г, эмульсии вода - вазелин 90 г.

Для приготовления мазей с труднорастворимыми и нестабильными в воде антибиотиками рекомендуются основы “Эсилон-1” (эси- лон-аэросильной основы - 45%, гидролина - 5%, ПЭО-400 - 20%, воды очищенной - 30%) и “Эсилон-2” (эсилон-аэросилъной основы - 45%, гидролина - 5%, воды очищенной - 50%). При их приготовлении эсилон-аэросильную основу смешивают с гидролином при температуре 50-60°С (на водяной бане) и при постоянном перемешивании добавляют гидрофильные компоненты.

Заслуживают внимания основы, которые содержат эмульгаторы пентол: пентола 2 г, вазелина 38 г, воды очищенной 60 г ж сорбитано- олеат: сорбитаноолеата 2,5 г, вазелина 47,5 г, воды очищенной 50 г. Основы получают путем сплавления эмульгатора с вазелином и постепенного добавления воды к полуохлажденному сплаву при перемешивании. Основы стойкие при хранении в комнатных условиях и имеют густую сметанообразную консистенцию, легко наносятся на кожу.

Эмульсионные основы типа м/в легко отдают лекарственные субстанции, смешиваются с водными растворами веществ и выделениями ран, обсуловливают охлаждающий эффект и увлажняющее действие. Мази, приготовленные на этих основах, можно наносить на большие площади кожи без нарушения перспирации (выделение кожей водных паров и газов), из них легко всасываются лекарственные вещества.

В эмульсионные основы типа м/в наиболее часто входят неино- генные (твины) или ионогенные (эмульгатор №1, эмульсионные воски, натрия лаурилеульфат, натрия етеарилсульфат) эмульгаторы. Эмульгатор №1 можно использовать в составе мазей, в которые входят сок алоэ, растительные масла, масло вазелиновое, вазелин, парафин, глицерин, натрий-КМЦ, спиртовые и водные растворы лекарственных веществ.

Одна часть эмульгатора N91 способна заэмульгировать девять частей воды. Эмульгатор №1 широко используют в производстве линиментов (алоэ, синтомицина, стрептоцида, тезана и др.) и мазей (“Випросал”, “Ундецин”, “Цинкундан” и др.). Значительно реже используют твин-80 (мази с амфотерицином В, декамином, прополисом).

Для приготовления мазей с анестетиками (анестезином, лидока- ином, новокаином, дикаином и др.) используют основу на базе эмульсионных восков (табл. 19.6).

По способности лекарственных веществ всасываться из мазей через кожу все мазевые основы можно разместить в такой последовательности: гидрофильные гели - эмульсионные основы типа м/в - эмульсионные основы типа в/м - абсорбционные - гидрофобные. Однако, как свидетельствует практика, могут быть исключения. Прежде всего следует учитывать действие лекарственной субстанции, ее свойства, возможное взаимодействие с компонентами мази и другие факторы.

Таким образом, в фармацевтической практике имеется значительный ассортимент мазевых основ с разнообразными свойствами. Добавление к ним отдельных мазевых компонентов (растворителей, ПАВ, загустителей, активаторов всасывания и др.) позволяет значительно улучшить их качество и повысить эффективность мази.

ВСАСЫВАНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Всасывание - преодоление лекарственными средствами липопротеиновой плазматической мембраны клеток и межклеточных щелей. В кишечнике барьер между внешней и внутренней средой организма состоит из одного слоя эпителия, при всасывании с поверхности кожи лекарственные средства преодолевают несколько клеточных слоев. Различают следующие варианты трансмембранного транспорта: пассивную диффузию, активный транспорт и пиноцитоз.

Пассивная диффузия

Пассивная диффузия происходит по градиенту концентрации лекарственных средств - из зоны с большей концентрацией в зону с меньшей концентрацией, поэтому не требует затрат энергии макроэргов.

Простая диффузия

При простой диффузии лекарственные средства растворяются в липидном бислое мембран. Растворимостью в липидах независимо от условий среды обладают лишь немногие вещества - ингаляционные наркозные средства, этанол. Большинство же лекарственных средств являются слабыми кислотами или слабыми основаниями и образуют как растворимые в липидах нейтральные молекулы, так и ионы. Степень диссоциации зависит от физико-химических свойств лекарственного средства и водородного показателя (pH) среды, из которой происходит всасывание.

У слабой кислоты с pK a 1= 4,4 содержание нейтральных молекул в желудочном соке (pH=1,4) в 1000 раз больше, чем в крови (pH=7,4), и наоборот: количество ионов в 1000 раз больше в крови, чем в желудочном соке.

У слабого основания с таким же pK a соотношение нейтральных молекул и ионов составляет в крови 1000:1, в желудочном соке - 1:1000.

Условия всасывания лекарственных средств - слабых кислот и оснований различные. Противовоспалительное средство ацетилсалициловая кислота имеет pK a =3,6. В кислой среде желудочного сока она присутствует в виде растворимых в липидах нейтральных молекул, в щелочной среде кишечника (pH=6,8-7,2) - в виде ионов. В крови при рН=7,4 ацетилсалициловая кислота находится в ионизированной форме, поэтому плохо проникает в ткани. В очаге воспаления, где развивается локальный ацидоз, преобладают ее нейтральные молекулы. Свойствами слабых кислот обладают также противосудорожные средства фенобарбитал, фенитоин; НПВС фенилбутазон, индометацин, диклофенак; мочегонное средство фуросемид; антикоагулянты непрямого действия; сульфаниламиды, пенициллины, цефалоспорины, тетрациклины.

1 рК а - водородный показатель среды, при котором половина молекул нейтральна, а другая половина диссоциирована на ионы.

Лекарственные средства из группы слабых оснований находятся во внутренних средах организма (в кишечнике, крови, клетках) в виде нейтральных молекул. Представителями слабых оснований являются алкалоиды (морфин, кодеин, папаверин, кофеин, атропин, хинин) и синтетические азотсодержащие средства (лидокаин, пропранолол, дифенгидрамин, хлорохин и многие другие).

Знание особенностей поведения лекарственных средств с различными физико-химическими свойствами в разных средах имеет большое медицинское значение.

При отравлении производными барбитуровой кислоты для ускорения их элиминации проводят форсированный диурез: вливают в вену мочегонные средства и изотонические растворы глюкозы ♠ и натрия хлорида с добавлением натрия гидрокарбоната. Последний создает в первичной моче щелочную среду, в которой ускоряется диссоциация барбитуратов на ионы, не подвергающиеся реабсорбции в почечных канальцах.

При отравлении морфином и некоторыми другими алкалоидами, введенными парентерально, промывают желудок растворами слабых кислот - уксусной или лимонной, так как около 10% молекул алкалоидов простой диффузией по градиенту концентрации проникают из крови в просвет желудка, где в условиях кислой среды диссоциируют на ионы. Ионы могут поступать в кишечник и вновь образовывать способные к всасыванию нейтральные молекулы. Промывание желудка направлено на повышение диссоциации и удаление молекул алкалоидов.

Липофильные и гидрофильные свойства нейтральных молекул лекарственных средств зависят от присутствия в их структуре полярных групп. Полярные лекарственные средства плохо растворяются в липидах и менее способны к всасыванию простой диффузией.

Фильтрация

Лекарственные средства фильтруются с током воды через поры клеточной мембраны под действием гидростатического и осмотического давления. Фильтрация возможна только для нейтральных молекул, имеющих массу не более 100-200 Да. Это обусловлено размером пор (0,35-0,4 нм) и присутствием в них фиксированных зарядов. Фильтрации подвергаются мочевина, глюкоза ♠ .

Активный транспорт

Активный транспорт лекарственных средств происходит против градиента концентрации с затратой энергии макроэргов и при участии белков-транспортеров.

Активным транспортом переносятся эндобиотики - аналоги метаболитов организма, использующие естественные системы переноса. Известно, что йод поступает в фолликулы щитовидной железы против пятидесятикратного градиента концентрации, норэпинефрин подвергается нейрональному захвату нервными окончаниями против двухсоткратного градиента.

Лекарственные средства могут связываться с белками-транспортерами и нарушать функции ферментов активного транспорта (сердечные гликозиды блокируют мембранную Na+, К+-зависимую АТФазу).

Пиноцитоз

При пиноцитозе происходит инвагинация клеточной мембраны с образованием вакуоли. Эта вакуоль мигрирует к противоположной мембране. Пиноцитозом всасываются полипептиды и другие высокомолекулярные соединения (витамин В 12 в комплексе с гликопротеином - внутренним фактором Касла).

Биодоступность лекарственных средств

Важнейшим показателем фармакокинетики является биодоступность - часть дозы лекарственного средства, поступающая с определенной скоростью в кровь и биофазу циторецепторов. Биодоступность зависит от растворимости лекарственного средства в липидах, лекарственной формы и технологии ее приготовления, пути введения, интенсивности кровотока, площади всасывающей поверхности (наибольшая - у альвеол легких и слизистой оболочки кишечника), проницаемости эпителия. При внутривенной инъекции лекарственные средства транспортируются в ткани через эндотелий, базальную мембрану и по широким межклеточным порам, поэтому биодоступность достигает 100%. При других путях введения она меньше. В случае приема лекарственных средств внутрь большое значение для биодоступности имеют лекарственные формы, присутствие пищи, состояние пищеварительного тракта и сердечно-сосудистой системы, интенсивность метаболизма в слизистой оболочке кишечника и печени.

Новые лекарственные формы с контролируемым высвобождением позволяют изменять скорость наступления эффекта, продолжительность, интенсивность и локализацию лечебного действия лекарственных средств. При применении таких лекарственных форм не создаются пики концентрации, что снижает риск развития побочных эффектов лекарственных средств с небольшой широтой терапевтического действия; возрастает биодоступность лекарственных средств, плохо или медленно всасывающихся в пищеварительном тракте.

Значительное влияние на биодоступность оказывает белок обратного (эффлюксного) выброса - гликопротеин Р, катализирующий удаление многих лекарственных средств из клеток. Это трансмембранный фосфогликопротеин с молекулярной массой 170 кДа. Он обладает свойствами АТФазы, функционирует в эпителии кишечника, гепатоцитах, нефроцитах, эндотелии гистогематических барьеров (наибольшая активность - в эндотелии ГЭБ). Гликопротеин Р сначала распознает субстрат, находящийся внутри клетки, а затем выбрасывает его против градиента концентрации в просвет кишечника, желчь, мочу или ограничивает проникновение в головной мозг, среды глаза, через плаценту. Максимальным сродством к гликопротеину Р обладают липофильные лекарственные средства с большим количеством водородных связей. Гиперэкспрессия гликопротеина Р сопровождается множественной лекарственной устойчивостью. Гликопротеин Р ограничивает всасывание в кишечнике сердечных гликозидов (дигоксина, дигитоксина), блокаторов кальциевых каналов, статинов, блокаторов Н 1 -рецепторов, макролидов, фторхинолонов, противовирусных и противоопухолевых средств.

Биодоступность лекарственных средств зависит от возраста. В педиатрической практике необходимо считаться с особенностями всасывания у детей.

Желудочный сок имеет нейтральную реакцию (сразу после рождения рН=6-8) и приобретает такую же, как у взрослых, кислотность только ко второму году жизни ребенка.

Около 8-19% новорожденных страдают гипохлоргидрией.

Эвакуаторная деятельность желудка нерегулярна в течение первых 6 мес жизни (материнское молоко усиливает моторную деятельность желудка).

В кишечнике снижена микробная обсемененность, повышена активность β-глюкуронидазы микроорганизмов.

Уменьшены синтез и выделение желчных кислот, что нарушает всасывание жирорастворимых веществ, например витаминов.

Изменение биодоступности лекарственных средств у пожилых людей обусловлено физиологическим старением органов и тканей и наличием сопутствующих заболеваний. В пожилом возрасте снижаются секреция и кислотность желудочного сока, что ускоряет опорожнение желудка и поступление принятых внутрь лекарственных средств к основному месту всасывания - в тонкую кишку. Частые в пожилом возрасте запоры способствуют увеличению полноты всасывания лекарственных средств. Вместе с тем всасывающая поверхность слизистой оболочки тонкой кишки сокращается на 20%. В результате всасывание лекарственных средств у пожилых людей может оказаться вариабельным и непредсказуемым.

У женщин эстрогены тормозят перистальтику кишечника, прогестерон в малых концентрациях ее стимулирует, в больших - угнетает. Опорожнение желудка и тонкой кишки происходит медленнее, чем у мужчин. При этом ускоряется всасывание антигистаминных средств, ацетилсалициловой кислоты, антимигренозного средства наратриптана. В организме женщин значительно ниже экспрессия гена, кодирующего гликопротеин Р. Этой особенностью объясняется большая частота интоксикации сердечными гликозидами наперстянки у женщин.

Во время беременности значительное влияние на биодоступность оказывают ослабление перистальтики желудка и уменьшение объема желудочной секреции, давление увеличенной в размерах матки на вены таза и нижнюю полую вену, увеличение толщины подкожной жировой клетчатки.